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Abstract: Nowadays, developing and applying advanced digital technologies for monitoring pro-
tected natural territories are critical problems. Collecting, digitalizing, storing, and analyzing spa-
tiotemporal data on various aspects of the life cycle of such territories play a significant role in
monitoring. Often, data processing requires the utilization of high-performance computing. To
this end, the paper addresses a new approach to automation of implementing resource-intensive
computational operations of web processing services in a heterogeneous distributed computing
environment. To implement such an operation, we develop a workflow-based scientific application
executed under the control of a multi-agent system. Agents represent heterogeneous resources of the
environment and distribute the computational load among themselves. Software development is
realized in the Orlando Tools framework, which we apply to creating and operating problem-oriented
applications. The advantages of the proposed approach are in integrating geographic information
services and high-performance computing tools, as well as in increasing computation speedup,
balancing computational load, and improving the efficiency of resource use in the heterogeneous
distributed computing environment. These advantages are shown in analyzing multidimensional
time series.

Keywords: web processing services; workflow-based scientific applications; high-performance
computing; agents; time series; analysis and prediction; multiextremal optimization

1. Introduction

Nowadays, developing and applying advanced digital technologies for monitoring
ecology and nature management of the environment (e.g., atmospheric air, surface land
waters, sea waters, soil and land cover, landscapes, etc.) are critical for the scientific
community [1]. In this context, protected natural territories deserve special attention and
control due to the importance and uniqueness of their water, land, forest, biological, and
other natural resources [2].

Generally, environmental monitoring is impossible without applying a multi-level
information complex [3]. This complex is intended to consider and evaluate the cumulative
anthropogenic effect from different impact sources to predict the possible response of
natural environments and the evolution of their further state. The monitoring process in-
cludes determining locations and parameters of observation, selecting and placing sensors,
receiving and transferring signals, processing and archiving data, visualizing information,
supporting decision-making, etc. Geographic information systems (GISs) are integral struc-
tural elements of such complexes [4]. Moreover, development, publication, and assembling
web services by research teams in various research fields based on open standards within
an integrated GIS portal undoubtedly expand opportunities for interdisciplinary studies
related to environmental monitoring [5]. When applying web services, end-users have
access to distributed algorithms, models, data, and sensors for geodata processing.
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However, due to the growth in the amount of information obtained and aggregated in
the monitoring process, the modern development of GISs often requires big data analysis
tools based on parallel and distributed computing [6,7]. Hence, specialists from different
subject domains are faced with the need to solve problems of supercomputer engineering.
In particular, the challenges in applying high-performance computing (HPC) when solving
environmental monitoring problems are discussed by Lee et al. [8]. These authors suggest
that while multiprocessor systems are the main elements of the computing environment,
end-users should also use cloud and fog platforms. Cloud platforms provide flexible and
dynamic provisioning additional resources on-demand. At the same time, fog platforms
allow preprocessing data close to their sources. In such a heterogeneous computing
environment, a non-trivial problem is ensuring efficient use of resources and computation
speedup, as the number of consumed resources constantly increases. Thus, among the
main challenges are the following:

• using resources of a distributed computing environment, in which heterogeneity is
increasing every year, and interacting with local resource managers (LRMs) located in
the nodes of resources [9],

• developing workflow-based applications, forming a composition of web services
provided by different research projects, and executing workflows in a distributed
computing environment, which necessitates making access to HPC resources more
flexibly and straightforwardly [10],

• supporting a large spectrum of various open standards, such as the Open Cloud
Computing Interface (OCCI) [11], Open Virtualization Format (OVF) [12], standards
of the Open Source Geospatial Foundation (OSGeo) [13], and the Open Geospatial
Consortium (OGC) [14],

• implementing other system operations, for example, computation scheduling and
distribution of computational load respecting administrative policies of resource
provisioning.

The efforts of many researchers are aimed at overcoming these challenges. Foerster
et al. [15] suggest that the representation of data based on the OGC standards into mass-
market geospatial applications increases the availability of information significantly, and is
essential in practice for most end-users. For example, an open-source Java-based server,
GeoServer, implements standard OGC protocols and provides end-users great flexibility in
map creation and geospatial data sharing [16]. Among such standards are the Web Feature
Service (WFS), Web Map Service (WMS), Web Coverage Service (WCS), Web Processing
Service (WPS), and Web Map Tile Service (WMTS).

However, geospatial data should be timely and efficiently collected, aggregated, and
transferred to GIS. Concerning big data, this requires high-performance data processing.
Tools similar to such GISs are not addressed to these problems. Therefore, additional
software, for example, tools for composition and management of WPS services, as well as
virtualization and execution of grid or cloud computing, is required [17]. Owing to such a
need, significant difficulties are created for both the providers of geographic information
services and their end-users.

The workflow-based geoprocessing tool GeoJModelBuilder is considered in [18]. It is
intended for integrating interoperable web sensors, geoprocessing services, and researcher’s
models into workflows based on the OpenMI standard of OGC. When using this tool, it is
often difficult to synchronize the modeled time when the models interact with each other.
An approach to migrating of applications from a GIS portal to a private or public cloud is
proposed in [19]. Wang et al. [20] represent the scalable implementation of atmospheric
general circulation models on a multicore cluster when solving a problem of long-term
simulations for climate change. Features of high-performance geocomputing on HPC
clusters are discussed in [21].

Nevertheless, geospatial applications based on cloud computing technology still
require further development [22]. Moreover, integration of HPC resources at diverse
physical locations to execute a composite of web services developed by different researchers
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remains difficult within traditional workflow-based approaches [10]. One way to overcome
this difficulty is proposed in [23]. Sun et al. present the Geoweaver system to improve
efficiency in managing the full cycle of an artificial intelligence workflow.

