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Abstract: In recent years, the route-planning problem has gained increased interest due to the
development of intelligent transportation systems (ITSs) and increasing traffic congestion especially
in urban areas. An independent route-planning strategy for each in-vehicle terminal improves
its individual travel efficiency. However, individual optimal routes pursue the maximization of
individual benefit and may contradict the global benefit, thereby reducing the overall transport
efficiency of the road network. To improve traffic efficiency while considering the travel time of
individual vehicles, we propose a new dynamic route-planning method by innovatively introducing
a bidding mechanism in the connected vehicle scenario for the first time. First, a novel bidding-based
dynamic route planning is proposed to formulate vehicle routing schemes for vehicles affected by
congestion via the bidding process. Correspondingly, a bidding price incorporating individual and
global travel times was designed to balance the travel benefits of both objectives. Then, in the bidding
process, a new local search algorithm was designed to select the winning routing scheme set with the
minimum bidding price. Finally, the proposed method was tested and validated through case studies
of simulated and actual driving scenarios to demonstrate that the bidding mechanism would be
conducive to improving the transport efficiency of road networks in large-scale traffic flow scenarios.
This study positively contributes to the research and development of traffic management in ITSs.

Keywords: traffic congestion; transport efficiency; connected vehicle; route planning; bidding
mechanism; winning bidder algorithm

1. Introduction

Intelligent transportation systems (ITSs) are an important part of the urban geo-
information framework, and road traffic congestion has become an extensive problem
in urban areas that hinders the operational efficiency of urban traffic systems and the
intelligent application of urban geo-informatics. The urban road traffic congestion problem
is caused by high population density, an excessive number of motor vehicles during peak
hours, and an imbalance in the demand-supply in transportation networks [1]. Thus,
massive road networks and traffic infrastructure are built in an attempt to alleviate this
problem [2]. However, continuously building roads alone to greatly expand the road
capacity has been reported to be ineffective, impractical, and expensive for long-term traffic
congestion reduction [3]. In reality, there are various free road segments that do not produce
positive effects when other road segments are congested [4,5]. Consequently, a reasonable
route-guidance scheme for vehicles is a feasible option in building an effective traffic control
management system and improving the service standard of urban geo-informatics.

In the past few decades, vehicle route planning has been extensively studied in the
fields of traffic engineering and automation control for optimizing problems in transporta-
tion, distribution, and logistics. There are several classical route-planning algorithms that
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compute the shortest path between two locations in road networks, such as algorithms
include the Dijkstra [6], A* search [7], Bellman-Ford [8], and bidirectional search [9] al-
gorithms. Furthermore, various improved methods have also been proposed to handle
other complex travel requirements, including improving the computing efficiency and
reducing traffic congestion. For example, the route-planning efficiency of large-scale traffic
flow in static road networks can be improved by improving the search efficiency using
optimization techniques such as road hierarchies [10], road network partitioning [11], and
batch search [12]. Nevertheless, real-world route planning is more than just identifying
the shortest route length between two points in a static network; it also includes several
dynamic parameters, such as traffic congestion levels, random incidents, and weather
conditions among others. Furthermore, human travel is a dynamic process over a period of
time, which means that the optimal route inevitably changes as travel progresses. Conven-
tionally, planned routes are continuously adjusted to optimize travel routes dynamically
within each discrete time step [13,14]. Therefore, it is essential for vehicles to adjust their
planned routes adaptively to avoid traffic congestion.

The development of connected vehicles (CVs), which can communicate with each other
and supply crucial information such as vehicle location, heading speed, traffic conditions,
and distance, is a potential solution to the adaptive route-planning problem in large-scale
traffic flow due to their distributed computing and independent decision-making abili-
ties [15]. A well-known approach for coordinating multiple CVs is to design a distributed
framework in which each CV acts as a powerful traffic information collector and computing
node [16,17]. This can significantly reduce the computational burden on route planning
centers [18]. Moreover, each CV can independently plan its own route according to local
information from neighboring vehicles [15] using wireless communication and distributed
computing technologies. Route-planning strategies with different travel demands, such as
travel time [19,20], route stability [21], fuel consumption [22], security [23], and traveler
habits [17], have been extensively studied in distributed frameworks.

These individual-oriented routing strategies pursue the maximum benefit of indi-
vidual travelers, which usually contradicts the global traffic efficiency [24,25]. Although
optimal routing schemes for individual vehicles can shorten their travel time, it is not
conducive to alleviating the overall traffic congestion, leading to inefficiencies in the overall
road network [26,27]. In a case study of Boston, USA, empirical analysis by Youn et al.
indicated that individuals will waste approximately 30% of their travel time because of
their personal routes [26], which could be up to twice the minimum travel time of the traffic
system in particular cases [24]. Therefore, to reduce the overall travel time and alleviate
traffic congestion, we propose a new bidding-mechanism-based route-planning method,
which is introduced to plan vehicle routing schemes by coordinating with multiple road
segment agents. The novelty of our study lies in that multiple agents jointly negotiate to
formulate routing schemes through a bidding mechanism, which provides the possibility
of alleviating traffic congestion and greatly improving the overall traffic efficiency of road
networks. Through experiments in Wuhan, China, we demonstrate that the global travel
time of routes planned by the proposed method is reduced by 32.71% on average. In
addition, the computational burden of route planning that is distributed to CVs and road
segment agents improve the overall computational efficiency.

The main contributions of this study can be summarized as follows:

(1) To the best of our knowledge, we innovatively introduce for the first time a bidding
mechanism to dynamically coordinate plan routing schemes for vehicles affected by
congestion based on the road intersection planning center model. In this mechanism,
the independent route-planning schemes of control centers in a centralized framework
are transformed into a route-negotiation process of multiple CVs and road segment
agents, resulting in a traffic efficiency improvement in the road network.

(2) Individual and global vehicle travel times are considered simultaneously when deter-
mining bidding prices in the model, which balances the benefits of individual vehicles
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and global efficiency in route-planning processes. Thus, the proposed method can
improve the overall traffic efficiency while avoiding congestion for individual vehicles.

(3) A novel priority-set-based local search algorithm is proposed to address the combi-
nation assignment problem between large-scale traffic flow and road segments in
the bidding-based route-replanning process. This algorithm improved the efficiency
of route replanning by selecting a combination of winning schemes rather than a
single one.

