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Abstract: In light of recent local, national, and global events, spatial justice provides a potentially
powerful lens by which to explore a multitude of spatial inequalities. For more than two decades,
scholars have been espousing the power of this concept to help develop more equitable and just
communities. However, defining spatial justice and developing a methodology for quantitatively an-
alyzing it is complicated and no agreed upon metric for examining spatial justice has been developed.
Instead, individual measures of spatial injustices have been studied. One such individual measure
is economic mobility. Recent research on economic mobility has revealed the importance of local
geography on upward mobility and may serve as an important keystone in developing a metric for
multiple place-based issues of spatial inequality. This paper seeks to explore place-based variables
within individual census tracts in an effort to understand their impact on economic mobility and
potentially spatial justice. The methodology relies on machine learning techniques and the results
show that the best performing model is able to predict economic mobility of a census tract based on
its spatial variables with 86% accuracy. The availability and density of jobs, compactness of the area,
and the presence of medical facilities and underground storage tanks have the greatest influence,
whereas some of the influential features are positively while the others are negatively associated. In
the end, this research will allow for comparative analysis between differing geographies and also
identify leading variables in the overall quest for spatial justice.

Keywords: spatial justice; economic mobility; random forest classifier; geographic information
systems; SHAP tree explainer

1. Introduction

Spatial justice as a theoretical concept holds much promise for exploring, understand-
ing, and solving issues of spatial inequality in a wide variety of landscapes [1]. According
to Rocco, “Spatial Justice refers to general access to public goods, basic services, cultural
goods, economic opportunity and healthy environments” [2]. Numerous scholars have
used the concept to call for a more equitable future for millions of people across the globe,
as a theory by which urban planners should create more spatially just cities and as a
political agenda to drive social change [3,4]. Achieving a spatially just geography would
be a means by which to address the inequitable distribution of public and private goods,
services, and resources.

However, the ‘real world’ application of this concept leaves much to be desired. From
questions about the definition of the term, to issues of tackling past, current, and/or future
spatial injustices, to making the larger public aware of the concept and its potential, spatial
justice as a working concept is still in its infancy. With this in mind, the goal of this paper
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is to advance our collective understanding of spatial justice as it relates to measuring
geographic inequalities that could potentially aid urban planners and policy makes. It is
critical to develop quantitative techniques through which spatial justice can be explored
across a variety of geographic landscapes. This article aids this process by utilizing a
combination of data science, machine learning techniques, and geospatial information to
explore place-based variables that influence locational equity in order to make objective
data-driven decisions on issues of spatial justice/injustice, to aid urban management
and planning.

The uneven distribution of public and private goods and services across the urban
landscape has created numerous issues for the larger society. From poor performing
schools to issues of gentrification and to food insecurity, spatial inequalities have become a
byproduct of the capitalistic, market-driven, private property economic system that has
become common across the globe. Numerous scholars have explored these singular issues
of spatial inequalities, including studies on education, health, housing, food, transportation,
and parks [5–10]. However, little scholarship has been focused on exploring how these
manifestations of spatial inequality collectively impact the assessment of well-being and
quality of life.

The one exception has been recent research focused on exploring issues of economic
mobility in the United States [11]. While not an outright measure of spatial (in)justice,
the examination of intergenerational economic mobility is rooted in many factors that are,
at their core, spatial. Their study [11] on how a person’s probability of moving from the
bottom 20% of the income ladder to the top in a generation revealed the importance of five
factors: residential segregation, income inequality, primary school education, social capital,
and family stability. Additionally, the study found that where one is born and raised has
a causal effect on long-term economic outcomes. Being born on the “right” side of the
tracks/river/highway can determine a person’s ability to reach higher income levels than
his/her parents. Indeed, this research places local geography at the center of the debate
regarding economic mobility [11].

