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Abstract: Estimating surface elevation changes in mangrove forests requires a technique to filter
the mangrove canopy and quantify the changes underneath. Hence, this study estimates surface
elevation changes underneath the mangrove canopy through vegetation filtering and Difference of
DEM (DoD) techniques using two epochs of unmanned aerial vehicle (UAV) data carried out during
2016 and 2017. A novel filtering algorithm named Surface estimation from Nearest Elevation and
Repetitive Lowering (SNERL) is used to estimate the elevation height underneath the mangrove
canopy. Consequently, DoD technique is used to quantify the elevation change rates at the ground
surface, which comprise erosion, accretion, and sedimentation. The significant findings showed that
region of interest (ROI) 5 experienced the highest volumetric accretion (surface raising) at 0.566 cm3.
The most increased erosion (surface lowering) was identified at ROI 8 at −2.469 cm3. In contrast,
for vertical change average rates, ROI 6 experienced the highest vertical accretion (surface raising)
at 1.281 m. In comparison, the most increased vertical erosion (surface lowering) was spotted at
ROI 3 at −0.568 m. The change detection map and the rates of surface elevation changes at Kilim
River enabled authorities to understand the situation thoroughly and indicate the future situation,
including its interaction with sea-level rise impacts.

Keywords: surface elevation changes mapping; mangrove surface geomorphometry; UAV pho-
togrammetry; geomorphological change detection; filtering algorithm

1. Introduction

In the mangrove forest region, the environment is very dynamic because of dense
canopy vegetation and the tidal inundation that causes the surface elevation to be partially
submerged, especially during high tide and the highest astronomical tides (HAT). The
physical measurement approach is challenging because of the rough terrain conditions
full of mangrove roots and muddy soil that complicate the physical work [1,2]. Total
stations, terrestrial laser scanners (TLS), electronic distance measurement (EDM), and other
surveying equipment that needs a tripod are hardly set up in this terrain. The alternative
way to monitor erosion in the mangrove environment is to use the shifting of the mangrove
boundary/vegetation line, as discovered by [3–5]. However, the study only looks at the
surface of the mangrove canopy and ignores the hidden features beneath it. Any physical
changes on the ground are hidden by mangrove vegetation, especially from an aerial view,
and these obstacles have inspired this study. To quantify surface elevation changes on sites
with small-scale areas, a few terrestrial measurements such as physical surveys, erosion
pins, and the surface elevation table–marker horizon (SET-MH) method are commonly used.
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However, aerial monitoring is still convenient compared to terrestrial in terms of mobility,
time-consuming, data abundance, and the ability to cover a large area in a short time.
Besides, tidal inundation in mangrove areas that often becomes a problem for researchers
(if using a physical survey method) could be avoided using aerial monitoring [6,7].

Most previous surface extraction research has focused on surface elevation and surface
change monitoring of the bare earth topography. The studies [8–13] use satellite imagery
to monitor erosion in the coastal region. Meanwhile, [14–20] used UAV imagery to assess
erosion in bare earth areas. The previous scholar observes the erosion based on the visible
changes in topography based on the bare earth’s spatial and temporal analysis. Previous
researchers had made fewer attempts to evaluate the surface elevation changes caused
by erosion, accretion (deposition), and sedimentation rates at riverbank areas covered by
canopies or trees. At the canopy-covered riverbank area, the canopy has obstructed the
surface, especially from an aerial view. The mangrove canopy covering the riverbank
should be removed using the vegetation filtering method to monitor erosion in the canopy-
covered area.

For a bare earth area such as a coastal or open riverbank, any geomorphological
changes are easily detected using several image analyses, such as change detection, image
classification, thresholding, and other remote-sensing related methods [21–29]. Both satel-
lite imageries provided high-resolution elevation data at the global scale and were used by
previous researchers to evaluate changes on the earth’s surface over time [30–37]. Most of
them used the digital elevation model (DEM) uncertainty process based on the Monte Carlo
approach [38] with post-processing tools in SFM-georeferencing software [39]. Precision
maps were created by interpolating the vertical standard deviation (H) determined from
the precision estimate (1-mm grid size) [40–43].

For decades, researchers have developed many filtering methods to remove above-
ground objects such as vegetation, buildings, and other human-made structures. Filtering
approaches such as LAStools triangulated irregular networks (TIN) densification, the
typical method in Agisoft Photoscan, and others have been used to filter point clouds by
utilising an airborne laser scanner or light detection and ranging (LiDAR) [44–46]. Similar
to UAV imagery data, it uses several algorithms, for instance, a progressive morphological
filter (PMF), a simple morphological filter (SMRF), or a cloth simulation filter (CSF), and a
structural filter, Caractérisation de Nuages de Points (CANUPO), for vegetation filtering
purposes [47]. Unlike LiDAR, a UAV photogrammetric survey could not penetrate partly
through the vegetation layer and, therefore, might have failed to generate actual ground
points below a vegetated surface. The aerial photograph could not capture the information
below dense vegetation using a typical sensor (e.g., a Red, Green, and Blue (RGB) sensor)
unless the captured RGB images are analysed using a specific method, like an excessive
greenness vegetation index (ExG-VI), for surface extraction in dense forest areas [45].

Previous studies related to vegetation filtering using LiDAR have already been con-
ducted by other researchers, which could lead to various filtering algorithms being invented
and improvised for better output accuracy [44–46]. However, less study was performed
by other researchers to utilise UAS products, especially the DSM model, in estimating
surface elevation underneath mangrove-covered areas since it only captured the top surface
of mangrove trees instead of the ground surface. Anders et al. (2019) [45] evaluated the
comparison of DEM accuracy using common filtering algorithms such as the standard
built-in method in Agisoft Photoscan, colour-based filtering using vegetation index (VI),
iterative surface lowering (ISL), triangulated irregular networks (TIN), and a combination
of iterative surface lowering and the VI method (ISL + VI). Since they revealed the potential
of the UAS optical sensor in performing the task just like LiDAR, it inspired this study to
use the UAS approach with a novel SNERL filtering algorithm for generating surface eleva-
tion underneath mangrove-covered areas. For that reason, capturing the top of mangrove
surface information is a sufficient way before proceeding to image processing using the
structure from the motion-multi-view stereo (SfM-MVS) method.
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The existing problem in the application of UAV in mangrove canopy change monitor-
ing is the difficulty of using the optical photogrammetry sensor (i.e., RGB-Complementary
Metal Oxide Semiconductor (CMOS) in estimating elevation changes underneath the man-
grove canopy. Optical sensors usually detect the mangrove canopy as the surface height
model, not as the maximum height above the mangrove area. The hidden mangrove
surface height below the canopy is normally obstructed because it is hard to quantify using
a conventional UAV photogrammetry survey, unless a certain filtering algorithm is used to
reduce the mangrove canopy height to ground level. Once the hidden mangrove surface
height is uncovered, the monitoring of surface elevation changes can be carried out using
the GCD technique.