(4) The remainder of this paper is organized as follows. Section 2 outlines the dynamic
route-planning process. The proposed method for dynamic route planning according
to the bidding mechanism is described in Section 3. Section 4 reports the methods and
results of the simulation case experiments conducted to analyze the routing schemes
and computational efficiency of the proposed method. Finally, Section 5 presents the
discussion and conclusions of this study.

2. Dynamic Route-Planning Method Overview

Time discretization is a popular method for realizing dynamic route planning [13,14].
Replanning the routes of all vehicles within each time step to achieve optimal dynamic
routes consumes considerable computing resources [13]. However, in an actual traffic
scenario, only a few vehicles affected by congestion may require route replanning. In
addition, there is no obvious difference in the vehicle routes on many unobstructed roads
before and after replanning. Therefore, investing considerable computing time might
not significantly reduce the travel cost of the entire transportation network. Thus, in the
proposed method, only the driving route of vehicles that will be affected by congestion
are dynamically replanned in advance; vehicles on unobstructed road segments would
continue with their originally planned routing scheme to achieve a balance between the
computational burden and transport efficiency of the road network.

The dynamic route-planning flow is shown in Figure 1, which consists of initial route
generation, congestion judgment, and route replanning. First, vehicles plan their initial
optimal route schemes Fori autonomously according to the initial traffic density. Then,
vehicles will update their position based on the first-in-first-out (FIFO) formula within a
single time step. Subsequently, road segments with evident traffic congestion are detected
via the clustering method [28]. Finally, routing schemes are replanned in advance according
to the bidding mechanism for vehicles that will be affected by congestion within each time
step (see Section 3.1), while vehicles located on other uncongested road segments continue
traveling along their planned routes. Vehicle location is continuously updated until all
vehicles arrive at their destination.

In simulation scenarios, the real-time vehicle position can be determined according to
the traffic volume movement from road segment ri−1 to road segment ri in each time step.
The relationship between traffic flow and density conforms to a triangular or trapezoidal
function, as shown in Figure 2. In the figure, ρ denotes the traffic density, ρjam is the traffic
density when roads are congested, q f represents traffic flow, qmax is the saturation flow of
the road segment, v represents the free traffic flow speed, and w is the back propagation
speed in heavy traffic. Based on this relationship between traffic flow and density, the flow
rate of road segments can be expressed as:

q = min
{

vρ, qmax, w
(
ρjam − ρ

)}
, 0 ≤ ρ ≤ ρjam. (1)

Thus, within time step tr, the traffic volume flowing to road segment ri from road
segment ri−1 is

yi(x) = qi(x)tr = min
{

vρi−1(x)tr, qi
max(x)tr, w

(
ρjam − ρi(x)

)
tr
}

, (2)

where yi(x) represents the traffic volume flowing into road segment ri within the time span
[x− tr, x], qi(x) is the traffic flow rate flowing to road segment ri at time x, ρi−1(x) is the
traffic density of road segment ri−1 at time x, qi

max(x) is the maximum flow rate flowing
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to road segment ri at time x, and ρi(x) is the traffic density of road segment ri at time x.
Accordingly, road segment agents can obtain the inflow and outflow traffic volumes of
each road segment. Thus, vehicle position is dynamically updated according to the FIFO
formula during the route-replanning process.

Figure 1. Dynamic route-planning flow.

Figure 2. Density-flow relationship of the traffic flow.
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3. Bidding-Based Dynamic Route-Planning (BDRP) Method
3.1. Bidding-Based Vehicle—Road Coordination Planning Method

In essence, vehicle route replanning can be considered as a combinatorial assignment
problem in which multiple vehicles are allocated to multiple road segments at road intersec-
tions. Hence, a bidding-based vehicle–road coordination planning method is proposed to
replicate the route of vehicles affected by congestion. First, the intersection where congested
road segments are located is modeled as a virtual and relatively independent planning
center (as shown in Figure 3a, intersection scenario A). The road segment agents within
the planning centers negotiate the optimal routes for its vehicles internally affected by con-
gestion. Then, an improved bidding mechanism is introduced to negotiate the assignment
scheme of vehicle tasks. As a distributed negotiation framework, the bidding mechanism
can be applied to the rapid allocation of large-scale tasks in dynamic scenarios. As shown
in Figure 3a, the upstream road segments adjacent to a congested segment act as a tenderer,
whereas the candidate road segment that vehicles may pass through acts as a bidder.

Figure 3. Schematic of the bidding-based vehicle-road coordination planning. (a) road intersection
planning center model; (b) four stages of vehicle-road bidding.

There are four stages in the vehicle–road negotiation process. First is the task an-
nouncement stage, in which the tenderer issues vehicle task announcements that contain
task information, such as the vehicle’s location and destination, to the other candidate
road segment agents within the intersection planning center. Second is the bidding stage,
in which each candidate road segment agent calculates the routing schemes and bidding
prices (travel time) for each vehicle task starting from the candidate road segment and
submits these calculated information to the tenderer. Third is the awarding stage, in which
the tenderer determines the globally optimal vehicle routing scheme using a winner bidder
selection algorithm described in Section 3.2. Finally, in the task execution stage the tenderer
confirms the schemes with the winning bidder and sends the vehicle allocation schemes to
all candidate bidders.

For example, as shown in planning center A in Figure 3a, when road segment 6 is
congested, the vehicles on road segment 2 that are scheduled to pass through road segment
6 are regarded as tasks to be assigned. The road segment agent 2 serves as a tenderer, and
the passable road segment agents 1, 4, and 7 serve as bidders competing for vehicle tasks.
They coordinate the allocation scheme of the vehicle tasks.
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Assuming that T is the set of vehicle tasks that requires a replan route, the set of road seg-
ment agents at the same intersection is denoted as R. Meanwhile, RNi =

{
rk,i
∣∣ k = 1, 2, . . . , m

}
is the set of communicable neighboring road agents of ri within R, where m is the number of
road agents. The communicable neighboring resource set of ri is defined as the set of road
agents that can communicate directly with ri and within the same intersection planning
center. In addition, Bk,i is the bidding vehicle replanning scheme from bidder rk,i, and Vk,i
is the corresponding bidding price. Finally, Ci is the set of winning schemes for road agent
ri and Ci[T] is the vehicle tasks included in Ci, Ci[T] ⊆ T.