The fact that local geography affects economic outcomes and quality of life is likely
unsurprising to the millions of people who face an array of spatial injustices on a daily basis,
which include unfair siting of environmental hazards, targeted school district assignments,
and exclusionary zoning practices [1,12–14]. Hence, understanding the particular features
of local geographies that either promote or hinder upward mobility is critical and has been
the focus of recent studies. This paper is based on a comprehensive study and presents
a data-driven approach that seeks to explore an array of place-based variables within
individual census tracts in an effort to understand their impact on economic mobility and
potentially on spatial justice. In the end, the goal is to allow for comparative analysis
between differing geographies to assist urban management and planning and also identify
leading variables in the overall quest for spatial justice.

Our previous research [15] began this process by utilizing a combination of data
science and machine learning techniques and geospatial information to identify and ex-
plore a set of place-based variables that influence upward mobility, and spatial justice
correspondingly. Results of our previous work showed that several machine learning
models, including Random Forest (RF) Classifiers [16], were successful in finding complex
underlying relationships between the selected spatial features and spatial (in)justice. This
article is a continuation and refinement of our previous work with the additional goal of
investigating interpretability [17] of the complex non-linear models in order to determine
why the model makes certain predictions about spatial (in)justice, which place-based fac-
tors mostly influence the prediction, and how. Recent studies made significant progresses
on exploring the interpretability of machine learning models [18–20] using local approxi-
mations and game theories; however, no studies have explored such interpretations in the
context of economic mobility or spatial justice. To this end, this paper explores the behavior
of the spatial features in predicting spatial justice using SHapley Additive exPlanations
(SHAP) [20,21]. SHAP is useful in explaining various supervised learning models and
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assigns an importance value for each input feature for a specific prediction, which explains
the root causes behind each prediction and therefore enhances transparency and reliability
of a model.

The purpose of the research conducted in this article is to begin the development of a
spatial justice index that will allow for comparative analysis between differing geographies
and identify leading variables in the search for spatial justice. The analysis shows that
it is possible to begin to develop a more robust and comprehensive spatial justice metric
through the inclusion of the most critical locational variables in determining how “just”
a local landscape may be. The spatial justice index is envisioned to be a metric that can
be used to quantitatively compare diverse geographies based upon the level of spatial
(in)justice at each location. Through the development of a spatial justice index, planners,
public officials, policy makers, activists, concerned residents, etc. will be armed with a new
tool to fight spatial injustices facing communities across the globe.

The rest of this article is organized as follows. Section 2 discusses background and
related works, then Section 3 elaborates materials including study area, dataset, and
preprocessing techniques utilized. Section 4 discusses the methodologies, Section 5 presents
the results, and Section 6 focuses on discussing the results. Section 7 concludes the paper.

2. Background and Related Works

While not explicitly called “spatial justice”, the theoretical concept of prioritizing the
geography of justice has been around for several decades and finds its modern-day roots in
the work of Lefebvre, Harvey, and Pirie [22–24]. Lefebvre developed a concept called the
“right to the city”, in which he calls upon society to reclaim the city for “all” in the face of
increasing levels of commercialization, privatization and public-private partnerships [22].
Harvey builds upon Lefebvre’s “right to the city” and believes that geography cannot
remain disengaged, impartial and objective, when many ills confront cities across the planet.
As a result, he calls on geographers and others to bring together spatial and social analysis
to improve urban spaces [23]. Pirie discusses the idea of “territorial social justice” and is
perhaps the first person to use the term spatial justice in an academic paper. He states that,
“Surely it would be another string in their bow if geographers could answer questions such
as these: is a person’s living at place x just? Is the spatial distribution of grocery stores just?
Is the siting of some new airport just? Is the re-siting of the hospital just? Is the removal
and rehousing of squatters just? These questions range over the justness of absolute and
relative location as well as over the justness of processes of siting and relocation” [24].