Thus, owing to the uniqueness of each problem from a large spectrum of those solved
with GISs, and the variety of software and hardware architectures used, as well as data
sources and structures, the challenges have not been eliminated. In this regard, we con-
tribute to this research field based on our practical experience in solving large-scale applied
problems using parallel and distributed computing [24–26]. In this paper, we propose
an approach integrating GIS portal capabilities and tools for creating problem-oriented,
heterogeneous, distributed computing environments. Within the proposed approach,
resource-intensive operations related to analyzing spatiotemporal data are implemented
by the workflow-based application developed in the Orlando Tools (OT) framework [24]
and represented by WPS services. The results are published on a GIS portal.

The rest of the paper is organized as follows. In Section 2, we represent a GIS portal
used to support environmental monitoring of the protected Baikal natural territory and
consider the capabilities of OT for developing and applying workflow-based scientific
applications. Then, we propose an approach to automating the creation of WPS services as
interfaces for workflows of the applications developed in OT. As an example of applying the
proposed approach, a technique and tools for forecasting hourly air temperature are given in
Section 3. In particular, adjusting the parameters of a prediction function (PF) is considered.
This function is a multiextremal one. It has several adjusted parameters and generally
requires parallel computing to find a global minimum. We provide a comprehensive
analysis of computational experiments for adjusting the PF parameters and discuss the
study results. Finally, Section 4 concludes the paper.

2. Proposed Approach: Methods and Tools
2.1. Automating Creation and Use of WPS Services within GIS Portal

A GIS portal of the Matrosov Institute for System Dynamics and Control Theory of
the Siberian Branch of the Russian Academy of Sciences (ISDCT SB RAS) allows end-users
to collect, process, and visualize their spatiotemporal data [27]. Spatiotemporal data map
various geodata structures to specific locations in different periods. Within the GIS portal,
its functionality is encapsulated into WPS services. The WPS specification describes a
web service standard for publishing geoprocessing capabilities and provides an interface
for processing spatiotemporal data. Data visualization is carried out with maps, tables,
and diagrams.

The scheme for operating with spatiotemporal data is shown in Figure 1. Control and
measuring equipment of weather stations, water level monitors, seismic vibrations detec-
tors, satellites, and other monitoring systems collect, preprocess, and transfer information
about the observed object states (observation results). These results (spatiotemporal data)
are represented as data files, various databases, and different web services. The data meta-
model determines the rules for searching, obtaining, aggregating, formatting, processing,
representing, visualizing, and analyzing the data transmitted within the GIS portal.

For registered end-users, the web interface provides access to the functionality of the
GIS portal. End-users can use the WPS services of other users or develop new services and
register them in corresponding catalogs on the GIS portal. The database system provides
each end-user with disk storage volumes to memorize the parameters of the launched
services or their compositions. Access to storage is implemented through a web interface
that enables end-users to upload and download data files. This storage service also provides
a virtual file system on users’ personal computers (PCs). A management system supports
interaction between the GIS portal components and their configuration.
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Figure 1. Scheme for operating with spatiotemporal data.

Within the GIS portal, spatiotemporal data become available to different end-users in
solving their practical and scientific problems. These data are widely used for updating
topographic and navigational maps, agricultural monitoring, tracking the dynamics and
state of forest felling, observing ice conditions, etc. For the last two decades, the GIS portal
has been actively used in environmental monitoring of the protected Baikal natural territory.

We propose an approach to automating the execution of high-performance computing
at the request of WPS services in a heterogeneous, distributed computing environment. To
implement such computations, a workflow-based scientific application is being developed.
This application is executed under the control of a multi-agent system. Agents represent
heterogeneous resources of the computing environment and distribute the computational
load among themselves. They are software entities that act to achieve the goals set by the
resource providers.

The operation scheme with WPS services is shown in Figure 2. Administrators manage
the GIS portal and configure tools for data searching, obtaining, aggregating, formatting,
processing, analyzing, representing, and visualizing. End-users interact with services of
the GIS portal through queries. They can also register their services.
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Figure 2. Scheme of operations with WPS services in OT.

Within the proposed approach, end-users can pre-develop applications in OT and
then register WPS services to access them on the GIS portal. The applied software of an
application consists of a set of modules implementing algorithms for solving problems
from the subject domain. Each module has a specification that includes the following
information: the type and semantics of input, output, and transit parameters, methods
for transferring parameters, requirements of the computing environment, launch modes,
etc. A problem-solving scheme (scientific workflow) reflects the information and logical
relations between modules within distributed computing. It is represented as a direct
acyclic graph (DAG). The workflow execution is based on parameter sweep computing [28].
Therefore, the workflow execution leads to generating a job flow. One of the sets of inputs
corresponds to one workflow instance within a single computational job. The inputs and
outputs are stored in the OT computation database or an external database, for example, in
the database system of the GIS portal.

The OT framework includes the following main components:

• user web interface,
• subsystem for continuous integration,
• model designer,
• designer of WPS services,
• execution subsystem,
• knowledge base,



ISPRS Int. J. Geo-Inf. 2022, 11, 8 6 of 24

• computation database.

These components are automatically included in the developed application module
set. Developers can configure the capabilities of the component for each application. The
user web interface provides access by end-users to the OT components.

Application development in OT includes the following main stages:

• developing or modifying applied modules, as well as their building, deployment,
delivery, and testing in resources of the computing environment with means of the OT
subsystem for continuous integration,

• describing a computational model that consists of module specifications and relations
between modules using the model designer,

• creating workflows on the computational model.