Hence, this study focuses on improving the vegetation filtering algorithm for extracting
the surface elevation underneath the mangrove canopy to form a novel algorithm called
Surface estimation from Nearest Elevation and Repetitive Lowering (SNERL). This filtering
algorithm removes the mangrove canopy from the terrain level. It then generates a DEM
whose accuracy is almost comparable to the physical measurement, using total station,
levelling, or the Global Navigation Satellite System (GNSS). The vertical datum underneath
the mangrove canopy is based on the nearest identified surface level, such as a riverbank
or opening surface in the middle of a dense vegetation area. The digital surface model
(DSM), which represents elevation at the mangrove canopy height, has been collected
from UAV data that comprise two different flying durations, during low and high tide.
UAV raw data (in raw aerial images) is processed based on the SfM-MVS method using
commercial software such as Agisoft Metashape. Although it can generate orthophoto,
contours, and three-dimensional (3D) models, DSM is the most crucial output in this
study. The other results, such as orthophoto, serve as supporting data. Since the DSM
image from the UAV aerial survey only captured the top of topographic features such as
vegetation and buildings, it needs a filtering method to filter and reduce it until it reaches
terrain level (ground surface). This study might require additional data, such as physical
topographic data from real-time kinematic (RTK) observations, to validate the accuracy of
the filtered DEM.

2. Study Area

The Kilim River in Langkawi Island, Kedah, Malaysia, has been chosen as the study
site (Figure 1). This study area was designated as a UNESCO Kilim Karst Geoforest
Park (KKGP) in 2007. The Kilim River has a semi-diurnal tide because it is located at
6◦21.518′–6◦26.093′ N and 99◦51.159′–99◦51.159′ E [4]. Although the Kilim River is approx-
imately three kilometres from the coastal area, the tidal effect still exists and affects the
Kilim River. This area has been granted Geopark status by the United Nations Educational,
Scientific, and Cultural Organization (UNESCO) because of its impressive rock formations
(limestone or karst), the richness of mangrove forests, and its unique geological significance.
The study area displays natural mountain valley topography with an average slope of 30◦,
and some areas are up to 80◦, making it quite challenging for a drone pilot to fly over the
entire region. The study area is also surrounded by various geomorphological structures
such as muddy soil at the riverbank, dense mangrove forest, limestone, karst, and different
kinds of rock formations in hilly areas. This region was chosen as the study area because it
involves additional land cover, including high-density vegetation, low vegetation, shrubs,
and different geomorphological features. The Kilim River was selected due to the previous
study by [3], which discovered significant mangrove dynamic changes in this area.
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Figure 1. (A) Location of the study area in Malaysia’s Peninsular (shown by the small yellow square);
(B) location of the Kilim River as the primary study area displayed along with ground control points
(GCPs) location in the orthophoto image captured by the UAV.

3. Materials and Methods
3.1. Data
3.1.1. UAV Data Acquisition

The unmanned aerial vehicle (UAV) employed in this study was a Da-Jiang Innova-
tions (DJI) Phantom 4 Advanced model manufactured by SZ DJI Technology Corporation
Limited (Shenzhen, China). The camera model attached has a focal length of 3.61 mm, a
resolution of 4000 × 3000, and pixel sizes of 1.56 × 1.56 µm. DJI GO software was used
to plan the flight path and flight parameters. It includes the flight altitude, frontal and
side overlap, and the size of the coverage area. In 2016, the flying altitude during low tide
was 149 m.

Meanwhile, in 2017, the flying altitude during low tide was 228 m. The reason for
choosing a flight altitude of 228 m above the ground is the topographic conditions of the
study area that is surrounded by hills. During UAV data acquisition, the flight path was
set for auto-deploy of the aircraft with the self-propelled piloting system. To perform a
smooth take-off and landing, a flight plan should be made with thorough consideration
of all aspects by the pilot. It is to avoid any unwanted incident, especially a collision with
a hill. In this study area, the maximum elevation of a hill was indicated at 200 m at most.
For that reason, 228 m of flying altitude is a safe precaution to minimise the collision risk
during the UAV data acquisition process.

According to flight data for both epochs, each flight captured a different number of
aerial images. UAV data collection in 2016 captured more images and more camera stations
than in 2017 because of its high-flying altitude. For the coverage area, 0.661 km2 was the
total coverage area during low tide in 2016, while 0.688 km2 was during low tide in 2017.

3.1.2. GNSS Data Observation for GCPs

For this study, eight artificial targets and a rubber mat with the “X” mark (with
dimensions of 2 m × 2 m) were set up at distributed locations along the Kilim River (as
displayed in Figure 2). One-hour observation of the GNSS survey is carried out using a
Topcon Trimble GR-5 model to measure horizontal (latitude and longitude) and vertical
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data (ellipsoidal height) in GDM2000 at each GCP. The accuracy of the Topcon GR-5 model
when using the static technique is 3.0 mm + 0.5 ppm (horizontal) and 5.0 mm + 0.5 ppm
(vertical), whereas it is 10 mm + 1 ppm (horizontal) and 15 mm + 1 ppm (vertical) when
implementing the Real-Time Kinematic (RTK) technique [48]. In this study, a static method
with 1-h observation was chosen over the RTK method for GCP data acquisition. The main
reason is the accuracy of the observed GCP that reaches 3.0 mm + 0.5 ppm (horizontal) and
5.0 mm + 0.5 ppm (vertical) using the static method, while the RTK method could reach
10 mm + 1 ppm (horizontal) and 15 mm + 1 ppm (vertical). Not only is it used for GCP
data acquisition, but a similar station is also used as the base station for GNSS vertical
accuracy assessment in order to verify the quality of the filtered DEM after passing through
the SNERL filtering algorithm.