However, a concrete definition is still being developed. In his book, Seeking Spatial
Justice, Soja does a masterful job discussing the importance of spatial justice, applications
of spatial justice, and the need for planners to engage in proactive spatial justice efforts, but
his pivotal work leaves much to be desired as it relates to providing a concrete definition of
spatial justice [1]. The closest Soja comes is an affirmation of what spatial justice should be is
as follows: Justice has a geography and that the equitable distribution of resources, services,
and access is a basic human right. Meanwhile, Rocco states that “Spatial Justice refers to
general access to public goods, basic services, cultural goods, economic opportunity and
healthy environments” [2]. This is similar to Soja’s idea, but with a little bit more detail.

In the absence of a fully formed and agreed upon definition, most scholars have opted
to provide the characteristics that would help make a place more spatially just. These char-
acteristics tend to focus on three fundamental components: access, equity, and opportunity.
Soja was interested in how differing geographies have access, opportunities, and equity
as they relate to resources and services. Rocco goes a step further and adds public goods,
basic services, cultural goods, economic opportunity, and healthy environments to the list
of features that the population should have equal access to, opportunities for, and equitable
distribution of. Fainstein offers her own opinion on how planners can contribute to what
she calls “The Just City” by focusing on three factors: democracy, diversity, and equity [25].
In the end, the concept of spatial justice and related ideas provides an interesting lens for
exploring issues of geographic inequality.
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In addition to defining the term spatial justice, an important consideration is how to
measure it, specifically, which locational-based variables are worthy of study. As stated
above, individual studies of spatial injustices are quite common. These studies exploring
spatial inequalities across geographies focus on environmental injustices, education, health-
care, transportation, and parks, to name a few [5,6,8–10,12]. However, they do not provide
a complete picture of the spatial injustices that may be occurring at local geographies,
and this paper seeks to begin developing a more robust and holistic exploration of spatial
injustices in the belief that communities that suffer from one spatial injustice often have
additional underlying concerns of injustice.

Recent academic research into economic mobility may provide an opportunity to
bridge the gap that exists in the literature and begin the process of understanding the
complex relationship numerous factors have on creating spatial injustices for certain com-
munities. Reference [11] highlights the importance of place on economic mobility for the
poorest populations in the United States [11]. Specifically, Chetty et al. explored a wide
variety of place-based variables and the influence they have on economic opportunity for
the poorest populations. In the end, their research found that place matters. Reference [26]
determined that five factors are strongly correlated to these results: residential segregation,
income inequality, school quality, social capital, and family structure. Several of these
factors have a strong place-based component including residential segregation, income
inequality, school quality, and social capital from which this study will build upon. Addi-
tionally, [26] stated the need for research on the relationship between economic mobility
and location at “narrower geographies” in an effort to understand the microgeographic
attributes that may influence economic mobility and in turn spatial injustices.

Researchers have identified many location-based factors relevant to economic mobility
and as a result—potentially spatial justice, such as educational opportunities, de facto and
de jure racism, quality of family networks, and specific geographic characteristics [27–32].
For example, [27] found a relationship between urban form and economic mobility. This
work determined that the more compact a geographical area is, the higher upward eco-
nomic mobility tends to be for residents in that area. In other words, sprawling built envi-
ronments inhibit upward mobility and may play a role in exacerbating spatial inequalities.
In the end, because of the diversity of variables that influence economic mobility, it provides
a starting point for building a more robust model and understanding of spatial justice.

Inspired by the sporadic connections made by the previous research between location-
based factors and economic mobility, the research presented in this paper aims to explore
this relevancy in detail and utilizes a data science and machine learning-based approach to
empirically evaluate the impact of place-based variables mentioned in Rocco’s framework
on economic mobility and potentially spatial justice.

3. Materials

This section first details our study area geographically and spatially in Section 3.1. A
list of features based on Rocco’s elaboration on spatial justice are identified and collected
for each census tracts to create the dataset and is presented in Section 3.2. The dataset is
further preprocessed to enforce standardization, balance, etc. and the steps are detailed in
Section 3.3.