OT enables end-users to describe the computational model in an XML file or a visual
editor. The computational model and created workflows are stored in the knowledge
database. OT provides a set of converters of descriptions of domain-specific models of
end-users, including workflow specifications to the computational model on XML. When
solving problems for a new subject domain, the development of new converters or the use
of external ones is sometimes required.

To automate the above-listed stages, OT includes a subsystem for continuous inte-
gration of applied software. This subsystem provides work with Git repositories. An
open-source web tool, GitLab, is used as a repository management system (available online:
https://gitlab.com, accessed on 29 October 2021). A Git repository is a filesystem directory
containing the following files:

• repository configuration files,
• log files storing operations performed on the repository,
• an index file describing the location of the files,
• end-user files.

OT end-users store their computational models, modules, and workflows in reposito-
ries. OT provides end-users with the web interface to manage repositories using GitLab
capabilities. The subsystem for continuous integration supports the following main oppor-
tunities (Figure 2):

• developing and modifying modules using their GIT repositories,
• building and testing modules,
• deploying and delivering modules,
• testing workflows.

The execution subsystem of OT includes a set of workflow interpreters and compu-
tation schedulers. An interpreter executes control structures and modules of workflows.
A scheduler makes decisions to optimize the distribution of the computational and com-
munication load on available resources of the computing environment. It operates on the
environment level as a meta-scheduler. The decomposition can be performed in both the
static mode before the computation starts and dynamic mode during the computational
process. Application users define criteria of the problem-solving quality as the workflow
execution makespan and computation speedup. Preferences of resource owners include
resource use efficiency and average CPU utilization.

Agents represent environment resources. An agent is a software entity acting to
achieve the goals set by the owner of resources. Agents ensure matching the problem-
solving quality criteria with resource owners’ preferences and improving their indicators
in a heterogeneous computing environment compared with well-known meta-schedulers,
such as GridWay [29] and Condor DAGMan [30]. These benefits are achieved by support-
ing the continuous integration of the applied software in OT. Agents provide testing of
application modules on environment resources and predicting their execution time. This
information allows the OT scheduler to increase the efficiency of the resource allocation to
complete application jobs.

https://gitlab.com
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Agents also represent various external applications used within OT. For example,
agents of the meta-monitoring system provide the OT interpreters and schedulers with
information about the hardware and software used.

Thus, in terms of software maintenance categories [31], OT supports preventive and
adaptive maintenance for software developers. The maintenance based on continuous
integration provides the software modification after delivery to detect and correct faults
in the software and keep the software usable in a dynamically changing computing envi-
ronment. As a rule, supporting such maintenance for external applications is a complex
system challenge for GISs.

Workflows are registered as WPS services. In OT, a new subsystem (designer of WPS
services) has been developed to automate WPS services’ creation, registration, and use. Ap-
plication modules and workflows are automatically registered in the form of asynchronous
WPS services of OT in the corresponding catalogs on the GIS portal. Workflows can include
calls to other WPS services, making it possible to operate with service compositions. In
OT, the ability to exchange files between WPS services as their parameters is supported,
including data exchange with the database system of the GIS portal. Within the scheme
with WPS services shown in Figure 2, the operation algorithm of the asynchronous WPS
service of OT registered on the GIS portal includes the following steps:

• Step 1. The WPS service receives a request from the end-user.
• Step 2. The WPS service checks the input parameters contained in the request. If

these parameters are correct, the transition to the next step is performed. Otherwise, it
returns an error message to the end-user, and its operation ends.

• Step 3. The WPS service generates an XML file with the request execution status. In
addition, it indicates the URL of the XML file, which contains the results of the request
execution or the path to the database system in the case of data exchange between
modules using text files.

• Step 4. The WPS service implements the following operations: generating a computa-
tional job for the OT, calling the computation scheduler, transferring the generated
job and input parameters of the request to the scheduler using a specialized API,
completing the work.

Once having received control, the scheduler decomposes the computational load
by resources, sends sub-jobs with modules to the queues of LRMs installed on these
resources, transfers input and output parameters during the module executions, and checks
their execution statuses. At a specified frequency, it updates the request status in the
corresponding XML file generated by the WPS service. The update process is carried out
until the successful completion of the problem-solving process or detection of a failure of
the computational process.

Thus, OT acts as middleware and performs all the necessary system operations for
scheduling computational load, transferring data between environment resources, interact-
ing with LRMS installed on them, monitoring the state of resources, checking the status
of jobs, etc. WPS OT services are an interface between the GIS portal end-users and the
computing environment. They expand the functionality of the GIS portal and provide
high-performance data processing.

2.2. Technique and Tools for Air Temperature Prediction

In the general case, the problem of predicting the time series values is formulated
as follows. Let the set X =

{
xi

j

}
be a multidimensional time series of retrospective data,

where i = 1, ns, j = 1, ne, ns is a number of time series, and ne is a number of elements
in time series. X consists of ns time series that represent retrospective data about ns
meteorological parameters. Thus, xi =

{
xi

1, xi
2, . . . , xi

ne

}
is an ith one-dimensional time

series corresponding to the ith meteorological parameter. It is required to predict the value
xw

ne+1, where w ∈ 1, ns is a predicted meteorological parameter.
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Based on achievements in the field of predicting time series, including forecasting
air temperature, we conclude that the following methods are most in-demand in prac-
tice [32,33]: regression methods, autoregressive methods, neural network-based methods,
and methods based on the support vector machine.