Figure 2. The segregation workflow of vegetation and non-vegetation using VVI and ExG methods.

The other reason the static method was used is the requirement for great accuracy in
ellipsoidal height from GNSS observations in order to determine the orthometric height.
To obtain the highest accuracy of orthometric height, the highest accuracy of ellipsoidal
height through a static method is necessary while the geoidal height is determined from
the Malaysian Geoid model (MyGeoid). The orthometric height is identified by subtracting
the ellipsoid height (GNSS survey) from the geoid height (MyGeoid model) to make sure
the vertical data (orthometric height) reaches the global mean sea level (MSL). Hence, the
final altitude (z) was inserted along with the coordinates (latitude and longitude) during
image processing, and it was based on orthometric height (height above mean sea level).
After the processing using Agisoft Metashape, the UAV output, especially the orthomosaic
and DSM models, resulted in a great GSD value since the inserted value of vertical value
(altitude) was referred to as orthometric-based height.

As a local state coordinate system that specifically applies to the Kedah and Perlis
regions, the Geocentric Datum of Malaysia 2000 (GDM 2000) was used. To ensure that
the vertical data (orthometric height) reaches the global mean sea level, the orthometric
height is calculated by subtracting the ellipsoid height (GNSS survey) from the geoid height
(MyGeoid model). Hence, the vertical data were inserted as orthometric height (height
above mean sea level) during the SfM-MVS process, along with the coordinates (latitude
and longitude) of GCPs.

3.2. Methods
3.2.1. Generating UAV-Derived DSM through SfM-MVS Method

The SfM-MVS photogrammetry technique was used to create three-dimensional point
clouds (3D), which allows for the reconstruction of topography from randomly dispersed
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and orientated images from uncalibrated cameras. SfM-MVS was chosen to reconstruct the
three-dimensional (3-D) structure from a series of overlapping images. This is due to its an-
alytical methods being based on a computer-aided solution of mathematical algorithms and
digital softcopy of photogrammetry-based data, eliminating the need for opto-mechanical
hardware. The images were processed using the commercially available SfM software,
Agisoft Metashape v1.6.4, which uses a typical SfM-MVS progression. The data processing
was performed using Intel Core i7 3.6 GHz CPUs, NVIDIA Quadro K80 GPUs, and 32 GB
of RAM.

3.2.2. Segregation of Vegetation and Non-Vegetation Areas Using Vegetation Indices (VI)

There are numerous vegetation indices for various applications, but the most effective
of which are derived using green, red, red-edge, near-infrared, and/or infrared bands,
such as the Normalised Difference Vegetation Index (NDVI) and the Enhanced Vegetation
Index (EVI) (EVI). In lightweight UAVs, such as the one used in this study (DJI Phantom 4
Advanced), the maximum payload is limited; hence, the types of sensors onboard are
restricted by their weight. While multi-spectral cameras are becoming more compact and
some sensors can be fitted into small aircraft (e.g., the Parrot Sequoia), many UAVs already
implement these new capabilities. These cameras have CMOS sensors that are sensitive to
visible light until near-infrared (NIR) (400–900 nm), along with RGB channels and filters
that block radiation over 650 nm.

There are vegetation indices solely based on visible light bands, such as the Visible
Vegetation Index (VVI) and Excessive Greenness (ExG, Equation (2)), distinguishing vege-
tation from bare land. VVI is a scale from 0 to 1, with lower values indicating bare ground
and higher vegetation values, as shown in Equation (1).

VVI =
(

1−
∣∣∣∣ R− R0

R + R0

∣∣∣∣ ×(1−
∣∣∣∣ G− G0

G + G0

∣∣∣∣ ×(1−
∣∣∣∣B− B0

B + B0

∣∣∣∣)] 1
W

(1)

R, G, and B are the red, green, and blue channel values, respectively. RGB0 is the vector
of the reference green colour (in this case, R0 = 40, G0 = 60, and B0 = 10), and W is a weight
component (here 1) [49]. As indicated in Equation (2), ExG is a continuous index with
higher values representing bright green reflecting surfaces such as vegetation and lower
values representing bare ground or obstructions.

ExG = 2G− R− B (2)

The initial stage in extracting the Vegetation Index (VI) is to generate the visible
vegetation index (VVI), which is then followed by ExG parameterisation (Figure 3). ExG is
a continuous index where larger values represent bright green reflecting surfaces such as
vegetation, and lower values represent bare terrain or obstructions. The R, G, B values were
then normalised, calculated, and visually compared to determine how much vegetation
was detected. It was discovered that VVI was useful for distinguishing minor variations
between vegetation types and that ExG provided a greater contrast between vegetation
and barren land. ExG was the indicator of selection because the purpose was to classify
vegetation points and ground points. During the filtering process, any point in the point
cloud with an ExG greater than 0.1 was omitted. The output for this method is the filtered
vegetation from DSM that consists only of vegetation with greenness featured and excludes
bare or terrain surfaces.

This process utilised VI as the classifier of vegetation and non-vegetation features.
Using the Normalised Differential Vegetation Index (NDVI) algorithm, the features with the
higher VI were considered the vegetation area and vice versa. VI chooses the features that
are higher in the green band (Band 2) as the vegetation area, while the red band (Band 1)
and blue band (Band 3), which are low in VI, are non-vegetation (Figure 2).

Then, Excessive Greenness (ExG) was performed using the Binary Thresholding
Function to classify between vegetation and non-vegetation using the binary numbers
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0 (low) and 1 (high) as the index. So, any features with ExG > 0.1 in the NDVI transformed
raster were considered vegetation and kept while the rest were removed. The ExG raster
was converted into an integer separated by the binary number (0, 1) using an integer
(spatial analyst) before being converted back into a polygon shapefile, as shown in Figure 2.
The last process in this sub-section is to select only features with ExG > 0.1 to be overlayed
with UAV DSM data and thus clipped to remove any unwanted Region of Interest (ROI)
within the whole DSM data. Hence, the output in this process is the clipped DSM that is
overlaid on the UAV DSM data that will be used in further processing. The exact process
was repeated for the second epoch of data (Low tide 2017).