3.1. Study Area

The presented study focuses on data acquired from 2157 census tracts within the USA
state of North Carolina (NC). North Carolina is located along the eastern seaboard of the
United States and is home to more than 10 million residents according to the most recent
U.S. Census (2020 U. S. Census). Comprised of mountain, piedmont and coastal zones,
North Carolina’s economy was originally agrarian in nature, which supported a large
rural population. Beginning in the 1900’s North Carolina made a successful transition to a
manufacturing economy (first) and more recently to a service/technology-based economy
with a predominately urban population [33]. The State of North Carolina is divided into
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100 counties and more than 500 municipalities that range in size from a few dozen to more
than 800,000 residents (Charlotte, NC). The U.S. Census further divides the State into more
than 2100 census tracts for statistical analysis purposes (Figure 1).
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3.2. Dataset

The spatial feature set utilized in this study is constructed based on Rocco’s reference
of spatial justice as general access to public goods, basic services, cultural goods, economic
opportunity, and healthy environments. Table 1 provides an overview of Rocco’s character-
ization factors and corresponding spatial feature variables that were used in this study to
measure them. The feature dataset is obtained from two primary sources. First, majority of
the feature values were obtained from NC OneMap, a repository of geographic-based data
located in the State of North Carolina [34], and were collected between 2018–2020. The
NC OneMap website is the authoritative data collection for spatially based data in North
Carolina and includes spatially referenced data on a multitude of categories including
boundaries, community safety, education, environment, recreation and transportation.
Some of the economic opportunity feature values such as Mean Travel Time to Work, Total
Jobs, and Job Density were collected during 2015 and were obtained from reference [11].
Upward Economic Mobility, the outcome variable of interest for this study, is also calculated
with reference [11]’s columns measuring income ranks for parents and children by census
tract. More specifically, the target variable is calculated with income ranks for parents and
children by census tract, and then is labeled as 0 when the difference between children and
parents’ income is equal or less than zero (meaning no or downward economic mobility),
and 1 for when the difference in income rank is positive (meaning upward economic
mobility). Reference [11] provides these and other mobility statistics, collected during
2015, in the hopes that researchers will use them to further shed light on intergenerational
income mobility at the local level. This research has adopted them as a surrogate for spatial
justice at the census tract level.
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Table 1. Identified spatial feature variables based on Rocco’s factors (28).

Rocco’s Factors Spatial Feature Variables

Public Goods (10)

Number of Schools
Water Service
Sewer Service
Fire Stations

Hospitals
Medical Facilities

Correctional Facilities
Emergency Medical Facilities
Law Enforcement Locations
Public Health Department

Basic Services (5)

Gas Stations
Food Desert

Limited Broadband
Pharmacies

Nursing Homes

Cultural Goods (3)
Libraries
Colleges

Non-Public Schools

Economic Opportunity (4)

Mean Travel Time to Work
Total Jobs

Jobs Density
Area covered.

Healthy Environment (6)

Underground storage tanks
Brownfields
NPDES Sites

Hazardous Waste Facilities
Landfills

Gamelands

3.3. Data Preprocessing

Once constructed, the dataset contains 2157 rows corresponding to NC census tracks
with 28 numerical columns describing the spatial features as depicted in Table 1 and
one binary target variable indicating Upward Mobility. During the preprocessing, the
feature dataset is further explored for null values and outliers, and distribution of each
feature column is explored. The data distribution reveals a large disparity in terms of scale
among feature columns. To address this issue, the feature dataset is further normalized
and standardized by utilizing python scikit-learns’ StandardScaler function to ensure all
features have the same standard scale.