As a rule, regression and autoregressive methods are mainly used to predict the mini-
mum, maximum, or average parameters of a time series, for example, air temperature [34].
These methods do not have sufficient accuracy in comparison with the other two groups of
methods [35,36]. Therefore, in many cases, applying methods based on neural networks
and support vector machines is preferable for modeling and predicting. An extensive
bibliography is devoted to applying such methods (see, for example, [37,38]). The use
of neural networks with various structures for predicting air temperature is considered
in [39–41]. In [42], a comparison is made between support vector methods and neural
networks. However, these methods also have some disadvantages [43,44]. In particular,
methods based on neural networks and support vectors require lengthy training to apply
the obtained model to new time series. Otherwise, the specific features of a series will
misrepresent the prediction based on the previous training. In practice, this is not always
convenient since it often requires HPC use.

In this regard, we propose a technique using the concept of similarity for time series
fragments [45,46]. In [46], a similar technique is efficiently applied to predict the electricity
demand. In addition, the prediction problem for several subject domains is successfully
solved similarly in [45]. The authors also discuss the advantages of using this technique in
comparison with the methods discussed above. Among these advantages is the accuracy
in prediction.

In this paper, we focus on air temperature prediction. Within the proposed technique,
the fragment Z(ne + 1) =

{
zi

j

}
of an hourly time series is given, where zi

j = xi
j, i = 1, ns,

j = ne − nz + 1, ne, and nz is a number of elements in Z. This fragment precedes the
(ne + 1)th time moment for a prediction. Then, a search for similar weather conditions
Z̃1(ne + 1), Z̃2(ne + 1), . . . , Z̃nq(ne + 1) in the past with the same dimensions is carried out.
Weather condition similarities are determined using the similarity function (SF) described
below. Finally, the air temperature at the given time is predicted based on the found
weather conditions applying the prediction function (PF).

Retrospective data on weather conditions in a specific location are used as input. A
search for similar weather conditions in the past is characterized by low computational
complexity. At the same time, the adjustment of a number of the PF parameters to minimize
the prediction error requires HPC use.

We provide two iterative stages in applying the considered technique. The first stage
is intended to adjust the PF parameters. Within the second stage, we use PF to predict the
air temperature in locations for which the function parameters have been adjusted. When
additional observation data accumulates, we extend the multidimensional time series X
and return to the first stage to re-adjust the PF parameters.

Stage 1. Obtain the multidimensional series X of meteorological data for a specific
location. The prediction period is taken from nl+1 to ne, i.e., we calculate the values of
air temperature for x̃w =

{
x̃w

nl+1
, x̃w

nl+2
, . . . , x̃w

ne

}
, w ∈ 1, ns. Next, determine the search set

X =
{

xi
1, xi

2, . . . , xi
nl

}
and evaluation set X =

{
xi

nl+1, xi
nl+2, . . . , xi

ne

}
, i = 1, ns. X ⊂ X is a

set used for searching the fragments Z̃1(l),Z̃2(l),Z̃3(l), etc. that are similar to Z(l), xi
j = xi

j,

j = 1, nl , l ∈ nl + 1, ne. The rest of the time series xi are used to reduce the prediction
error, i ∈ 1, ns and i 6= w. X ⊂ X is used to evaluate the prediction error of the values
x̃w

nl+1
, x̃w

nl+2
, . . . , x̃w

ne in comparison with the known values xw
nl+1, xw

nl+2, . . . , xw
ne , xw

j = xw
j ,

j = nl+1, ne.
For each lth predicted element from x̃w, searching the fragments Z̃1(l), Z̃2(l), Z̃3(l),

etc. using SF is implemented in the following way: forming Z̃v(l) and calculating b =

SF
(

P, Z(l), Z̃v(l), l
)

, where b is a Boolean variable that indicates whether the fragment
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Z̃v(l) is similar (b = 1) or not (b = 0) to Z, P = {pi ∈ Di} is a set of adjusted parameters, Di
is a domain of pi, l ∈ nl + 1, ne, i = 1, np, v = 1, n f , n f is a number the compared fragments
in X. Figure 3 illustrates searching Z̃1(l), Z̃2(l), Z̃3(l), etc.

Figure 3. Searching the fragments Z̃1(l), Z̃2(l), Z̃3(l), etc. that are similar to Z(l).

The fragment of four-dimensional time series used as retrospective data in experiments
is demonstrated in Table 1. Wind directions are “Calm”, “North”, “North-West”, “North-
East”, “South”, “South-West”, “South-East”, “West”, and “East”. Upon request, the data
are available from the external WPS service registered on the GIS portal. This WPS service
performs preliminary data processing extracted from the open data source https://rp5.ru/
Weather_in_the_world (accessed on 29 October 2021) for a given period.

Table 1. Fragment of multidimensional time series.

Air Temperature (◦C) Wind Speed (m/s) Wind Direction Total Solar Radiation
(W/m2)

−24.2 0 Calm 74.1
−23.7 0 Calm 87.8
−22.5 0 Calm 128.6
−21.5 1 North-West 176.3
−21.5 1 North-West 116.2
−21.7 2 North-West 53.3
−21.9 2 North-West 4.7
−22.2 2 North-West 0

SF is based on determining the correlation between the compared fragments. Algo-
rithm 1 shows the pseudocode for an algorithm of the SF operation.

https://rp5.ru/Weather_in_the_world
https://rp5.ru/Weather_in_the_world
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Algorithm 1. Algorithm of the SF operation.

