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Abstract: Datasets collecting demographic and socio-economic statistics are widely available. Still,
the data are often only released for highly aggregated geospatial areas, which can mask important
local hotspots. When conducting spatial analysis, one often needs to disaggregate the source data,
transforming the statistics reported for a set of source zones into values for a set of target zones,
with a different geometry and a higher spatial resolution. This article reports on a novel dasymetric
disaggregation method that uses encoder–decoder convolutional neural networks, similar to those
adopted in image segmentation tasks, to combine different types of ancillary data. Model training
constitutes a particular challenge. This is due to the fact that disaggregation tasks are ill-posed and
do not entail the direct use of supervision signals in the form of training instances mapping low-
resolution to high-resolution counts. We propose to address this problem through self-training. Our
method iteratively refines initial estimates produced by disaggregation heuristics and training models
with the estimates from previous iterations together with relevant regularization strategies. We
conducted experiments related to the disaggregation of different variables collected for Continental
Portugal into a raster grid with a resolution of 200 m. Results show that the proposed approach
outperforms common alternative methods, including approaches that use other types of regression
models to infer the dasymetric weights.

Keywords: geospatial data disaggregation; dasymetric disaggregation; self-supervised learning;
encoder–decoder neural networks; convolutional neural networks; deep learning

1. Introduction

Geospatial layers with statistical count data are widely available on a variety of
subjects, such as economic activities or public health concerns. However, these data are
often collected or released at an aggregated level, with insufficient spatial detail for some
applications (e.g., aggregated data for districts or municipalities, hiding variations between
smaller administrative units). In the aggregated form, the data are useful for broad-scale
assessments. However, spatial variations tend to be over-smoothed, with local hotspots
being masked. Alternatively, thin-grained information can better enable the formulation of
informed hypotheses in the context of demographic, social, or environmental issues. It can
also improve the analysis of the data through different partitions of space or in terms of
their relation to particular terrain characteristics (e.g., analysing relations towards high-
resolution data obtained through remote sensing or from volunteered geographic services).

High-resolution grids (i.e., geographically referenced lattices of cells, with each cell
carrying a count value associated with its location) can be used to deliver geo-referenced
statistical data. These representations have been extensively used for population distri-
bution data [1–4]. Several projects have, for instance, reported on the construction of
population grids through spatial disaggregation. The employed methods range in com-
plexity, from simple mass-preserving areal weighting [5] to dasymetric weighting schemes
that distribute the aggregated counts throughout the study region [6–8]. In most recent
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approaches, the dasymetric surfaces are built using regression analysis [9–14] to combine
different ancillary variables, for instance obtained from remote sensing. These variables can
represent aspects such as land coverage, the location of buildings and road segments, or
night-time light emissions. Still, most studies have used relatively simple regression algo-
rithms (e.g., linear models [6,14] or, in some cases, ensembles of decision trees [4,12,13,15]),
which process each grid cell independently of the others. Some authors have recently
shown that more advanced learning approaches (e.g., models based on convolutional
neural networks) can improve results on this task by taking advantage of important spatial
context information [16–19]. However, these studies have used a small set of ancillary
variables (i.e., mostly RGB satellite photos) to downscale data relative to the distribution of
population, not addressing the application to other types of variables.

The training of the regression models that inform the disaggregation constitutes a
particular challenge. This relates to the fact that the problem is ill-posed and we lack the
ideal ground-truth data (i.e., data available at the target resolution in which the method is
evaluated). To overcome having ground-truth data only at a coarse scale, most previous
studies have taken the approach of training predictive models to estimate density, rather
than directly estimating counts. One can, for instance, aggregate the ancillary variables
(i.e., the regression covariates) according to the source administrative units, and train a
regression model to predict density with a basis on data at that resolution [3,4]. After
training, the model is used to create a density layer at the target resolution, followed by the
dasymetric redistribution of the population counts. Aiming to avoid the aggregation of the
ancillary variables to the source resolution, as well as the mismatch between the coarse
resolution used for training and the target resolution, some recent studies have instead
followed iterative self-training approaches [6,7]. In this case, disaggregated estimates are
produced directly at the target resolution, iteratively refining results through the successive
training of regression models over better estimates (e.g., starting from initial estimates
produced through baseline disaggregation heuristics such as pycnophylactic interpolation).
Some of these studies have tested different regression models for combining the ancillary
data, although again mostly focusing on relatively simple approaches. Moreover, the
authors have not explicitly studied the convergence properties of self-training approaches,
e.g., by analysing the results at each iteration as a function of model hyper-parameters.