The constructed dataset is severely imbalanced; only 11% census tracts indicated
Upward Mobility, while the rest demonstrated otherwise. The model based on this imbal-
anced dataset causes lower recall for minority class (Upward Mobility) and shows bias to
the majority class (same or Downward Mobility). Several oversampling and undersampling
strategies [35–39] are explored to address the imbalanced dataset such as synthetic minor-
ity oversampling technique (SMOTE) [36], near-miss algorithm [37], adaptive synthetic
sampling (ADASYN) [38], and random undersampling [39]. Based on the experimental
results and as suggested by the authors of SMOTE [36], a combination of SMOTE and
random undersampling was utilized in this study to create a representative dataset. Unlike
upsampling, which simply replicates duplicate samples, the SMOTE generates synthetic
samples based on feature spaces that closely resemble the original dataset. The SMOTE was
only applied to the training set in the cross-validation to avoid any possibility of overfitting.
The performance of the model was evaluated using the test data set, which was never been
exposed to the SMOTE or Random undersampling or cross validation.
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In order to better understand the effectiveness and adequacy of 28 spatial features
in characterizing upward mobility, a correlation analysis is performed and the resultant
correlation coefficients of all pairs of features is depicted in a color-coded plot, as in Figure 2.
White encodes that the feature pair is not correlated, red indicates a positive correlation, and
blue indicates a negative correlation. The darker a color, the larger the absolute correlation
coefficient. For example, Figure 2 reveals that the features “Total_Jobs” and “Job_Density”
are positively associated with the outcome variable “Upward Mobility”, whereas features
such as “Fire_Stations_Count”, “Gas_Stations_count”, and “Area_Covered” are negatively
correlated. With this plot, one can also spot a few highly correlated features that may
represent similar and redundant place-based information. However, this research utilizes
correlation analysis as an exploratory measure and chooses not to use correlation as a
guideline for feature selection as two correlated features can still improve classification
when they are in the same collection of features [40].
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4. Methodology

The methodology is proposed according to the following two steps: first, a random
forest (RF) classifier [16] with standard procedures of cross validation and hyperparameter
tuning is detailed as an ideal candidate to make objective data-driven decisions on issues
of spatial justice/injustice (Section 4.1). Second, the SHAP method [20,21] is elaborated
in exploring interpretability of the RF model for identifying the contribution of various
spatial features in determining various spatial justice outcomes (Section 4.2).

4.1. Classification Model

Our previous study utilized four different classifiers such as k-nearest neighbor (KNN),
support vector machine (SVM), random forest (RF), and deep neural network (DNN)
in classifying upward economic mobility based on the spatial features. Results of that
study showed the superiority of RF and DNN classifiers over others. For this study, we
focused on perfecting the RF algorithm with standard procedures of cross validation and
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hyperparameter tuning considering its overall predictive performance and computational
cost of model development.

4.1.1. Random Forest (RF) Classifier

Random forest [16] is an ensemble tree-based learning algorithm. The RF Classifier
consists a set of decision trees, each of them built over a random extraction of the obser-
vations from the dataset and a random extraction of the features. Not every decision tree
in the set utilizes all the features or all the observations in the training dataset, and this
guarantees that the trees are less correlated and more independent, and therefore less
prone to over-fitting. Each tree uses a sequence of yes–no questions based on a single or
combination of features in order to divide the training observations. At each node, the
tree divides the dataset into two buckets, each of them hosting observations that are more
similar among themselves and different from the ones in the other bucket. Therefore, the
importance of each feature is derived from how “pure” each of the buckets is. The most
widely used impurity measure is the Gini impurity, which is also utilized in this study. The
classifier aggregates the votes from different decision trees to decide the final class of the
test object.

Compared with other classifiers that were explored in our previous study, RF has
good and robust performance in prediction, owing to the ensemble mechanism. Because
of the randomization in choosing the features to split, RF is also robust in the presence of
uninformative and redundant features. This property is especially good for this research
with the possible existence of a number of redundant (highly correlated to each other as
explained in Section 3.1) features whose relative importance is not known beforehand.
Another desirable property of RF is the insensitivity to outliers. As some census tracts
may have extremely high values for some spatial variables, the expectation is that the RF
will perform better in such cases. It also has relatively low computational cost because
the training and testing of underlying decision trees are much more straightforward than
optimization-based models such as neural network, support vector machine, etc. The low
computational cost also makes it feasible to perform extensive searching for the optimal
hyperparameters. Additionally, the tree-based structure of RF makes it transparent in
making decisions, providing good interpretability, which was utilized to explain individual
predictions, as elaborated in Section 4.2.