1 function SF
(

P, Z(l), Z̃(l), l
)

2 if ∃i = 1, ns

∣∣∣z̃i
nz
(l)− zi

nz
(l) |> pi then

3 return 0;
4 end if
5 if

∀i = 1, ns
∑nz

j=nz−pi+ns +1

(
z̃i

j(l)− 1
pi+ns

∑
pi+ns
l=1 z̃i

j(l)
)
·
(

zi
j(l)− 1

pi+ns
∑

pi+ns
l=1 zi

j(l)
)

√
∑nz

j=nz−pi+ns +1

(
z̃i

j(l)−
1

pi+ns
∑

pi+ns
l=1 z̃i

j(l)
)2
·
(

zi
j(l)−

1
pi+ns

∑
pi+ns
l=1 zi

j(l)
)2

> pi+2ns

then
6 return 1;
7 else
8 return 0;
9 end if
10 end function

Values of parameters from P are adjusted to minimize the prediction error. The ad-
justed parameters determine the permissible length of time series and correlation coefficient,
as well as limits on modules of the difference for the air temperature, total solar radiation,
wind speed, and wind direction. To adjust these parameters, we generate a set of com-
binations of the parameter values randomly selected from the parameter domains. Then
we predict x̃w using PF. Algorithm 2 shows the pseudocode for an algorithm of the PF
operation, where l ∈ nl + 1, ne.

Algorithm 2. Algorithm of the PF operation.

1 function PF(X, Z(l), P, l, nl)
2 sum = 0, count = 0;
3 for k from ((l − 1)modnz) + nz to nl increment k = k + nz
4 if (k < l − nz − 1 or k > l + nz − 1) then
5 Z̃(l) =

{
xi

j

}
, i = 1, ns, j = k− nz + 1, k;

6 if (SF(P, Z(l), Z̃(l), l) then
7 sum = sum + xw

k+1 − xw
k ;

8 count = count + 1;
9 end if
10 end if
11 next k;
12 if (count < 3) then
13 x̃w

l = zw
nz
(l);

14 else
15 x̃w

l = zw
nz
(l) + sum

count ;
16 end if
17 return x̃w

l ;
18 end function

We select mean absolute error (MAE) for measuring the prediction errors. In our case,
MAE is defined as follows:

MAE =
1

ne − nl
∑ ne

l=nl+1

∣∣∣xw
l − PF(X, Z(l), P, l, nl)|→ min .

Stage 2. When the parameters from P were adjusted, we can use PF with the optimal
values of these parameters in different applications in which it is required to model the
hourly air temperature. To accomplish this, we determine the lth predicted element of a
time series and the fragments Z(l) that precedes this element in the loop for l and call PF.
In modeling, we can extend X by both the real and modeled data. Periodically, we can
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return to the first phase and re-adjust the parameters when the extended data exceeds a
specific size.

Within the proposed approach, we develop an application for adjusting the PF param-
eters. It is applied to solve the pattern recognition problem to determine similar weather
conditions in the past and predict air temperature in the future based on them. We ad-
just the PF parameters by the multi-start method [47] used jointly with the Nelder–Mead
method [48] applied to searching local extremums.

The multi-start method is based on the search for local optima of a function. It can use
various algorithms of the descent from the set S that consists of m starting points to the local
optima u1, u2, . . . , um. When local optima have been found, the value u∗ = min(max)ui

i=1,nsp

is

selected as a global optimum of the studied function.
In general, the workflow structure for the multi-start method implementation includes

the following four main stages:

• generating the set S of starting points,
• distributing starting points among resources of the computing environment,
• parallel descending from the starting points to the local optima u1, u2, . . . , unsp using

the Nelder–Mead method,
• selection of the global optimum u∗ from u1, u2, . . . , unsp .

An optimization of a multiextremal function using the multi-start method is per-
formed on heterogeneous resources with different computational characteristics. The
distribution starting points on resources is a non-trivial problem. We need to solve the
following problem:

tms =

[
max
i=1,nc

(q(PF)
ni
ri

+ vi(ni)

]
→ min,

nc

∑
i=1

ni = nsp,

where nc ≥ 1 is a number of cores, nsp > 1 is a number of start points, q(PF) > 0 is an
average number of elementary operations that is required to find a local minimum of SF
from one starting point, ni ≥ 0 is a number of starting points that will be processed on
the ith core, ri > 0 is a number of elementary operations that are processed by the ith core
per time unit, vi ≥ 0 is overheads of the ith core that depend on the number of processed
starting points, and tms > 0 is an evaluation of a workflow makespan.

This problem is NP-hard [49]. An increase in the number of starting points per core
reduces core use overheads. In this regard, we implement a new strategy of the multi-
start method execution, taking into account execution time evaluations for application
modules and resource performances. We use the evaluations of the module execution
time in different nodes of the computing environment that are obtained based on testing
the module in these nodes. Such testing is implemented in the continuous integration
of application modules. We include system modules from the API of an agent-based
meta-monitoring system [50] into the workflow. These system modules provide the search
and capture of environment resources, prediction of their performances in executing the
application modules, taking into account obtained evaluations and distribution of the
computational load between the captured resources. The advantages of the new strategy
are effectively balancing the computational load of resources and decreasing the workflow
makespan.

Figure 4 illustrates the workflow for solving the problem of adjusting the PF pa-
rameters. Parameters and modules of the workflow are drawn with circles and ovals,
respectively. The arrows show transferring parameters between modules.
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Figure 4. Workflow for adjusting values of parameters from P.