In this article, we report on a novel spatial disaggregation method that explores self-
training together with deep neural networks for combining different types of ancillary
data. We particularly use an encoder–decoder convolutional neural network, similar to
those adopted in studies processing remote-sensing data for land coverage classification
and/or image segmentation [20]. This specific regression approach can naturally capture
contextual spatial information, allowing us to deal with the intrinsic characteristics of the
spatial disaggregation task (e.g., complex relations between the ancillary variables and the
associated spatial context). While previous studies have already used self-training methods
in the context of spatial disaggregation, they have only used this approach together with
simpler regression algorithms. On the other hand, previous studies that used similar
deep learning methods, such as the regression approach for inferring the dasymetric
weights, have important limitations (e.g., requiring source data already at a relatively high
resolution), which are not present in the proposed approach.

Previous studies on self-training with deep neural networks have suggested that
proper model regularization is an important concern. Some authors emphasized its im-
portance in image classification tasks, stating that without adopting regularization within
these frameworks, the models will learn to closely reproduce the original inputs, instead of
generalizing towards the improved estimates that are required for self-training [21]. We
therefore followed this idea on the task of spatial disaggregation. We experimented with
different regularization strategies that promote heterogeneity in the results, or promote
equivariances to spatial transformations, such as rotations in the inputs. Moreover, in
an attempt to better understand the self-training process in this particular application,
we analysed the convergence of the estimates that are iteratively produced as a func-
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tion of two aspects, namely (a) when optimizing the model with different loss functions
and regularization strategies, and (b) when replacing the neural regression model with
alternative algorithms.

The proposed approach was evaluated on the disaggregation of data originally avail-
able at the level of coarse administrative regions, such as NUTS III units, into high-
resolution grids with a resolution of 200 × 200 m per cell. We specifically considered
socio-economic variables relative to the territory of Continental Portugal, comparing the
proposed approach against several common alternative methods. These include simple
non-regression baselines (e.g., mass-preserving areal weighting, pycnophylactic interpola-
tion, or dasymetric weighting, leveraging population density as the weights), as well as
approaches based on other regression algorithms (e.g., linear regression or random forests),
with or without the combination of self-training. Existing studies in the literature have
considered different disaggregation tasks and different sets of ancillary variables, making
direct comparisons with published results difficult. As such, to comparatively assess the
proposed approach, we emulated previous techniques through different parameteriza-
tions of the proposed approach (e.g., using different regression algorithms, or looking
at the results of a single iteration of self-training). This way, we performed consistent
evaluation experiments with the same tasks and datasets. The obtained results show that
self-training indeed leads to improved performance with different types of regression
algorithms. Learning the dasymetric weights through the encoder–decoder network also
contributed to slight improvements, and the proposed regularization strategies contributed
to better convergence properties.

In brief, the main contributions of this article can be summarized as follows:

• We proposed a novel spatial disaggregation method, based on self-training an encoder–
decoder convolutional network as the regression model that combines the sources of
ancillary information.

• We compared different loss functions and model regularization strategies for training
the neural network in an attempt to increase robustness to outliers, promote hetero-
geneity in the results, and promote the equivariance to simple spatial transformations
in the input data, such as rotations.

• We evaluated the proposed approach on the disaggregation of statistical data relative
to the territory of Continental Portugal. We also compared the disaggregation errors
against those obtained with our implementation of popular alternative methods.
The experimental results show that our approach outperforms common alternative
methods, in some cases by a significant margin.

• We analysed the convergence properties of the self-training framework under different
settings, concluding on its contribution for improved result quality.

The rest of this article is organized as follows: Section 2 presents related work in the
area of geospatial data disaggregation. Section 3 describes the proposed disaggregation
method, while Section 4 details the experimental setup that was used. Section 5 presents
the results obtained from the application of the proposed approach to the disaggregation
of data for Continental Portugal. Finally, Section 6 presents our main conclusions and
highlights possible directions for future work.

2. Related Work

This section begins by explaining classical spatial disaggregation methods, and it then
discusses more recent advances and practical applications.

2.1. Seminal Methods for Spatial Data Disaggregation

The simplest spatial disaggregation method is mass-preserving areal weighting, which
assumes a homogeneous distribution of the data throughout each source zone [5]. This
technique redistributes the aggregated data based on the proportion of each source zone
(e.g., the administrative units at which the data is originally available) that overlaps with
each target zone (e.g., the cells in the target high-resolution raster representation). While
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this procedure ensures that the total counts from the source data remain unchanged, it
is based on the often incorrect assumption that the phenomena of interest are evenly
distributed across the source zones.

Pycnophylactic interpolation is a refinement over mass-preserving areal weighting,
assuming a degree of spatial auto-correlation in the data distribution [22]. This method
starts by applying the mass-preserving areal weighting procedure, afterward smoothing
the estimated values for the target grid cells by replacing them with the average of their
neighbors. The predicted values for all cells within each source zone are then compared
with the actual values (i.e., the aggregated counts in the source data), and adjusted to meet
the condition of mass-preservation. The algorithm continues until there are no significant
changes over the cell values from the previous iteration.