4.1.2. Cross Validation and Hyperparameter Tuning

Hyperparameters of the random search classification were tuned by utilizing both grid
and random searches. First, a randomized parameter search with 5-fold cross-validation
using python scikit-learns’ RandomizedSearchCV with 1000 iterations and 5000 fits were
implemented. The range of best performing parameters from that search were then added
to the GridSearchCV to find the optimized set of parameters through the parameter space.
The best performing parameters were then implemented to the final model. After tuning,
the maximum depth of the tree, the number of features to consider when looking for the
best split, and the number of trees hyperparameters were set to 20, 10, and 300, respectively.
The tuning method was time consuming, as it went through multiple searches through
the parameter space; however, once tuned, the model was able to make more accurate
predictions in a timely manner.

4.1.3. Classifier Performance Evaluation Metrics

The classifier performances are evaluated using various standard evaluation metrics
such as Precision, Recall, Accuracy, F1, and ROC score. In this study, Precision is the ratio
of correctly predicted Upward Mobility observations to the total predicted Upward Mobility
observations. Recall is the ratio of correctly predicted Upward Mobility observations to all
actual observations with Upward Mobility labels. Accuracy is the most intuitive measure
depicted as the ratio of the correctly labeled observations to the whole pool of observations.
F1 score takes both Recall and Precision into account, hence can be considered as a weighted



ISPRS Int. J. Geo-Inf. 2021, 10, 629 9 of 15

average of them, and therefore it provides a useful accuracy indicator. The ROC curve is
another common tool used with binary classifiers. The ROC curve plots the true positive
rate (TPR, another name for Recall) against the false positive rate (FPR). The FPR is the ratio
of negative instances that are incorrectly classified as positive.

4.2. Model Interpretability with SHAP

SHAP is a widely used approach for explaining machine learning models based on
cooperative game theory [20]. The SHAP explanation method computes Shapley values
from coalitional game theory, where the feature values of a data instance act as players in a
coalition and Shapley values tell us how to fairly distribute the “payout” (=the prediction)
among the features. This research utilized SHAP to analyze individual census tract sample
predicted by the RF model in order to estimate how much each of the 28 features contributes
to the spatially just vs. unjust predictions. More specifically, SHAP tree explainer [21], a
version of SHAP for tree-based machine learning models (e.g., decision trees, random forest
(RF), and gradient boosted trees) is adopted. The choice of SHAP to provide interpretability
was driven by its ability to provide both global and local interpretability. Each observation
can obtain its SHAP value, therefore the SHAP can help interpret the model globally as
well as locally. Additionally, contrary to the existing methodologies for finding importance
features in machine learning models, SHAP can identify whether the contribution of each
input feature is positive or negative, which is critical for this research.

The analysis performed by the SHAP tool is useful on unfolding the “black box”
nature of the RF classifier model in order to enhance model interpretability and possibility
of real-life adoption in urban planning and management. More specifically, this research
focuses on answering further important questions such as below by utilizing SHAP tool.

(a) What are the most influential spatial features impacting the model output?
(b) What are the characteristics of a space that exhibits upward mobility and spatial

justice, respectively?
(c) What are the characteristics for the spatially unjust places?

5. Results
5.1. Classification Results

This section details an empirical evaluation of different machine learning algorithms
on spatial dataset. The experiments were set up using Python and TensorFlow libraries.
The curated dataset was divided into training (75%) and testing (25%) sets, and were
utilized during model training and classification, respectively. During the data split,
stratified sampling was enforced to ensure that the right number of instances were sampled
from each mobility subgroups to guarantee that the test set was representative of overall
population. The training dataset was further divided into training and validation sets
and were utilized during cross validation and hyperparameter tuning as elaborated in
Section 4.1.2.