The workflow includes four modules. GetResources is a system module. It receives
a workflow module list with limits on the number of launches of their instances in the
computing process. Then it captures resources, evaluates their performance with respect to
workflow module executions using agents of the meta-monitoring system, and allocates
these resources for module executions. GetResources transfers the information about
allocated resources and their performance to the module Generate. Thus, we implement an
additional stage of the problem-solving scheme in comparison with the classical multi-start
method and provide the data decomposition based on the heuristic information about the
performance of resources. The module GetGeoData represents a call of the external WPS
service for retrieving the retrospective time series data from the GIS portal.

The module Generate generates a set of start points for each job executed on allocated
resources. The number of processed start-points for each job corresponds to the perfor-
mance of resources allocated to execute the job. Such mapping promotes the efficient use of
allocated resources. A set of start-points is generated by varying random point coordinates
(values of parameters from P).

The module Search implements an algorithm for the descent from the start point to a
local minimum using the Nelder–Mead method. Elements of the parallel lists StartPoints
and EndPoints are the input and output variables of this module. They are processed
independently of each other by the Search instances. Each instance is a message passing
interface (MPI) program. Within the module Search execution, the OT interpreter runs
its instances on the allocated resources. Finally, the module SelectionGM combines the
obtained local minima and returns a minimum value among them as the global minimum
of the function.

Thus, we provide the program library that includes PF for hourly air temperature
prediction and workflow-based WPS service for adjusting the PF parameters for a specific
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territory. End-users can also use PF from the library with the default parameters. The
default parameter values are adjusted for locations in the Baikal natural territory.

3. Results and Discussion
3.1. Proposed Technique Use for Air Temperature Prediction

We analyzed the impact of using additional data to predict air temperature in the
proposed technique. To this end, we predicted air temperature for the given period. The
prediction was carried out for four locations (i.e., Irkutsk, Nizhneangarsk, Baikalsk, and
Goryachinsk) with different weather conditions. We used retrospective multidimensional
time series obtained applying the WPS service registered on the GIS portal to extract and
process meteorological data from [51]. This time series represents data from 1 January 2011
to 31 December 2019, collected by weather stations at the selected locations.

Within the experiment, we changed the sizes of X for Stage 1 and Stage 2 of the
proposed technique in equal proportion. For comparison, we predicted in two ways. In
the first case, we made a prediction based on one-dimensional time series (ODTS) of air
temperature. In the second case, we predicted based on multi-dimensional time series
(MDTS) that includes data about air temperature and total solar radiation, as well as wind
speed and direction.

The prediction error estimated using the MAE is shown in Figure 5. We can see that in
our experiment, additional data allowed the MAE to be reduced in all four cases. This is
especially evident for the predictions in Baikalsk (Figure 5c) and Goryachinsk (Figure 5d).
In the cases of Irkutsk (Figure 5a) and Nizhneangarsk (Figure 5b), the MAE decrease was
smaller, since air temperature changes are more stable there. Thus, the impact of additional
meteorological data varies in degree, which is usually due to the microclimate features of a
specific location. Nevertheless, using additional data has a positive effect on the accuracy
of the air temperature prediction.

In the next experiment, we used the same data. We divided the set X related to
Irkutsk to the X and X sub-sets, which time series included nl = 70, 080 and ne − nl =
8760 elements, respectively. We adjusted the PF parameters using X and predicted
x̃w

nl+1, x̃w
nl+2, . . . , x̃w

ne and x̃w
n max+1, x̃w

n max+2, · · · , x̃w
nl

. In the first case, we evaluated predic-

tion error using X. In the second case, we applied X.
Figure 6a,b demonstrate the prediction error scatter for the first and second cases,

respectively. In both figures, the prediction error scatters are similar. This is confirmed
by MAE calculated for both predictions with the same PF parameters (Table 2). Based
on these results, we conclude that the PF with adjusted parameters allows prediction of
air temperature with sufficient accuracy. In terms of prediction accuracy, we believe that
our results are comparable with the results obtained based on neural networks and other
prediction methods [39].

Table 2. Experimental statistics.

Strategy Number of
Launches

Average Execution
Time (s)

Total Execution
Time (s) Average Overheads (s)

1 10 2923.62 3819.97 33.55
2 100 323.17 3223.97 295.51
3 10 2902.05 2962.34 34.32
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Figure 5. Prediction based on the ODTS and MDTS of the air temperature for Irkutsk (a), Nizhnean-
garsk (b), Baikalsk (c), and Goryachinsk (d).
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Figure 6. Prediction error scatter of x̃w
nl+1, x̃w

nl+2, . . . , x̃w
ne

(a) and x̃w
n max+1, x̃w

n max+2, · · · , x̃w
nl

(b)
for Irkutsk.

Similar calculations were performed for Nizhneangarsk (Figure 7), Baikalsk (Figure 8),
and Goryachinsk (Figure 9). Generally, their results confirm our conclusions with respect
to Irkutsk.

Figure 7. Prediction error scatter of x̃w
nl+1, x̃w

nl+2, . . . , x̃w
ne

(a) and x̃w
n max+1, x̃w

n max+2, · · · , x̃w
nl

(b) for
Nizhneangarsk.
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Figure 8. Prediction error scatter of x̃w
nl+1, x̃w

nl+2, . . . , x̃w
ne

(a) and x̃w
n max+1, x̃w

n max+2, · · · , x̃w
nl

(b) for
Baikalsk.

Figure 9. Prediction error scatter of x̃w
nl+1, x̃w

nl+2, . . . , x̃w
ne

(a) and x̃w
n max+1, x̃w

n max+2, · · · , x̃w
nl

(b) for
Goryachinsk.