Figure 3. The specific vegetation filtering workflow using the SNERL filtering algorithm.

3.2.3. Vegetation Filtering Using SNERL Algorithm

The SNERL algorithms originated from a linear prediction by [50], which later de-
veloped into iterative surface lowering (ISL), before being combined as Iterative Surface
Lowering (ISL) + Vegetation Index (ISL + VI), as explained by [45]. The SNERL algorithms
operate as a smoothing algorithm for irregular heights of vegetation while considering
the nearest elevation height as the reference. By using the nearest surface elevation height
(negative residual) that is not obstructed by vegetation canopy, the repetitive filtering is
performed for point cloud data, so that it can be reduced until it achieves the vertical datum
level. As a reference vertical datum, any surface height that is not covered by vegetation is
considered ground surface, which is also known as “negative residual”.

The surface height or topography has a higher probability of having negative residuals
than the vegetation point, which has a higher likelihood of having small negative or positive
residuals. Hence, Hi as vegetation height, represented by a point cloud or DSM profile,
is considered a positive residual in this algorithm. Eliminating residuals based on the
calculated weight is repetitively carried out until it removes all vegetation points to reach a
negative residual level (Figure 4). The repetitive process of eliminating residuals depends
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on the weight value, Ha,b, which is computed using the proposed SNERL algorithm in
Equation (3) as follows (example on the 1st iteration):

Ha,b = 2π ≤ g +
[

a(λ− 1) + 1b
]

g < Hi ≤ g + w2g + 2π < Hi (3)

Figure 4. GCD workflow for the filtered DEM at low tide in 2016 and 2017.

The difference between this algorithm and other filtering methods is that an exposed
bare surface in the middle of the mangrove forest acts as the reference elevation. In the
concept of SNERL filtering, the exposed bare surface reveals the elevation height, and
there will be negative residuals. Such an approach could guide mangrove surface lowering
towards a specific height, and the filtering process would eliminate residuals, iteratively
towards a higher accuracy of the hidden ground surface. The higher accuracy of the filtered
ground surface beneath the mangrove canopy will be helpful in further study of mangrove
geomorphology and, thus, provide an alternative for researchers to use a remote platform
for advanced related research instead of only physical techniques.

The SNERL algorithm scripting was performed in R software, as shown in Figure 3.
The unfiltered surface height in DSM was clustered into a few categories of height, in which
each type represented a particular feature. For example, each feature has an obvious height
range. For example, bare land ranged from 0 to 1 m, short grass ranged from 20 to 25 cm,
tall grass ranged from 2.1 m tall with roots extending down into the soil to 1.8 m, subshrub
ranged from 1 to 2 m, small shrubland ranged from 1 to 2 m, and tall shrubs ranged
from 2 to 5 m. The SNERL algorithm will filter the height of DSM until it reaches this
3rd iteration as the final and lowest DSM cluster. With a height ranging from 15 to 20 m,
this category was considered the highest DSM cluster.
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In the first iteration, the filtering process only affects the surface height of the water
between 15 and 20 m. At a height ranging from 10 to 15 m, this category was considered
the medium DSM cluster. Then, in the second iteration, the filtering process only affects the
surface height between 10 and 15 m, while for another category of height, it will not affect
the filtering process. The other type of height was between 5 and 10 m, and the 3rd iteration
will affect features included in this group of height. The remaining DSM surface, which
has no more extended height above 5 m, was considered to have reached terrain level and
no longer has vegetation covering the earth’s surface. In this state, the DSM no longer has
vegetation or shrubs and can be a Digital Elevation Model (DEM). Hence, the final DEM
will be analysed for its accuracy assessment, and if it meets the desired accuracy, it can
proceed to the next stage, known as GCD processing.

3.2.4. Quantification of Surface Elevation Changes Using Geomorphological Change
Detection (GCD) Method

GCD is a technique to measure geomorphological change processes on the surface
that comprises erosion, accretion (deposition), and sedimentation derived from temporal
topographic surveys. Because of the qualitative and spatially explicit results, GCD is quickly
becoming a more prevalent river monitoring and restoration method. The volumetric
change is determined by comparing the surface elevation of the digital elevation model
(DEM) obtained from a periodic topographic survey with that of the DEM. Each DEM has an
ambiguous surface representation, but GCD could identify changes over several temporal
surveys. DEM uncertainty comprises two situations: Complicated and straightforward.
The minimum level of detection (MinLoD) is used for simple uncertainty, while spatial
variability through a fuzzy inferencing system (FIS) is used for complicated uncertainty. For
the Difference of DEM (DoD) analysis, GCD provides tools for quantifying and propagating
uncertainties in each DEM [51].

DoD analysis have been used to detect changes in the soil’s topography over time
and quantify the eroded or deposited volumes of sediment [52]. The digital elevation
models obtained from each survey are differenced to provide each DoD result. DoDs are
used to calculate the net volumetric change in a reach as it progresses over time. From a
geomorphic standpoint, it describes the shift in storage in terms of a sediment budget (due
to erosion and deposition). As indicated in Equation (4), DEMs from multiple periods are
subtracted from one another to form a morphological change raster, where t1 is the initial
time and t2 is the subsequent time of DEM acquisition.

DoD = DEMt2 − DEMt1 (4)

The process starts with selecting the filtered DEM as the input for the DEM survey,
and both data are loaded into the GCD software. At least two DEM datasets were required
as input, with both datasets being either new or old DEM based on the epoch: New DEM
(low tide DEM of 2017) and old DEM (low tide DEM of 2016). The intersection of new
and old surface data extents functioned as the area of interest during the change detection
analysis of both datasets. The algorithm then selects one of three approaches for evaluating
uncertainty: (i) Superficial minimum level of detection (minLoD), (ii) propagated errors,
and (iii) probabilistic thresholding. Although this is identical to using the raster calculator in
ArcGIS, the GCD software helps apply a threshold to the data. This threshold is helpful since
the most commonly used method for managing DEM uncertainties specifies a minimum
detection threshold (minLoD) to identify actual surface changes from inherent noise. In this
study, minLoD was chosen over propagated errors and probabilistic thresholding because of
the simple DEM input using the same threshold, which results in similar errors in the DEM
surface. The value for the MinLoD threshold for all ROIs is 0.1 m, according to the value of
RMSE for UAV-DSM versus the static GNSS accuracy assessment. Figure 4 displays the
flow of the method for generating DEM change detection using GCD stand-alone software.
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4. Results and Discussion
4.1. SfM-MVS Result