The vehicle replanning process presented in Algorithm 1 starts when the vehicle
task set T on road agent ri can no longer follow the original routes. First, ri publishes
the bidding announcements to candidate bidders in RNi(line1). Then, each bidder’s rk,i
formulates the driving route for vehicles and determines their travel time (lines 3 and 4).
After determining the vehicle tasks that they intend to bid for, rk,i then submits routing
schemes Bk,i and prices Vk,i, which can be calculated using Equation (3), to ri (lines 5 and 6).
Next, road agent ri selects the set of winning bidding schemes Ci in accordance with the
winning bidder determination algorithm presented in Algorithm 2 (line 8). The replanning
scheme Ci can be obtained when all vehicle tasks are completed (lines 9–11). However,
there may be some remaining vehicles in T whose routes have not been replanned (lines 9
and 12), due to the restrictions of the capability of road transport. Vehicles will then take
the initiative to formulate the routing scheme CSi when all road agents cannot provide
better routes (lines 13 and 14). The final plan consists of Ci and CSi (line 15).

Algorithm 1 Bidding-based coordination planning algorithm

Input:
T Set of vehicle tasks that requires route replanning
ri Road agents in R that require allocating vehicle tasks
RNi Set of neighboring road agents of ri available for bidding

Output:
Sbest Vehicle task replanning scheme

1 Let ri be a tenderer who publishes a bidding announcement to candidate bidders in RNi
2 For each bidder rk,i in RNi do
3 Obtain the destinations of vehicles
4 Calculate optimal paths and travel time from bidder rk,i to destinations for vehicles
5 Determine the vehicle task set for bidding according to their planned vehicle tasks
6 Submit bidding task replanning scheme Bk,i and bidding price Vk,i
7 End
8 Determine the set of winning bidding scheme Ci by calling Algorithm 2
9 T = T − Ci[T]
10 If T = ∅ then
11 Return the replanning scheme Sbest = Ci
12 Else
13 Each vehicle in T selects its optimal path independently
14 Generate replanning scheme CSi according to these paths
15 Return the replanning scheme Sbest = Ci + CSi
16 End if

Referring to the formulation proposed by Çolak et al. [29], the bidding price is defined
as a linear combination of the time cost the vehicle will incur in (individual travel time)
and the total time cost imposed on others (global travel time):

Vk,i = ω ∑
r∈RCk,i

MrTime(Mr) + (1−ω) ∑
r∈RCk,i

∫ Mr

0
Time(M)dM, (3)

where RCk,i denotes the set of road segments included in the candidate route of the kth
vehicle when ri is bidding. Time(Mr) represents the travel time observed on road r for
vehicle flow Mr. ω defines the adjustment parameter towards global travel benefit, ranging
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between 0 and 1. A planning scheme with ω = 1 chooses routes with respect to the global
travel time. Conversely, a planning scheme with ω = 0 considers an individual travel time.

Urban traffic scenarios are extremely complex, and the travel time of vehicles on free
and congested roads varies greatly. Thus, the speed-based impedance function (SIF) was
used to estimate the actual travel time [30].

Time(Mr) =
L f

v f

1 + α

(
v f

v f

)β
+

Lc,m

vc,m
, (4)

where v f indicates the average free traffic speed and v f represents the self-flow speed on free
traffic roads. L f is the length of the free traffic road. α and β are two regression parameters
that are consistent with the BPR function. Lc,m represents the length of congested roads
and vc,m is the speed of vehicles on congested roads with vehicle flow Mr.

3.2. Winning Bidder Determination Algorithm

All bidders submit bidding schemes to the tenderer during the coordination planning
process. It should be noted that vehicle routing schemes submitted by different bidders may
contain the same vehicle tasks. Considering that each vehicle can only travel on one road
segment, multiple bidding schemes may cause conflicts between vehicle tasks. Therefore, a
tenderer will select a globally optimal vehicle routing scheme to avoid vehicle task conflicts
based on the submitted schemes.

Therefore, we constructed an integer programming model, which is defined in Equation (5)
to solve this winner determination problem (WDP). The objective of this model is to mini-
mize the overall bidding price (travel time) of routing schemes.

The model solution can be expressed as a Boolean set X = {xk | k = 1, 2, . . . , n} in
which xk= 1 means that bidding scheme Bk is selected as the winning scheme and n is the
number of bidders. Thus, the objective function can be expressed as:

min
n

∑
k=1

Vkxk, (5)

where Vk is the bidding benefit of the kth bidder.
The constraints are identified as: (1) xk ∈ {0, 1} and (2) xi ⊕ xj = 0, 1 ≤ i ≤ n,

1 ≤ j ≤ n, i 6= j. The operation ⊕ is defined as: if xi = 1, xj = 1, and bidding scheme Bi is
in conflict with bidding scheme Bj (i.e., Ba ∩ Bb = φ), then we have xi ⊕ xj = 1. Otherwise,
xi ⊕ xj = 0. The second (2) constraint indicates that the two bidding schemes cannot be
in conflict.

To determine winning bidding schemes, we proposed a priority-set-based local search
(PLS) algorithm (Algorithm 2) that gradually approaches the optimal solution through
multiple iterative searches. In each iteration, the algorithm finds the bidding scheme Bmin
with the lowest price and adds it to candidate solution C. Bidding schemes that conflict
with Bmin are removed from candidate solution C. In addition, a bidding scheme set
PB that does not conflict with candidate solution C is searched first in each iteration to
improve the search efficiency. Moreover, the algorithm can reduce the possibility of falling
into a local optimum by searching the bidding scheme within a fixed price interval (i.e.,
[Vmax−σ, Vmax+σ]) in each iteration.

Specifically, during each iteration, the PLS algorithm prioritized searching the set
of non-conflicting bidding schemes PB. The bidding scheme with the smallest bidding
price in PB was added to candidate solution C (line 4). By contrast, if there is no scheme
in PB, the algorithm updates candidate solution C through the following steps. With a
given probability ρ, the algorithm first determines the minimal bidding price Vmin in the
temporary search set TemB(line 8). The bidding scheme set FB was selected from TemB
within the price interval [Vmin−σ, Vmin+σ]) (line 9). As shown in Equation (6), replacing the
minimum value with the interval of the minimum value is beneficial for candidate solution
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C in avoiding the local optimal trap. Moreover, a scheme Bcan was randomly selected from
scheme set FB to add to candidate solution C (lines 10 and 14).