Figure 10a shows the dependence of MAE on the size of X used at the first (x-axis)
and second (y-axis) stages of the proposed technique for predicting the air temperature
with respect to Irkutsk. The number of elements in X varied from 8760 to 70,080 for
both stages. This corresponds to data sizes from 1 to 8 years. The figure shows that a
simultaneous increase in the number of elements in X along the x-axis and y-axis often
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provides a decrease in MAE. In addition, increasing the number of elements in X along
the y-axis also contributes to reducing MAE. Thus, it can be assumed that expanding X
with current observations will provide a decrease in MAE when predicting air temperature
using the same pre-adjusted PF parameters.

Figure 10. Dependence of MAE on the size of X used at the first (x-axis) and second (y-axis) stages of
the proposed technique for predicting the air temperature with respect to Irkutsk (a), Nizhneangarsk
(b), Baikalsk (c), Goryachinsk (d).

The results of predicting the air temperature with a similar change in the number of
elements of X for Nizhneangarsk, Baikalsk, and Goryachinsk are shown in Figure 10b–d
correspondingly. Generally, they confirm our conclusions about the X size changes consid-
ered for Irkutsk.

The developed software library and workflow-based WPS service have been used
for modifying the service of simulation modeling environmentally friendly equipment
considered in [52]. This service was applied to evaluate CO2 reduction because of partially
using heat pumps instead of the coal-fired boiler within heating systems of infrastructure
objects in the Baikal natural territory.

We replaced the hourly air temperature prediction function used in the service with PF,
the parameters of which were adjusted considering the weather conditions of the location
for the simulated infrastructure objects. The use of PF allowed us to specify the heating
season characteristics and clarify the reduction in CO2 emissions.

3.2. Comprehensive Analysis of Computational Experiments

The workflow-based application is launched when the WPS service is called to adjust
the PF parameters. We solved the problem of adjusting the PF parameters to the Irkutsk
weather condition on two HPC clusters of the public access Irkutsk Supercomputer Cen-
ter [53] in turn. Cluster nodes had the following characteristics: 2 processors Intel Xeon
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CPU X5670 (18 core, 2.1 GHz, 128 GB of RAM) for a node of the first cluster; 2 processors
AMD Opteron 6276 (16 core, 2.3 GHz, 64 GB of RAM) for a node of the second cluster. The
maximum number of cores used was varied from 32 to 1024 for the first cluster (from 36 to
1080 for the second cluster).

Figure 11a,b demonstrate workflow execution makespan (a) and computation speedup
(b) in adjusting the PF parameters obtained on the first cluster using 500, 1000, 2000, 4000,
and 8000 start-points. Figure 11c,d show the makespan (c) and speedup (d) obtained on
the second cluster. In both cases, we observed a significant reduction in the workflow
execution makespan with a growth in the number of cores used. Reducing the makespan
was achieved by increasing the computation speedup due to the growth in the number of
cores used.

The heterogeneity of node characteristics when distributing the computational load is
a cause of a non-trivial problem. The need to evaluate the workflow execution makespan
on different nodes of the computing environment complicates solving this problem. In this
regard, it is essential to have strategies for distributing the computational load that enable
us at least partially to solve the problem.

We compared the following three strategies for distributing the computational load
between nodes:

1. Launching an equal number of jobs on each node by a user.
2. Loading free nodes from the common job queue. This strategy is used in practice

by well-known meta-schedulers such as GridWay and Condor DAGMan, as well as
LRMs for homogenous resources, for example, LSF [54].

3. Launching the number of jobs on each node in proportion to the node’s performance,
taking into account the evaluated job execution time on this node. We implemented
and applied this strategy in OT using the meta-monitoring system to predict job
execution time on nodes represented by agents that took into account the results of
the application module testing in these nodes.

Executing the module search determines the main contribution to the workflow execu-
tion makespan. Therefore, we launched jobs for executing this module in an environment
consisting of 10 fast and slow nodes presented in different proportions. Nodes had the
following characteristics: 2 processors Intel Xeon CPU X5670 (18 core, 2.1 GHz, 128 GB of
RAM) for a fast node; 2 processors AMD Opteron 6276 (16 core, 2.3 GHz, 64 GB of RAM)
for a slow node. Nodes were also part of two HPC clusters of the Irkutsk Supercomputer
Center. Thus, we used from 320 to 360 cores in each experiment.

We used three strategies for distributing the computational load between nodes for
each launch within these experiments. We evaluated job execution time on fast and slow
nodes for the third strategy by testing the module on both types of nodes. Experimental
statistics are presented in Table 2. For each strategy in Table 2, we give the number of
module instance launches, average execution time for an instance, total execution time
for all instances, and average overheads. The overheads are related to queuing, starting,
and controlling module instances and data transferring. The statistics were obtained by
searching the global minimum of PF using 2000 start points on five fast and five slow nodes.

Module instance in the second strategy had a lower computational load (processing
fewer start-points). Therefore, the average execution time for an instance in the second
strategy was less than for the other strategies. Due to capturing resources, the third strategy
was slightly inferior to the first strategy in average overheads. However, it out-performed
the second strategy in the average execution time for an instance. Moreover, the third
strategy was superior to others in the total execution time for all instances. This advantage
of the first strategy was achieved because of the computational load’s better distribution,
taking into account the module execution time in the allocated nodes.
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Figure 11. Workflow execution makespan (a,c) computation speedup (b,d) on the first cluster (a,b)
and second cluster (c,d) obtained in adjusting the PF parameters using 500, 1000, 2000, 4000, and
8000 start-points.