All epochs have been analysed for RMSE error to determine the accuracy of each
result based on the previous GCP table. For low-tide observations in the year 2016, Table 1
quantified the total for N error as 1.380 cm, E error is 1.003 mm, H error is 0.263 mm, and
NE error is 1.723 mm. Meanwhile, for the year 2017, the low-tide observation displayed
N error at 1.309 mm, E error at 1.463, H error at 0.232 mm, and NE error at 1.921 mm for all
8 GCPs (Table 1). Last but not least, Table 1 also summarises and displays the side-by-side
accuracy assessment of GCP for both epochs. For low-tide observations in the year 2016,
the table shows the minimum error at 0.339, the maximum error at 2.612 mm, the ME error
at 1.697 mm, and the SDE error at 0.686 mm. Meanwhile, for low-tide observations in
the year 2017, 8 GCPs were analysed and showed the minimum error at −0.131 mm, the
maximum error at 2.372 mm, the ME error at 1.660 mm, and the SDE error at 0.652 mm.

Table 1. The details of the UAV photogrammetric model comprise quality, accuracy, parameters, and
processing results using the SfM-MVS method.

Low Tide 2016 Low Tide 2017

Details

Accuracy of GCP

N error (mm) 1.376 1.309
E error (mm) 1.003 1.463
H error (mm) 0.263 0.232

NE error (mm) 1.723 1.921
Total error (mm) 0.178 1.547

Min (mm) 0.339 −0.131
Max (mm) 2.612 2.372

Mean (mm) 1.697 1.660
SD (mm) 0.686 0.652

Camera calibration

Focal length (F) 2335.58 4002.28
Principal coordinate (Cx) −28.6748 −27.3149
Principal coordinate (Cy) −14.2393 10.0872

Affinity (B1) −4.02501 −4.2571
Non-orthogonality (B2) 1.76359 2.3614

Radio distortion (K1) −0.000666 0.0102225
Radio distortion (K2) −0.003219 −0.0258016
Radio distortion (K3) 0.000425734 0.037059

Tangential distortion (P1) −0.00000878648 −0.00000000927189
Tangential distortion (P2) −0.0000520873 −0.000000555727
Tangential distortion (P3) 7.86566 7.2483
Tangential distortion (P4) −7.03535 −8.1128

Processing parameters

Coordinate system WGS 84 (EPSG:4326) WGS 84 (EPSG:4326)
Point cloud (points) 72,066/90,739 35,766/40,957

Point cloud projection (RMSE) 0.29469 (2.07029 pix) 0.460728 (2.25272 pix)
Max point cloud projection error 7.26368 pix 6.82471 pix

Dense point cloud (points) 84,848,119 49,950,801
Reconstruction parameters (quality) High High
Reconstruction parameters (depth) Moderate Moderate

DSM (size) 17,191 × 13,529 15,810 × 13,221
DSM reconstruction parameter (source data) Dense cloud Dense cloud

Orthomosaic (size) 21,756 × 19,274 19,892 × 19,860
Orthmosaic blending mode (colors) Mosaic Mosaic

Orthmosaic blending mode (surface) DSM DSM

Table 2 also shows the assessment of camera calibration parameters for UAV data
based on the focal length (F), principal point coordinates (Cx and Cy), radial distortion
polynomial coefficients (K1, K2, and K3), and tangential distortion coefficients (P1, P2,
P3, and P4). The F value for low tides in the year 2016 was 2335.58, while in 2017, the
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focal length for low tides was 4002.28. For the Cx value in the year 2016, the value for low
tide was −28.6748, while the value for low tide in 2017 was −27.3149. Meanwhile, for
the Cy value, the value is −14.2392 for the year 2016, whereas the value is 10.0872 for the
year 2017. For the B1 value, the data in 2016 show a value of −4.02501 (low tide) while
the data in 2017 show a value of −4.2571 (low tide). For B2, the data in 2016 recorded a
value of 1.76359 (low tide), whereas the data in 2017 recorded a value of 2.3614 (low tide).
Next, the value of K1 in the year 2016 shows a value of −0.000666 (low tide), while in
the year 2017, the value is 0.0102225 (low tide). For the K2 value, the data in 2016 show
a value of −0.003219 (low tide) while the data in 2017 show a value of −0.0258016 (low
tide). For the K3 value, the data in 2016 show a value of 0.000425734 (low tide), whereas
for 2017, the value for low tide is 0.037059. For P1, the data in 2016 show a value of
−0.00000878648 (low tide) while the data in 2017 shows a value of−0.00000000927189 (low
tide). For P2, the data in 2016 recorded a value of −0.0000520873 (low tide), whereas the
data in 2017 recorded a value of −0.000000555727 (low tide). The P3 value for low tides in
the year 2016 was 7.86566, while in 2017, the focal length for low tides was 7.2483. Last,
for the P4 parameter, the data in 2016 recorded a value of −7.03535 (low tide) whereas the
data in 2017 recorded a value of −8.1128 (low tide).

Table 2. Geomorphological change detection rates which showing the volumetric, vertical, and
percent imbalances at all ROIs.

Focused Area Volumetric Changes
Rates (cm3)

Vertical Changes
Rates (m)

Percent Imbalanced
(%)

ROI 1 0.101 0.114 8.957
ROI 2 −0.540 −0.482 −39.010
ROI 3 −0.338 −0.568 −46.998
ROI 4 −0.003 −0.023 −1.702
ROI 5 0.566 0.196 12.229
ROI 6 1.248 1.281 43.882
ROI 7 −0.499 −0.261 −16.956
ROI 8 −2.469 −0.470 −33.404