FB = {Bi | |Vmin −Vi| ≤ σ}, Bi ∈ TemB (6)

Furthermore, the algorithm updates candidate solution C through the conflict relation-
ship between Bcan and C (line 15). Finally, the best bidding scheme Sbest is updated if the
total price of C is smaller than that of Sbest (lines 17 and 18). At the end of each iteration,
the priority search set PB is also updated according to the conflict relationship between
Sbest and PB (line 20).

Algorithm 2 Priority-set-based local search algorithm

Input:
S Set of bidding schemes submitted from all bidders
V Bidding price set
ρ Probability parameter within (0,1)
σ Bidding price interval parameter
Output:
Sbest Best vehicle task allocation scheme
1 Initialize priority search schemes set PB = S
2 While Sbest changes in two adjacent iterations
3 If PB 6= φ then
4 C = C + minimum(PB)
5 Else
6 Temporary scheme set TemB = S− C
7 With probability ρ do
8 Determine the minimal price Vmin of bidding schemes in TemB
9 Select bidding scheme set FB from TemB within the floating price

interval [Vmin−σ, Vmin+σ].
10 Select scheme Bcan randomly from FB
11 Otherwise
12 Select t scheme Bcan randomly from TemB
13 Done
14 C = C + Bcan
15 Update C: Remove bidding scheme that conflicts with Bcan from C
16 End if
17 If the total price of C is smaller than that of Sbest then
18 Sbest = C
19 End if
20 Update PB according to the conflict relationship between Sbest and PB.
21 End while
22 Return Sbest

4. Case Study
4.1. Simulation Case Experiment

To measure the performance and characteristics of various route-planning methods,
we set up a simulated traffic scenario oriented to traffic diversion using the approbatory
Nguyen network (Section 4.1.1). The network transport efficiency (Section 4.1.2) and road
utilization rate (Section 4.1.3) of various routing schemes obtained by different planning
methods were compared in this scenario, which was conducive to revealing the characteris-
tics and applicability of the different planning methods.

4.1.1. Experimental Setting

In this experiment, the Nguyen road network was used to verify the effectiveness of the
proposed BDRP method. The Nguyen network was originally proposed by Nguyen [31] as a
classic traffic research case. Despite the road network being simplified, the Nguyen network



ISPRS Int. J. Geo-Inf. 2022, 11, 39 9 of 19

retains the structural characteristics of an actual road network, including intersections,
T-junctions, and two-way routes, among other. It is often used to simulate simple traffic
scenarios to reveal the dynamic process of traffic flow without external interference. As
shown in Figure 4, the Nguyen network consists of 13 nodes and 38 bidirectional road
segments. In this experiment, the initial traffic demand was randomly set in each road
segment; four nodes at the edge of the network were considered as travel destinations to
simulate the distribution of real traffic flow. The simulation parameters are listed in Table 1.

Figure 4. Nguyen network and parameters.

Table 1. Parameter settings of the simulation experiment.

Parameter Value

Number of nodes in the network 13
Number of road segments in the network 38

Traffic density during congestion ρjam (N/L) 0.15
Time step (s) 30

Road hierarchy {1,2,3,4}
Road design speed (km/h) {70,50,35,25}

ω in Equation (3) 0.5
α in Equation (4) 0.28
β in Equation (4) 2.35

The following six route-planning methods, including three static route-planning meth-
ods and three dynamic route-planning methods, were used as comparison methods in this
experiment. Static route-planning methods include the static shortest path method (SSP),
the top-K shortest path method (TSP), and the logit model-based shortest path method
(LSP). The SSP method plans routes for all vehicles according to the A* shortest path
algorithm. Once routing schemes are determined, they will not be changed during the
subsequent journey of vehicles [32]. To prevent road congestion caused by the shortest
route, the TSP method selects one of the K optimal routes between the OD as a routing
scheme based on a given probability after determining them [33,34]. However, in an actual
travel scenario, there is usually a certain deviation between travelers’ perceived cost and
the actual cost of the route. The LSP method, which assumes that this deviation is subject
to the Gumbel distribution (an extreme value distribution), has been widely used in route
planning [35].
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Furthermore, three dynamic route-planning methods were included: a hierarchical
dynamic route-planning method (HDP), time-optimization routing (TOR) method via
modeling time mechanism, and dynamic shortest path (DSP) method. The HDP method
calculates the shortest path by computing terminals in vehicles and divides the road hierar-
chy and routing area to improve calculation efficiency [36]. The TOR method calculates
the vehicle travel time accurately; it is used for time-optimal route planning [13]. This
method improves the fast-passing capacity of all vehicles. In addition, the DSP method
replaces the routes of all vehicles according to the shortest path algorithm within each
discrete time step [37]. The classic dynamic route-planning method was also compared in
this experiment.

4.1.2. Network Transport Efficiency Comparison between Different Routing Schemes

The traffic efficiency of the different routing schemes are significantly different. As
shown in Figure 5a, the number of remaining vehicles in the road network gradually
decreases in this simulated scenario with 1560 initial vehicles as time increases. All routing
schemes can quickly guide vehicles that are near destinations to their destinations in
the early stage of the simulation (time step tr < 80). However, in the middle stage of
the simulation, the routing schemes of the three static methods caused traffic congestion
because they failed to re-adjust routes effectively. The traffic efficiency of the static methods
began to decline; whereas the HDP, TOR, and BDRP methods maintained a high traffic
efficiency. The three dynamic methods, HDP, TOR, and BDRP, complete all vehicle tasks
at 228 × 30 s, 192 × 30 s, and 123 × 30 s, respectively, which is much faster than the other
methods. In addition, the error interval (shadow area in Figure 5a) of the routing scheme
shows that all methods have a relatively stable traffic efficiency.

Figure 5. Traffic efficiency comparison between different routing schemes. (a) reducing process of
remaining vehicles on the road network; (b) traffic efficiency under different initial vehicle sizes.