Figure 12a shows the workflow execution makespan based on the three strategies
of distributing the computational load for different proportions of fast and slow nodes.
The module Search contributed most to the workflow execution makespan. Applying the
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third strategy produced a steady reduction in the workflow execution makespan with
the growth of fast nodes. However, the third strategy outperformed the second strategy
in the reduction for all proportions of nodes. At the same time, the first strategy was
inferior to the third strategy in most of the proportions of nodes. It produced a workflow
execution makespan equal to the same makespan obtained within the third strategy in the
environment consisting of homogeneous resources only.

Figure 12. Objectives for three strategies: workflow execution makespan (a), computation speedup
(b), resource use efficiency (c), and average CPU utilization (d) via different proportions of fast and
slow nodes.

Within the first strategy, the instances of the module Search processed the same number
of starting points, i.e., they had approximately the same computational load. When using
nine fast nodes, jobs started on these nodes for the module Search were rapidly executed.
At the same time, we had to wait a long time to complete a job for the same module on a
slow node. All such jobs were executed at about the same speed for ten fast nodes. In this
case, a significant reduction in the workflow execution makespan was achieved compared
to the proportion of the fast and slow nodes, equivalent to 9 to 1.

Changes in computation speedup following the increase of fast nodes are demon-
strated in Figure 12b. Here, computation speedup is calculated as the ratio of the workflow
execution at one fast node to the workflow execution makespan in an environment con-
sisting of ten fast and slow nodes, presented in different proportions. The third strategy
demonstrated improvement in computation speedup for all proportions of fast and slow
nodes in comparison with the second strategy. It also outperformed the first strategy in
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computation speedup for most proportions, except in two cases when we used completely
homogeneous nodes.

The resource use efficiency shown in Figure 12c is defined as the ratio of computation
speedup to the number of nodes used. As for the third strategy, we can see that the efficiency
was close, changing from 0.57 to 0.97. The first and second strategies were inferior to the
third one on this objective, as was the computation speedup.

Finally, Figure 12d represents the average CPU utilization for the resources used. In
most combinations of fast and slow nodes, the first strategy provided a better average CPU
utilization than the other strategies.

Based on the analysis of the experimental data, we draw the following conclusions on
the computing environment considered:

• Using at least one slow node negatively affects workflow execution makespan, com-
putation speedup, and resource use efficiency when applying the first strategy. At the
same time, values of the average CPU utilization close to 1 were achieved when using
the computing environment entirely consisting of homogeneous nodes.

• Within the second strategy, more instances of the module Search were generated. All
instances involved queueing before a launch. In addition, it was necessary to transfer
data and check the execution status for each instance. Therefore, the second strategy
was characterized by more overheads. These overheads were the main contributors
to an increase in the workflow execution makespan in comparison with the other
strategies.

• The advantages of the third strategy were achieved due to distributing the computa-
tional load on resources according to their performance. The demonstrated computa-
tion speedup with an increase in the number of used fast nodes and efficiency of their
use close to 1 determined the good scalability of distributed computing.

Ensuring the scalability of distributed computing is a significant problem because the
used distributed computing environments systems can include resources with different
computational characteristics and capabilities.

The results of the experimental analysis carried out in the computing environment
demonstrate the advantages of the proposed strategy of computational load distribution in
OT in comparison with other strategies often applied in practice.

The advantages are in the improvement of both the users’ objectives for the problem-
solving quality (i.e., growing computation speed and reducing workflow execution
makespan) and preferences of resource providers in increasing the resource use efficiency
and average utilization of their processors. This is primarily due to the potential for OT to
include system modules into the workflow for searching and capturing resources, predict-
ing their performance, and distributing the computational load between these resources by
agents. Moreover, the more significant the computing environment heterogeneity, the more
visible the advantages of the proposed strategy in comparison with others considered.

4. Conclusions

In this paper, we proposed an approach to integrating WPS services with workflow-
based scientific applications within the GIS portal that supports solving environmental
monitoring problems. Following this approach, users develop a scientific application based
on modular programming and continuous integration, as well as organize a heteroge-
neous computing environment using the OT framework. Next, they form the workflows,
automatically create WPS services, and register them on the GIS portal.

Applying the open WPS standard combined with a workflow technique provides the
compositions of web services developed by different researchers and expands access to
spatiotemporal data for GIS portal end-users.

From the perspective of HPC organization, we hope that the proposed approach
ensures the availability and utility of resources of the heterogeneous distributed comput-
ing environment and computation scalability for other researchers. We want to provide
interested professionals with improved possibilities for processing and exchanging data. In
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addition, we support the consistency of objectives for resource providers and their users
due to implementing the continuous integration of the applied software using multi-agent
technology.

The study results will promote carrying out data-intensive scientific experiments
within the framework of environmental monitoring and provide interested organizations
with access to the outcomes of these experiments. In turn, effective processing and an-
alyzing spatiotemporal data will contribute to legislation preserving the Baikal natural
territory and its ecological improvement by the Regional Government and Ministry of
Natural Resources and Environment of the Russian Federation.

For many scientific and applied problems, reducing the processing time for spatiotem-
poral data is often a relevant issue. In this regard, we highlight the following directions for
our future research:

• supporting the technology in-memory data grid (IMDG) [55] for applications devel-
oped in OT to provide processing spatiotemporal data in the RAM of nodes of the
heterogeneous distributed computing environment,

• modifying the meta-monitoring system with respect to automating the identification
and partial troubleshooting of faults in operating the system software and hardware
to improve the reliability of spatiotemporal data processing based on IMDG.

• developing an additional converter to ensure compatibility with common workflow
language (CWL) [56] to prevent re-development of the same workflows and thereby
reduce the time of experiments.
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