Table 2 shows the evaluation metrics of the RF classifier while comparing them
with two additional classifiers (KNN and SVM) from our previous study, signifying its
superiority. The training and testing accuracy for the RF model is 0.87 and 0.86, respectively,
signifying that the model is not overfitted. The RF model was able to achieve 0.85 recall
(Sensitivity), predicting 85% of all upward mobility test cases (minority class instances)
correctly. The overall accuracy of the RF model is also relatively higher and indicates that
there is enough variability in spatial dataset to potentially characterize upward mobility
and in turn spatial justice. Figure 3 shows the ROC curves and the corresponding AUC
values of all models. The ideal point in ROC space is the top-left corner. AUC is an
important statistical parameter for evaluating classifier performance: the closer AUC is to
1, the better overall performance of established classifier. In the current work, as shown in
Figure 2, the AUC value of the RF model is 0.858, which is higher than the other machine
learning models by a significant margin (7% or more).
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Table 2. Classification accuracies on test data.

Classification Algorithms Precision Recall Accuracy F1 ROC

k-nearest neighbor (kNN) 0.77 0.82 0.78 0.79 0.78
Support vector machine (SVM) 0.81 0.77 0.79 0.79 0.79

Random forest (RF) 0.86 0.85 0.86 0.86 0.86
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5.2. Model Interpretability and Feature Importance Results

The ultimate goal of this paper is to explore location-based variables that influence
spatial justice in order to make objective data-driven decisions on issues of spatial (in)justice.
The prediction results presented in the previous section based on the best performing
RF model potentially suggests that the chosen array of spatial variables is capable of
characterizing the upward mobility vs. no mobility, and in turn is able to predict spatially
just vs. unjust places. This section of the article focuses on identifying most important
features for the purpose of verifying the correctness and enhancing the interpretability of
the model.

The impact of input variables on the prediction of RF model for spatial (in) justice
is further explored with SHAP tool. The global importance factor of the input variables
is illustrated in Figure 4. The global importance is estimated as the average of absolute
Shapley values per feature across the data. The input variables are ranked in terms of
importance, i.e., the higher the mean SHAP value, the more important the feature variable.
As reflected in Figure 4, features such as “Total jobs”, “Area covered”, “Job Density”,
“Underground Tank Count”, and “Medical Facilities Count” appeared to be the top five
influential features in classifying spatially just vs. unjust places. The waterfall plot (blue line
in Figure 4) also reveals that the number of total available jobs in a geographic location is the
most important feature in the model, providing about 17% of the model’s interpretability,
followed by the area covered by a geographic location, providing 14% of the model’s
interpretability. The plot also suggests that the top 10 features provide about 85% of the
model’s interpretation. It is also interesting to note that among the top ten most important
features, four are from the “Economic Opportunity” category, three are from the “Basic
Services” category, two are from the “Healthy Environment” category, and one is from
the “Public Goods” category, as per Rocco’s characterization of Spatial Justice, depicted in
Table 1. These results suggest that the model was able to learn features from most categories
characterizing spatial justice and therefore has a potential to be effective in measuring
spatial justice while being transparent and reliable.
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The range and distribution of impacts of input features on upward mobility predictions
are also revealed through summary plots (Figure 5) via SHAP tool. Each point on the plots
in Figure 5 is a Shapley value for the input variables and an instance. The y-axis indicates
the input variables in order of importance from top to bottom. Each dot is colored by the
value of the input variable, from low (blue) to high (red). The density of dots represents
the distribution of points in the data set, i.e., whether it contains a range of values or
selected ranges. Figure 5 shows that the higher values of the features “Total Jobs” and “Job
Density” increase their SHAP values, and therefore push the prediction toward upward
mobility (positive), on the other hand, the higher values of “Area Covered” pushes the
prediction toward downward mobility (negative). These results could be interpreted such
as an increase in total number of jobs at a certain census tract could potentially make it a
spatially just place, on the other hand, a smaller and compact place tends to be spatially just.
Similarly, an increase in “Medical Facilities Count”, “Food Desert Count”, “Gas Station
Count”, and “NPDES Site Count” at a particular geographical location potentially could
make the place unjust, whereas lower numbers of these spatial facilities favor spatially
just places. A decrease in the number of “Underground Tank Count” certainly favors
upward mobility and therefore spatially just places; on the other hand, an increase in
“Mean Commute Time” enhances spatial justice.
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6. Discussion