To verify the stability and effectiveness of all methods under different initial number of
vehicles, this experiment compares the vehicle travel time via 10 groups of traffic demand
data with different initial number of vehicles. As shown in Figure 5b, the overall travel
time of all methods presented a steady and sustained upward trend with an increase in
the initial number of vehicles. Moreover, the traffic efficiency of dynamic route-planning
methods is significantly better than that of static methods. Specifically, the overall travel
time of the SSP method is linearly related to the initial number of vehicles, whereas the
travel time of the LSP method is locally unstable. By contrast, the BDRP method presented
the optimal transport efficiency in all cases.

In addition, this experiment compares the running times of these methods with
different vehicle scales. A single centralized planning center node was simulated using
a computer with an Intel Xeon 2.7-GHz CPU and 16-GB memory, whereas distributed
computing nodes were simulated using multiple computers with Intel Core 1.0-GHz CPU
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and 8-GB memory. The running time of static planning methods is a single calculation time,
whereas the running time of the dynamic planning method is the sum of the running time
in each time step. Through a distributed planning framework, multiple computing nodes
in the HDP and BDRP methods replan routes dynamically and synchronously at each time
step. Thus, the running time TR of the HDP and BDRP methods is the sum of the longest
running time in each time step (Equation (7)).

TR =
n

∑
i=1

max(Ti), (7)

where Ti =
{

ti,j
∣∣ j = 1, 2, . . . , m

}
is the set of elapsed times for all the computing nodes to

replan routes during the i-th iteration, in which m is the number of compute nodes and n is
the number of iterations.

As shown in Figure 6, the running time of all route-planning methods is positively
correlated with the initial vehicle size. Nevertheless, route replanning within each time
step causes a large gap in the computational efficiency between the dynamic and static
route-planning methods. Benefitting from a single calculation, all three static planning
methods can formulate routing schemes in a very short time, whereas both the TOR and
DSP methods experience a large computing time cost for dynamic route planning because
of their centralized planning mode (Table 2). However, the BDRP and HDP methods
significantly reduce the time required for dynamic route planning through distributed
computing nodes. Although the running time of the BDRP method is slightly longer than
that of the HDP method, its routing scheme significantly improves the transport efficiency
of the road network. Overall, the BDRP method achieves a balance between computational
efficiency and routing scheme quality.

Table 2. Relationship between the number of vehicles and the algorithm running time (s).

Initial Number of Vehicles
Method

TSP SSP LSP HDP DSP BDRP TOR

986 5.49 0.99 5.47 7.39 39.29 13.43 138.34
1281 6.03 1.06 6.35 14.14 74.16 25.51 254.99
1562 7.12 1.26 7.61 29 111.62 45.35 405.82
1865 8.89 1.56 9.59 32.93 206.3 78.09 626.19
2160 9.43 1.75 9.83 48.41 307.91 82.52 818.87
2448 11.48 2.16 11.35 56.93 396.29 129.56 1081.06
2743 12.36 2.3 13.05 85.49 535.68 147.1 1391.14
3024 15.15 2.59 13.85 86.89 739.07 197.36 1817.88
3330 16.11 3.03 16.76 115.46 1107.26 223.05 2249.37
3622 16.19 3.21 18.85 127.62 1592.05 255.59 2826.71

Figure 6. Algorithm running time comparison under different initial number of vehicles.
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4.1.3. Road Utilization Rate Comparison between Different Methods

This experiment explored the local road utilization rate change process under different
route-planning methods to reveal the reasons for the difference in traffic efficiency between
several route-planning schemes. The road utilization rate Qi is defined as the ratio of the
number of vehicles on a road segment and the road capacity per unit time.

Qi =
Ni
Ci

, (8)

where Ni is the number of vehicles on road segment ri and Ci is the road capacity of road
segment ri per unit time.

As shown in Figure 4, intersection 6 is located at the center of the Nguyen network,
which is an important convergence point of the traffic flow in the road network. The evacu-
ation strategies of large-scale traffic flow at intersection 6 can reflect detailed differences in
routing schemes. Meanwhile, in Figure 7, we detected the utilization rate change process of
four road segments (Roads 7, 11, 22, and 25) that are adjacent to node 6. When congestion
occurs in road segment 7, the dynamic route-planning methods would replan the routing
schemes for vehicles that are scheduled to pass through the congested road segment.

Figure 7. Route coordination planning at intersection 6 in the Nguyen network.

The experimental result is shown in Figure 8, in which a large initial number of vehicles
caused traffic congestion in road segment 7 (ρjam = 0.15) at the initial stage. Then, four
dynamic route-planning methods quickly guided vehicles to road segments 11, 22, and 25,
resulting in an increase in these sections’ utilization rate. The BDRP method coordinated
multiple road segments to replan routing schemes for vehicles, which made full use of the
transportation capacity of the four road segments. Thus, the vehicles converging to the
congested node were rapidly evacuated (110 s). Although the HDP and TOR methods also
dynamically allocated vehicles to road segments 11 and 22, the individual optimal strategy
caused road segment 25 to be vacant, which prolonged the vehicle evacuation time at this
congested intersection. In addition, the three static methods did not use the transportation
capacity of road segments 11, 22, and 25. The long-term congestion on road segment 7
severely reduced the overall traffic efficiency of the road network.

4.2. Example Application

In this experiment, the effectiveness of the BDRP method in a real urban traffic scenario
was verified according to the travel records of residents in Wuhan, China. The urban traffic
context and travel demand data in the study area, as well as the traffic efficiency of the
routing scheme obtained by the BDRP method, are further analyzed in the following
sub-sections.
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Figure 8. Road utilization rate comparison between different road-planning methods. (a) BDRP
method; (b) HDP method; (c) DSP method; (d) TOR method; (e) TSP method; (f) LSP method;
(g) SSP method.
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4.2.1. Study Area Description

The Hankou commercial district in Wuhan, China, was selected as the research area in
this experiment to verify the BDRP method in an actual road network. This commercial
district is in the core area of Wuhan, where a large-scale traffic flow often causes traffic
congestion. The study area contains 1596 road segments and 1062 intersections (Figure 9).
In the simulation scenario of this experiment, each road segment agent has information
processing and computing capabilities. The simulation parameters are listed in Table 3.
Moreover, the trajectories of taxis in the Hankou district on 1 May 2014were matched to
the road network in this experiment. Lastly, the original points and destinations of all
trajectories were extracted as traffic demands.

Figure 9. Administrative divisions of Wuhan City, China, and the selected study area.