Figure 5 depicts the UAV output with orthomosaic and DSM data from two distinct
epochs, 2016 and 2017. At DSM, the size of the low tide (2016) was 17,191× 13,529, whereas
the size of the low tide (2017) was 15,810 × 13,221. In 2016, the DSM height ranged from
−99.8065 to 106.325 m, while in 2015, the DSM height ranged from −93.9257 to 105.059 m.
For orthomosaic and DSM data, the same WGS 84 (EPSG:4326) was utilised for all epochs,
as shown in Figure 6. For point cloud categories, the total points generated in 2016 were
72,066 out of 90,739 (low tide), while in 2017, the total points generated at low tide were
35,766 out of 40,957. The RMS reprojection in 2016 was 0.29469 (2.07029 pix) for low tide,
while in 2017, the RMS reprojection was 0.460728 (2.25272 pix) for low tide. For the max
reprojection error, the value for low tide (2016) was 6.11634 while for low tide (2017) it was
7.12983. Subsequently, the dense point cloud categories displayed that the total generated
points for low tide in the year 2016 was 84,848,119, while for the year 2017, the generated
points were 49,950,801 (low tide). All epochs used the orthophoto mapping mode, mosaic
blending mode, 4096 × 4096 texture sizes, hole filling, and with the ghosting filter enabled.
Then, for the tiled model, the texture of three bands (RGB) and unit eight (8) was used
for all epochs. For DSM, the size for low tide (2016) was 17,191 × 13,529, whereas it was
15,810 × 13,221 for low tide (2017). The same WGS 84 (EPSG: 4326) was used for all
epochs in orthomosaic and DSM data, as shown in Figure 5. For reconstruction parameters,
all epochs used the same dense cloud source data and enabled interpolation for both
DSM and orthomosaic data. Meanwhile, for the size of the orthomosaic, the sizes used in
2016 are 21,756 × 19,274 and 21,484 × 19,152, while for the year 2017, the sizes used are
19,892 × 19,860 and 24,438 × 23,740. For reconstruction parameters for orthomosaic, the
mosaic blending mode, DSM surface, and hole filling-enabled were used for all epochs.
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Figure 5. (Top image: Orthophoto and DSM results at low tide in 2016; Bottom image: Orthophoto
and DSM results at low tide in 2017); (Red highlights ROI: Eight different regions as the primary
focus of this study).

4.2. SNERL Filtering Result

The filtering process was comprised of UAV DSM data in 2016 and 2017. For the epoch
of 2016, eight regions of interest (ROI) were established in the study area. In ROI 1, the
average height before filtering was between 1.5 m and 25 m, and after the filtering process,
the average height was reduced to an average of between −3.7 m and 6.3 m. As shown
in Figure 6, the average height before filtering was between −5 m and 29 m, and after the
filtering process, the average height was reduced to an average of −1.0 m and 6.0 m. For
ROI 3, the average height before filtering was between −10 m and 67 m but decreased
to −1.0 m and 5.6 m after the filtering process. Meanwhile, in ROI 4, the average height
changed from an average of −37 m to 48 m before filtering into −5.0 m and 6.7 m after
filtering. Before filtering, the average height in ROI 5 was between −74 m and 50 m, but
it was reduced to between −24 m and 15 m after filtering. In ROI 6, the height changes
from an average of −10 m to 30 m (before filtering) into −4.1 m and 12.5 m (after filtering).
The following ROI (ROI 7) decreases in average height from −10 and 50 m to −2.5 m and
12.5 m after the filtering process. The last ROI (ROI 8) showed a decreasing average height
from −10 m and 35 m (before filtering) to −2.5 m and 10.0 m (after filtering).

In 2017, a similar number of ROIs were applied to the study area. In ROI 1, the average
height before filtering was between −29 m and 50 m, and after the filtering process, the
average height was reduced to an average of between −6.7 m and 12.5 m. In ROI 2, the
average height before filtering was between −10 m and 30 m, and after the filtering process,
the average height was reduced to an average of 0.2 m and 5.0 m, as shown in Figure 6. For
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ROI 3, the average height before filtering was between 0 m and 80 m but decreased to 0.0 m
and 4.8 m after the filtering process. Meanwhile, in ROI 4, the average height changed from
an average of 2 m to 60 m before filtering into 0.3 m and 7.0 m after filtering. In ROI 5, the
average height before filtering was between −19 m and 50 m and was reduced to −5.0 m
and 14.5 m after the filtering process. In ROI 6, the height was changed from an average of
1 m to 40 m (before filtering) to 0.2 m and 12.5 m (after filtering). The following ROI (ROI 7)
decreased in average height from −10 m to 29 m in −2.5 m and 7.7 m after filtering. The
last ROI (ROI 8) showed a decreasing average height from −4.0 m to 39 m (before filtering)
into −10.0 m and 7.5 m (after filtering). The histogram of the average height comparison
between the unfiltered and filtered UAV DSM is displayed in Appendices A and B.

Figure 6. Comparison of the UAV-derived elevation model based on average elevation height distri-
bution in histogram and elevation legend at ROI 2 during 2016 (upper figure) and after (lower figure).

After the filtered DEM was generated, surface elevation between epochs was compared
using the Global Mapper v22.0 software path profile tools. The path profile line was
performed simultaneously on both epochs of filtered DEM. The comparison includes the
deviation in height between two epochs of filtered DEM and the dominant height of each
ROI. Based on Figure 7, ROI 2 showed an increment of DSM (unfiltered) and DEM (filtered)
between 2016 and 2017, and a similar situation also happened at ROI 3, 5, 6, and 8. On
the other hand, the contrast situations occurred at ROI 1, 4, and 7, where the decrement
dominated the surface. The quality of the DEM using the SNERL filtering algorithm was
evaluated and quantified based on the vertical accuracy assessment. The vertical accuracy
assessment of DSM post-processed using the SNERL algorithm was compared to GNSS
data, which resulted in an RMSE error of 0.089 m, a mean of 0.039 m, and a standard
deviation (SD) of 0.322 m. So, it can be concluded that the SNERL filtering algorithm
accuracy was less than 1 m.
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Figure 7. Profile line comparison between unfiltered and filtered DEM at low tide at ROI 2 in 2016
and 2017.

4.3. GCD Result

Figure 8 shows the graphical output of surface elevation changes beneath the man-
grove canopy, which includes the graphical view of areal changes, volumetric changes,
and vertical averages calculated with GCD software. Furthermore, the GCD map was
shown with a threshold value of 20 to provide a quick look at erosion (surface lowering)
and accretion (surface raising) in each region of interest (ROI).