The results presented in Section 5.2 shed some lights on the questions a, b, and c
that were posed in Section 4.2. These results suggest that the number and density of jobs
available at a particular location, area covered by that location, number of available medical
facilities, and the existence and frequency of underground storage tanks storing either
petroleum or certain hazardous substances are most influential in determining economic
mobility and in turn spatial justice of that location (answer to question: (a)). The next set of
influential features are the existence and frequency of food deserts (an urban area in which
it is difficult to buy affordable or healthy fresh food), gas stations, and NPDES (National
Pollutant Discharge Elimination System) sites; limited broadband facility; and the amount
of time needed to commute to workplaces.

The results of the SHAP analysis and corresponding plots also suggest that a spatially
just area tend to have higher number of available jobs, compact form, lower number of
facilities such as medical and gas stations, as well as absence or lower number of hazardous
spatial features such as food deserts, underground storage tanks, NPDES sites, and limited
broadband (answer to question: (b)). It is interesting to note that the model also suggests
that the places with maximum commute time to work are spatially just places, meaning
the suburbs and locations farther away from the city center are just places for the residents.

Similarly, a spatially unjust place tends to have the opposite characteristics in terms
of the existence and frequency of the concerned features (answer to question: (c)). These
results show that it is possible to measure spatial justice in terms of place-based factors and
urban designers and policy makers can potentially include this to assess spatial (in)equality
that a decision such as constructing a medical facility or manufacturing site (where many
can be employed) at a particular geographic area could generate. Figure 6 highlights the
level of economic mobility within each census tract and generally showcases the locations
of NC’s urban centers. Not surprisingly, Figures 7 and 8 clearly illustrate a positive
relationship between these two employment related factors and the level of economic
mobility as highlighted by the clusters of green census tracts that have both high economic
mobility, large numbers of jobs, and high density of jobs. Meanwhile, Figure 9 shows the
importance of compactness of the census tract. Smaller census tracts contain a high density
of people and is thus generally related to better overall economic opportunities compared
with geographically larger census tracts found in more rural spaces.
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7. Conclusions

Through the application of data science and machine learning techniques, this study
provides a way of characterizing spatial justice, and empirically evaluating the impact of
spatial factors on economic mobility and in turn spatial justices. To the best of the authors’
knowledge, no studies were conducted to (1) explain the machine learning-based predic-
tions of spatial (in)justice and (2) identify and rank the significant variables affecting spatial
(in)justice. This article addresses these research limitations by (1) effectively characterizing
spatial justice by a set of attainable public goods, basic services, cultural goods, economic
opportunity, and healthy environments factors within a specific geographic area; (2) using
RF to automatically predict spatially just vs. unjust places based on the chosen array of
place-based variables; and (3) understanding the importance and contribution of spatial
features for a specific prediction and visually interpreting the complex non-linear behavior
of the underlying model through the use of SHAP. The comparative performance analysis
of three classification algorithms reveals the superiority of RF model in predicting spatially
just vs. unjust places based on spatial variables with 86% testing accuracy. The model
is then explored with SHAP to identify the feature importance and decode the complex
underlying relationships between spatial justice and input variables. The availability of
jobs, compactness of the area, and the presence of facilities and hazardous sites have the
greatest influence, whereas some of the influential features are positively while the others
are negatively associated. In future, the capability of these predictive models will be tested
on a national-scale data set.
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