Table 3. Parameter settings of the actual case experiment.

Parameter Value

Number of nodes in the network 1062
Number of road segments in the network 1596

Traffic density during congestion ρjam (N/L) 0.15
Time step (s) 30

Road hierarchy {1,2,3,4}
Road design speed (km/h) {70,50,35,25}

α in Equation (4) 0.28
β in Equation (4) 2.35

4.2.2. Transport Efficiency of the Road Network

The BDRP method was employed for planning dynamic vehicle routing schemes,
which were analyzed spatially and temporally. From a spatial perspective, the traffic
statistics results obtained by superimposing all routes into the road network are shown in
Figure 10 (number of vehicles N = 1400). From the figure, it is apparent that the traffic flow
was significantly induced in the high-hierarchy road segments, which have greater traffic
capacity and lower travel costs. Route-planning schemes effectively improve the overall
traffic efficiency and people’s driving experience. Meanwhile, the traffic distribution on a
low-hierarchy road network is relatively balanced, which reduces the possibility of road
congestion to a certain extent.

Conversely, from a temporal perspective, the remaining vehicles in the road network
gradually decrease as the simulation time increases (Figure 11a). However, a small number
of vehicles with longer travel distances delayed the end time of the overall travel scenario.
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More than 95% of vehicles reached their destinations within 50 × 30 s. In addition, there
was a significant positive correlation between vehicle size and overall travel time. The
overall travel time of the BDRP method increased continuously as the initial vehicle size
increases. As shown in Figure 11a, when the initial number of vehicles in the road network
was 600, it took 1770 s (30 × 59) to complete the travel task of all vehicles. By contrast, the
overall travel time increased to 2490 s when the initial number of vehicles increased to 1400.

Figure 10. Spatiotemporal pattern of routing schemes in the Hankou commercial district of
Wuhan, China.

Figure 11. Traffic efficiency under different vehicle sizes and different weight parameters. (a) route-
planning efficiency under different vehicle sizes (ω = 0.5); (b) route-planning efficiency with
different weights.

In simulated urban traffic scenarios, the global optimal routing scheme is usually an
idealized result. In practice, drivers will weigh individual and global benefits when choos-
ing a route [29]. To verify the performance of the proposed method in different situations,
we compared the traffic efficiency under different proportions between individual optimal
and global optimal conditions (Figure 11b). The results indicate that as the proportion
of vehicles choosing individual optimal routes increases (ω→0), the more time the road
system takes to transport all vehicles (131 × 30 s). That is, the global traffic efficiency be-
comes relatively lower, which is closer to that of the TOR method (155 × 30 s). Conversely,
although vehicles considering global travel benefits may spend more travel time, the overall
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traffic efficiency of the road system improves by approximately 45% compared to the ω→0
case (72 × 30 s). Consequently, this method balances individual and system optimal route
selection strategies, which indicates high performance in both cases.

The BDRP method improved the traffic efficiency of road networks by constantly
adjusting the routes of vehicles affected by congestion during vehicle movement. In this
experiment, the BDRP method carried out more than 3000 routes from replanning for
vehicles via dynamic route planning (N = 1400). A comparison of travel costs before
and after each route replanning is shown in Figure 12, which shows a significant positive
correlation through regression analysis. The travel cost was relatively stable in the early
and middle stages of route replanning, whereas the global travel cost in the later stage of
route replanning increased significantly, which means that many vehicles were close to the
same destination that leads to traffic congestion. In conclusion, the travel time after route
replanning is reduced by 32.71% on average, which greatly improves the traffic efficiency
of the Hankou district road network.
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5. Discussion

The essence of existing individual route-planning methods for CVs is to selfishly
design a route with the shortest individual travel time [38], including static [13] and
dynamic [38] shortest-time routes. Non-cooperative route-planning methods reduce the
overall travel efficiency. In our proposed method, the bidding process, which is a multi-
participant negotiation mechanism, innovatively cooperates with multiple road segment
agents to formulate vehicle routing schemes based on the road intersection planning center
model. The simulation and actual cases presented in the previous sections demonstrate the
obvious potential of the proposed dynamic route-planning method for improving the traffic
efficiency of road networks (Figures 5 and 12). Compared with the individual optimal
routes obtained by vehicles independently, this local negotiation method significantly
improves the overall traffic efficiency of the road network, reducing the travel time by
32.71% on average. We provide a new collaborative route-planning method for CVs, that
makes coordinated large-scale urban traffic flow planning in intelligent transportation
scenarios possible. However, the proposed method may increase the travel cost of some
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individuals, which is inevitable because of the natural contradiction between individual
and global optimality. Nevertheless, the costs for both individual and overall travel can be
balanced by adjusting the weight parameters of the benefit function.

The empirical analysis results show that the proposed bidding model can effectively
alleviate traffic congestion caused by minor contingencies (Figure 5). Furthermore, in the
case of major disruptions in local areas, such as serious traffic accidents, the bidding model
can still guide vehicles in congested roads to other roads to relieve the local traffic pressure.
However, when major disruptions, such as extreme weather events and earthquakes,
threaten the entire road network, the bidding model may not guide traffic smoothly due to
the inefficiency of the entire traffic system, but it will detect an optimal route scheme under
the current state to avoid continuous traffic congestion compounding as much as possible.
In conclusion, the proposed model exhibits a capacity to deal with traffic congestion caused
by major disruptions, and its effectiveness is largely determined by the spatial scale of
such disruptions.

Moreover, the simulation case illustrates the advantages of the proposed method con-
cerning computational efficiency (Figure 6). The road network was divided by intersections
into multiple planning centers that can independently formulate routing schemes for their
internal vehicles; this disperses the pressure of planning routes for large-scale traffic flow.
In addition, an efficient winning bidder determination algorithm is proposed to realize a
rapid selection of the final routing schemes from multiple candidates. These measures are
beneficial for improving the computational efficiency of the proposed method.