Figure 8. Cont.
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Figure 8. The result of change detection at different ROIs at Kilim River using GCD software:
(a) ROI 1; (b) ROI 2; (c) ROI 3; (d) ROI 4; (e) ROI 5; (f) ROI 6; (g) ROI 7; (h) ROI 8.

In ROI 1 (a), the GCD map showed an almost balanced proportion of erosion and
accretion for areal changes, with accretion slightly higher than erosion. In comparison,
ROI 1 (b) and 1 (c) also displayed more accretion over erosion in their histograms for
volumetric changes and vertical changes. The GCD map in ROI 2 (a) and (b) showed an
imbalanced proportion of erosion to accretion for areal and volumetric changes, and a
similar thing appeared in the change bars in ROI (c). For ROI 3 (a) and (b), erosion appeared
more dominant than accretion, and vertical changes also increased to a significant value.
A similar situation occurred in ROI 3, 4, 7, and 8, demonstrating that erosion was more
dominant than accretion, but this was not the case in ROI 6, where accretion was far more
significant than erosion.

The histogram and change bars in Figure 9 showed ROI 1 (a) experienced almost a
balanced proportion of erosion and accretion for areal changes, with accretion slightly
higher than erosion, while ROI 1 (b,c) also displayed more accretion than erosion in their
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histograms for volumetric changes and vertical changes. The histogram and change bars of
ROI 2 (a,b) in Figure A1 show an imbalanced proportion of erosion to accretion for areal
and volumetric changes, and a similar thing appeared on the change bars of ROI 2 (c). For
ROI 3 (a,b) rates, erosion appeared more dominant than accretion, and vertical changes
also increased to a significant value, as displayed in Figure A2. A similar situation occurred
at ROI 4 and 7 in Figures A3 and A5, while ROI 8 in Figure 6 demonstrated that erosion
was more dominant than accretion, but this was not the case in ROI 6 (Figure A5), where
accretion was far greater than erosion. Vertical changes directly affected the imbalance
between erosion and accretion, which was proved by the change bars in all ROIs (c) that
propagated the values of the average depth of lowering, the average depth of raising, and
the average total thickness difference.

Figure 9. Cont.
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Figure 9. Geomorphic Change Detection (GCD) analysis for ROI 1; (a) areal changes; (b) volu-
metric changes; (c) vertical averages. The remaining results of the GCD analysis were placed in
the Appendix A.

GCD analysis has quantified the geomorphological change rates, which comprised
volumetric, vertical change rate, and percent imbalanced at each ROI on the Kilim River.
Based on Table 2, ROI 1 recorded 0.101 cm3 of volumetric change rates, followed by 0.114 m
of vertical change rates, and 8.957% imbalanced. For ROI 2, it recorded −0.540.101 cm3

of volumetric change rates, followed by −0.482 m of vertical change rates, and −39.010%
imbalanced. The, ROI 3 recorded −0.338 cm3 of volumetric change rates, followed by
−0.568 m of vertical change rates, and−46.998% imbalanced. Subsequently, ROI 4 recorded
−0.003 cm3 of volumetric change rates, followed by −0.023 m of vertical change rates, and
−1.702% imbalanced. ROI 5 recorded 0.566 cm3 of volumetric change rates, followed by
0.196 m of vertical change rates, and 12.229% imbalanced. Meanwhile, ROI 6 recorded
1.248 cm3 of volumetric change rates, followed by 1.281 m of vertical change rates and
43.882% of percent imbalanced. ROI 7 recorded −0.499 cm3 of volumetric change rates,
followed by −0.261 m of vertical change rates, and −16.956% imbalanced. Lastly, ROI 8
recorded −2.469 cm3 of volumetric change rates, followed by −0.470 m of vertical change
rates, and −33.404% imbalanced.

4.4. Geomorphological Changes underneath Mangrove Canopy at Kilim River

As shown by the histogram, change bars, and tabulated information from the GCD
result, each ROI has a different surface elevation rate based on the filtered output of
the SNERL algorithm. GCD software utilised the Differential of DEM (DoD) method in
estimating erosion (surface lowering), accretion (surface raising), and vertical averages for
each ROI since the region was not connected to each other and eased the GCD processing
since the area became smaller. The indicator for an ROI to have either erosion or accretion
depends on the total net volume difference. At the same time, regarding the vertical average,
it averages the average net thickness of the difference in the area with detectable changes.

The finding in Table 1 shows that only ROI 1, 5, and 6 were dominated by accretion
while the rest were dominated by erosion. The GCD map displayed ROI 1, 5, and 6,
showing accretion-based colour. The histogram and change bars also show a similar output
in which accretion appears most in specific ROIs. The volumetric change rate for ROI 1, 5,
and 6 depicted a positive value, which signifies that the area was experiencing accretion.
Specifically, based on numerical results, ROI 1 tabulated 0.101 cm3 while ROI 5 and 6
recorded 0.566 cm3 and 1.248 cm3 of volumetric rates. In the meantime, the rest of the ROIs
displayed negative volumetric rates, including ROI 2 (−0.640 cm3), ROI 3 (−0.338 cm3),
ROI 4 (−0.003 cm3), ROI 7, (−0.499 cm3), and ROI 8 (−2.469 cm3). The finding summarises
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that ROI 5 experienced the highest volumetric accretion (surface raising), while the highest
erosion (surface lowering) was identified in ROI 8.

Another signature of the accretion-dominated region was shown by the areal changes
and vertical average rates of ROI 1, 5, and 6. The findings in Table 1 displayed a positive
value for the average net thickness of the difference in the area with detectable changes.
The value of the average net thickness of the difference in the area with noticeable changes
for ROI 1 was 0.114 m, while for ROIs 5 and 6, the quantified values were 0.196 m and
1.281 m. Meanwhile, for the other ROIs, the negative values were determined at ROI 2
(−0.482 m), ROI 3 (−0.568 m), ROI 4 (−0.023 m), ROI 7, (−0.261 m), and ROI 8 (−0.470 m).
According to the findings, ROI 6 had the highest vertical accretion (surface raising), while
ROI 3 had the highest erosion (surface lowering).