6. Conclusions

In recent years, researchers involved in route-planning studies have become increas-
ingly interested in automated vehicles [16,17] and CVs [36]. Significant progress has been
made in each domain separately. However, improving the overall traffic efficiency under a
vehicle interconnection scenario is still challenging. In this study, a novel bidding-based
vehicle–road coordination planning method was proposed to address this challenge and to
efficiently formulate route schemes that balance individual travel time and global traffic
efficiency. We defined the road intersection planning center model and innovatively intro-
duced a bidding mechanism to cooperate with road segment agents, which is observably
conducive to improving traffic efficiency. Furthermore, a new local search optimization al-
gorithm was proposed to efficiently determine the winning routing schemes in the bidding
negotiation process. The case studies demonstrate the application potential of the bidding
mechanism in integrating multiple distributed computing nodes. The proposed method
can reduce the overall travel cost of urban transportation systems while maintaining high
computational efficiency. These findings highlight the importance of improving the trans-
port efficiency of urban road networks for alleviating urban traffic congestion and handling
accidents. This study improves the global efficiency of urban transportation systems and
promotes the intelligent development of urban geo-information systems. This study can
also make a positive contribution to the exploration of applying autonomous vehicles in
real traffic scenarios.

In future work, we will focus on route-planning strategies in hybrid travel scenarios
with autonomous and human-driven vehicles and explore the disturbance of the driving
route caused by the uncertainty of human travel behaviors. Optimal routing schemes are
expected to have a stable output under the vehicle–infrastructure coordination architecture
to cope with disturbances related to human random driving behavior.
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Abbreviations
The definitions of field-specific terms used in the paper.

BDRP bidding-based dynamic route planning
CV connected vehicles
FIFO first-in-first-out
BPR Bureau of Public Roads
WDP winner determination problem
PLS priority-set-based local search
SSP static shortest path method
TSP top-K shortest path method
LSP logit model-based shortest path method
HDP hierarchical dynamic planning
TOR time-optimization routing

References
1. Fan, S.; Chan-Kang, C. Regional road development, rural and urban poverty: Evidence from China. Transp. Policy 2008, 15,

305–314. [CrossRef]
2. Liu, B.; Deng, M.; Yang, J.; Shi, Y.; Huang, J.; Li, C.; Qiu, B. Detecting anomalous spatial interaction patterns by maximizing urban

population carrying capacity. Comput. Environ. Urban Syst. 2021, 87, 101616. [CrossRef]
3. Ackaah, W. Exploring the use of advanced traffic information system to manage traffic congestion in developing countries. Sci.

Afr. 2019, 4, e00079. [CrossRef]
4. Sun, R.; Hu, J.; Xie, X.; Zhang, Z. Variable Speed Limit Design to Relieve Traffic Congestion based on Cooperative Vehicle

Infrastructure System. Procedia Soc. Behav. Sci. 2014, 138, 427–438. [CrossRef]
5. Liu, B.; Long, J.; Deng, M.; Tang, J.; Huang, J. Revealing spatiotemporal correlation of urban roads via traffic perturbation

simulation. Sustain. Cities Soc. 2021, 103545. [CrossRef]
6. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
7. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
8. Bellman, R. On a routing problem. Q. Appl. Math. 1958, 16, 87–90. [CrossRef]
9. George, B.D. Linear Programming and Extensions; Princeton University Press: Princeton, NJ, USA, 1962.
10. Geisberger, R.; Sanders, P.; Schultes, D.; Vetter, C. Exact Routing in Large Road Networks Using Contraction Hierarchies. Transp.

Sci. 2012, 46, 388–404. [CrossRef]
11. Delling, D.; Goldberg, A.V.; Razenshteyn, I.; Werneck, R.F. Graph partitioning with natural cuts. In Proceedings of the 25th

International Parallel and Distributed Processing Symposium (IPDPS 2011), Anchorage, AK, USA, 16–20 May 2011; IEEE
Computer Society: Washington, DC, USA, 2011; pp. 1135–1146.

12. Delling, D.; Goldberg, A.V.; Werneck, R.F. Faster batched shortest paths in road networks. In Proceedings of the 11th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS 2011), OpenAccess Series in
Informatics (OASIcs), Saarbrücken, Germany, 8 September 2011; Volume 20, pp. 52–63.

13. Liu, G.; Long, W.; Wang, J.; Gao, P.; He, J.; Luo, Z.; Li, L.; Li, Y. Improving the throughput of transportation networks with a
time-optimization routing strategy. Int. J. Geogr. Inf. Sci. 2018, 32, 1815–1836. [CrossRef]

14. Xu, B.; Zhou, X. Dynamic relative robust shortest path problem. Comput. Ind. Eng. 2020, 148, 106651. [CrossRef]
15. Xu, B.; Li, S.E.; Bian, Y.; Li, S.; Ban, X.J.; Wang, J.; Li, K. Distributed conflict-free cooperation for multiple connected vehicles at

unsignalized intersections. Transp. Res. Part C Emerg. Technol. 2018, 93, 322–334. [CrossRef]
16. Li, S.E.; Wang, Z.; Zheng, Y.; Sun, Q.; Gao, J.; Ma, F.; Li, K. Synchronous and asynchronous parallel computation for large-scale

optimal control of connected vehicles. Transp. Res. Part C Emerg. Technol. 2020, 121, 102842. [CrossRef]
17. Dai, R.; Lu, Y.; Ding, C.; Lu, G.; Wang, Y. A simulation-based approach to investigate the driver route choice behavior under the

connected vehi-cle environment. Transp. Res. Part F Traffic Psychol. Behav. 2019, 65, 548–563. [CrossRef]
18. Liu, Y.; Yu, Y. Distributed dynamic traffic modeling and implementation oriented different levels of induced travelers, Dis-crete

Dyn. Nat. Soc. 2015, 2015, 642389.

http://doi.org/10.1016/j.tranpol.2008.12.012
http://doi.org/10.1016/j.compenvurbsys.2021.101616
http://doi.org/10.1016/j.sciaf.2019.e00079
http://doi.org/10.1016/j.sbspro.2014.07.221
http://doi.org/10.1016/j.scs.2021.103545
http://doi.org/10.1007/BF01386390
http://doi.org/10.1109/TSSC.1968.300136
http://doi.org/10.1090/qam/102435
http://doi.org/10.1287/trsc.1110.0401
http://doi.org/10.1080/13658816.2018.1487561
http://doi.org/10.1016/j.cie.2020.106651
http://doi.org/10.1016/j.trc.2018.06.004
http://doi.org/10.1016/j.trc.2020.102842
http://doi.org/10.1016/j.trf.2018.04.008