4.5. Short and Long-Term Impacts of Geomorphological Changes on Mangrove Surface and the
Interaction to Sea Level Rise

The balanced proportion of erosion (surface lowering) and accretion (surface raising)
in volumetric, areal, and vertical changes is essential for ecosystem equilibrium, especially
in dynamic ecosystems like mangroves. Ocean changes through tides directly influence
any changes to the land surface in mangrove areas. Like the ocean current, which is
constantly changing due to tides, the balance of tidal flux, which keeps the ocean current in
an equilibrium state, somehow experiences unusual changes due to sea-level rise. Mean
sea levels are rising due to both thermal expansions of seawater as temperatures rise due to
climate change and the melting of polar ice caps and other land ice, which adds additional
water to the sea [53]. Sea level rise causes an unbalanced flow of low and high water
transitions, affecting coastal regions exposed to ocean water.

Mangrove soils may be unable to increase at the same pace as the local rate of sea-
level rise, resulting in the loss of trees in the mangrove area’s lower parts and along the
seaward edge. Mangroves are likely to invade landward areas that are currently within
the tidal frame, assuming adequate substrate and topography exist. Because of the deeper
water in mangrove areas, waves may penetrate further into the area, resulting in erosion,
particularly along the seaward side. Positive and negative feedback between changes in
sea level and surface rates may be influenced. An elevation surplus occurs when surface
elevation rises faster than the sea level, whereas an elevation deficit occurs when the sea
level rises faster than the mangrove surface.

When the sea level rises or land subsides, the volume of accommodation space in-
creases because the height difference between the substrate and the mean sea level rises.
If soil inputs are high enough, this volume can now be filled with soil, allowing the soil
surface to rise until the newly formed accommodation space is filled. Soil inputs include
organic and inorganic sediments, as well as underground roots. Mangroves would remain
in their ideal tidal frame, i.e., between the mean sea level and high tide, as the height of
the mangrove soil surface rises. Without such an increase in the soil surface height, the
mangrove surface could descend below the mean sea level, causing stress and physical
harm to the mangrove trees. The relative height of the mangrove surface remains constant
within the tidal range if the change in soil surface height closely matches the change in
sea level.

According to Malaysia’s sea-level rise phenomenon, especially in the Malacca Straits
(west coast of Peninsular Malaysia), the trend shows an increasing rate of 4.95 ± 0.15 mm yr−1

based on a study by [54]. A similar study of sea-level rise trends by [55] discovered the mean
increase in the Malaysian coastline region at 4.47± 0.71 mm yr−1 based on satellite altimetry
and corrected tidal data. Although the values seem tiny, the long-term effects, especially at
lower elevations or coastal areas, will be significant in the future. Things appear to become
worse if the rate of imbalanced surface elevation changes in the mangrove area escalates
rapidly in the future. Frequent surface lowering (erosion) causes the elevation to not adapt to
tidal inundation during high water intrusion.
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In this study, a few ROIs, such as ROIs 2 and 5, showed a balance of erosion and
accretion, as illustrated in Table 1. Both ROIs also numerically displayed a fair number of
erosion and accretion rates, which signifies an equilibrium in geomorphological changes
within one year. Suppose the situation remains the same in the future. In that case, both
ROIs will have a stable and healthy ecosystem, even if the ocean’s unusual changes such as
the sea-level rise or natural events such as typhoons or storms hit the area. This is because,
in regions with very high rates of accretion, mangrove soil surfaces may increase faster
than the local rate of sea-level rise, causing terrestrial species to infiltrate landward areas
and progradation to occur (i.e., new land is formed seaward of the current mangrove area,
which mangroves then colonise). This is most likely to happen along the deltas of big rivers
that carry enormous amounts of sediment to the coast. Sea level rise rates might well be
matched by an increase in mangrove soil surface elevation, allowing mangroves to remain
on the same site while potentially colonising new landward areas with suitable substrate
and terrain.

5. Conclusions

In conclusion, UAV photogrammetry data could be used as the primary data for
estimating surface elevation underneath a mangrove canopy. A geospatial approach com-
prised of SfM-MVS, vegetation index (VI) segregation, and an SNERL filtering algorithm
is efficient in generating UAV DEM below the mangrove canopy at the closest level to
the terrain. The other approach, based on a geomorphological method known as GCD
analysis, can evaluate the rate of surface elevation changes using the DoD technique and
can discover interactions between mangrove surface elevation changes and sea-level rise.
Hopefully, more research will be conducted to improve and enrich our knowledge of the
mangrove ecosystem and prepare for a mitigation plan. The GCD map and the rates of
surface elevation changes at the Kilim River enabled authorities such as the Langkawi
Development Authority (LADA) and the Department of Drainage and Irrigation (DID) to
understand the situation much deeper. This allows the preparation of a mitigation plan to
avoid unbalanced surface elevation changes that could bring unstable equilibrium to the
mangrove ecosystem in the future.
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Appendix A

The content of Appendix A was a continuation of Figure 9. Figure A1 was referred
to as the GCD result for ROI 2, while Figure A2 for ROI 3, Figure A3 for ROI 4, Figure A4
for ROI 5, Figure A5 for ROI 6, Figure A6 for ROI 7, and Figure A7 for ROI 8. (a) was
referred to as areal changes, while (b,c) were referred to as volumetric changes and vertical
change rates.
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Figure A1. GCD result for ROI 2.
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Figure A2. GCD result for ROI3. 
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Figure A3. GCD result for ROI 4.
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Figure A4. GCD result for ROI5. 
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Figure A5. GCD result for ROI 6.
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Figure A6. GCD result for ROI7. 
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Figure A7. GCD result for ROI 8.
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Appendix B

The content of Appendix B was a continuation of Figure 7. Figure A8 was referred to
an average height comparison between filtered and unfiltered for ROI 1, while Figure A9
for ROI 3, Figure A10 for ROI 4, Figure A11 for ROI 5, Figure A12 for ROI 6, Figure A13 for
ROI 7, and Figure A14 for ROI 8.

Figure A8. Average height comparison between filtered and unfiltered for ROI 1.

Figure A9. Average height comparison between filtered and unfiltered for ROI 3.
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Figure A10. Average height comparison between filtered and unfiltered for ROI 4.

Figure A11. Average height comparison between filtered and unfiltered for ROI 5.

Figure A12. Average height comparison between filtered and unfiltered for ROI 6.
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Figure A13. Average height comparison between filtered and unfiltered for ROI 7.

Figure A14. Average height comparison between filtered and unfiltered for ROI 8.
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