ISPRS Int. J. Geo-Inf. 2022, 11, 39 19 of 19

19. Zeng, W.; Miwa, T.; Wakita, Y.; Morikawa, T. Application of Lagrangian relaxation approach to α -reliable path finding in
stochastic networks with correlated link travel times. Transp. Res. Part C Emerg. Technol. 2015, 56, 309–334. [CrossRef]

20. Lei, F.; Wang, Y.; Lu, G.; Sun, J. A travel time reliability model of urban expressways with varying levels of service. Transp. Res.
Part C Emerg. Technol. 2014, 48, 453–467. [CrossRef]

21. Lee, S.; Heydecker, B.G.; Kim, J.; Park, S. Stability analysis on a dynamical model of route choice in a connected vehicle
environment. Transp. Res. Procedia 2017, 23, 720–737. [CrossRef]

22. Jamson, S.L.; Brouwer, R.; Seewald, P. Supporting Eco-Driving. Transp. Res. Part C Emerg. Technol. 2015, 58, 629–630. [CrossRef]
23. Genders, W.; Razavi, S.N. Impact of Connected Vehicle on Work Zone Network Safety through Dynamic Route Guidance. J.

Comput. Civ. Eng. 2016, 30, 04015020. [CrossRef]
24. Roughgarden, T.; Tardos, É. How bad is selfish routing? JACM 2002, 49, 236–259. [CrossRef]
25. Lazar, D.A.; Bıyık, E.; Sadigh, D.; Pedarsani, R. Learning how to dynamically route autonomous vehicles on shared roads. Transp.

Res. Part C Emerg. Technol. 2021, 130, 103258. [CrossRef]
26. Youn, H.; Gastner, M.T.; Jeong, H. Price of anarchy in transportation networks: Efficiency and opti-mality control. Phys. Rev. Lett.

2008, 101, 128701. [CrossRef] [PubMed]
27. Yildirimoglu, M.; Ramezani, M.; Geroliminis, N. Equilibrium Analysis and Route Guidance in Large-scale Networks with MFD

Dynamics. Transp. Res. Procedia 2015, 9, 185–204. [CrossRef]
28. Shi, Y.; Wang, D.; Tang, J.; Deng, M.; Liu, H.; Liu, B. Detecting spatiotemporal extents of traffic congestion: A density-based

moving object clustering approach. Int. J. Geogr. Inf. Sci. 2021, 35, 1449–1473. [CrossRef]
29. Çolak, S.; Lima, A.; González, M.C. Understanding congested travel in urban areas. Nat. Commun. 2016, 7, 1–8. [CrossRef]
30. Liang, L.; Yang, Y.; Wang, H.; Huang, L.; Zhang, X. Traffic Impedance Estimation Driven by Trajectories for Urban Roads.

In Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, Vancouver, BC, Canada, 26–
28 August 2019; pp. 1–7. [CrossRef]

31. Nguyen, S.; Dupuis, C. An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs.
Transp. Sci. 1984, 18, 185–202. [CrossRef]

32. Chen, B.Y.; Lam, W.H.; Sumalee, A.; Li, Z.L. Reliable shortest path finding in stochastic networks with spatial correlated link
travel times. Int. J. Geogr. Inf. Sci. 2012, 26, 365–386. [CrossRef]

33. Woelki, M.; Lu, T.; Ruppe, S. Ranking of alternatives for emergency routing on urban road networks. WIT Trans. Built Environ.
2015, 146, 591–598. [CrossRef]

34. KuKuijpers, B.; Moelans, B.; Othman, W.; Vaisman, A. Uncertainty-based map matching: The space time prism and k-shortest
path algo-rithm. ISPRS Int. J. Geo Inf. 2016, 5, 204. [CrossRef]

35. Liu, Z.; Wang, S.; Meng, Q. Toll pricing framework under logit-based stochastic user equilibrium constraints. J. Adv. Transp. 2013,
48, 1121–1137. [CrossRef]

36. Wang, J.; Niu, H. A distributed dynamic route guidance approach based on short-term forecasts in cooperative infrastruc-ture-
vehicle systems. Transp. Res. Part D Transp. Environ. 2019, 66, 23–34. [CrossRef]

37. Sunita; Garg, D. Dynamizing Dijkstra: A solution to dynamic shortest path problem through retroactive priority queue. J. King
Saud Univ. Comput. Inf. Sci. 2021, 33, 364–373. [CrossRef]

38. Wang, P.; Deng, H.; Zhang, J.; Zhang, M. Realtime urban regional route planning model for connected vehicles based on V2X
communication. J. Transp. Land Use 2020, 13, 517–538. [CrossRef]

http://doi.org/10.1016/j.trc.2015.04.018
http://doi.org/10.1016/j.trc.2014.09.019
http://doi.org/10.1016/j.trpro.2017.05.040
http://doi.org/10.1016/j.trc.2015.06.020
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000490
http://doi.org/10.1145/506147.506153
http://doi.org/10.1016/j.trc.2021.103258
http://doi.org/10.1103/PhysRevLett.101.128701
http://www.ncbi.nlm.nih.gov/pubmed/18851419
http://doi.org/10.1016/j.trpro.2015.07.011
http://doi.org/10.1080/13658816.2021.1905820
http://doi.org/10.1038/ncomms10793
http://doi.org/10.1145/3387168.3387209
http://doi.org/10.1287/trsc.18.2.185
http://doi.org/10.1080/13658816.2011.598133
http://doi.org/10.2495/ut150481
http://doi.org/10.3390/ijgi5110204
http://doi.org/10.1002/atr.1255
http://doi.org/10.1016/j.trd.2018.05.005
http://doi.org/10.1016/j.jksuci.2018.03.003
http://doi.org/10.5198/jtlu.2020.1598

	Introduction 
	Dynamic Route-Planning Method Overview 
	Bidding-Based Dynamic Route-Planning (BDRP) Method 
	Bidding-Based Vehicle—Road Coordination Planning Method 
	Winning Bidder Determination Algorithm 

	Case Study 
	Simulation Case Experiment 
	Experimental Setting 
	Network Transport Efficiency Comparison between Different Routing Schemes 
	Road Utilization Rate Comparison between Different Methods 

	Example Application 
	Study Area Description 
	Transport Efficiency of the Road Network 


	Discussion 
	Conclusions 
	References