Although pycnophylactic interpolation no longer assumes a uniform distribution
for the data, it makes no attempt at modeling this distribution as a function of particular
properties associated with the target zones. Dasymetric weighting schemes are instead
based on first creating weighted surfaces, capturing the relevant properties of the target
zones, to distribute the source data accordingly [8]. The weights are usually determined
from the analysis of one or multiple spatial layers (e.g., water bodies, building footprints,
etc.) according to rules that relate the ancillary variables to the expected counts. While
some schemes use simple binary masks built from land-coverage data, other approaches
rely on expert knowledge and manually-defined rules. For instance, in the tests that are
reported later in this paper, we explored the use of a weighted surface with values that
are proportional to the population density, for disaggregating other variables. More recent
methods leverage regression analysis and machine learning to automatically learn the
dasymetric weights [4,6,23,24].

2.2. Dasymetric Weighting Based on Regression Analysis

In the context of the WorldPop project, Stevens et al. [4] developed a technique for
creating gridded predictions of population density, with a resolution of approximately
100 × 100 m. The proposed approach uses a random forest algorithm in order to predict
population density from aggregated remotely-sensed and geospatial data. In brief, the
method corresponds to a multi-stage estimation technique, which first tunes the number of
covariates that are randomly selected for splitting at each tree node. In a second phase, a
covariate selection process is conducted in order to reduce the number of total features and
accelerate per-pixel predictions. More specifically, covariate importance is inferred from a
fitted model and used to remove from the list of potential features the ones with a score
of zero. The procedure is iterated until only positive importance scores remain for every
covariate included in the modeling process. Each tree of the resulting random forest is
used to produce estimates for each pixel, and the resulting map is obtained from averaging
the different results. For evaluation purposes, Stevens et al. used three case studies for the
countries of Cambodia, Vietnam, and Kenya. First, the density maps were computed from
aggregated data available at coarse regions (i.e., divisions or provinces). Then, they were
used in a standard dasymetric mapping approach for obtaining the population counts at
each pixel. Finally, the pixel values within each of the finer census units (i.e., village or
sub-locations) were summed and compared with the corresponding known counts through
metrics such as the Mean Absolute Error (MAE) or the Root Mean Squared Error (RMSE).
The authors concluded that their method outperformed several competitors, such as the
products produced within the GRUMP [25], GPW [2], or the AfriPop/AsiaPop [15,26]
projects, in the reported metrics.

In another recent study exploring the use of regression analysis to infer dasymetric
weights, Cheng et al. reported on the disaggregation of census data for China into a raster
grid with a resolution of 1 × 1 km per cell for each month in 2015 [27]. The authors
combined environmental information and mobile phone positioning data as the ancillary
variables that were used to infer the dasymetric weights. They also proposed a hybrid
inference approach, combining random forests with area-to-point kriging. The random
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forest model is trained with data at the town level, aggregating the ancillary data (i.e.,
taking the mean values per town as the independent variables) and using the population
density as the target variable. The model is then used to produce population estimates for
the target cells, which are re-aggregated to the town level for computing the areal residuals
for each town. The area-to-point kriging model finally uses this information to adjust
the random forest predictions under the assumption that the sum of the encompassing
residuals at the pixel level should match the town’s residual. The pixel residuals are
calculated through a weighted linear combination of the residuals of neighboring towns.
The authors compared the disaggregated values obtained with their method against the
ones obtained using gridded population products such as WorldPop or GPW, and with
the application of the random forest model without subsequently adjusting the estimates
with area-to-point kriging. The proposed approach achieved the best results in the terms
of the R2 between predicted and real data. Moreover, it efficiently addressed a problem
that the authors observed with the random forest model, which lead to the over-estimation
of population values.

2.3. Spatial Data Downscaling Using Self-Training

Although dasymetric weighting methods can effectively use ancillary data, the train-
ing of regression models to infer the dasymetric weights constitutes a particular challenge.
To overcome the mismatch between the target zones and the coarse resolution at which the
source data is available (i.e., the regression models are usually trained for estimating den-
sity from ancillary data aggregated to the source zones), some studies have proposed the
use of self-training approaches that operate directly at the target resolution, progressively
refining estimates for the target values.

Malone et al. [9] presented a method named dissever for downscaling soil organic
carbon data through the use of ancillary variables available as fine resolution grids. The
dissever algorithm starts with an initialization phase, where a re-sampling procedure is
used to transfer the data from the source to the target regions. This operation is followed by
the application of a regression model (i.e., a generalized additive model) to predict initial
estimates from the set of covariates. Then, updates are iteratively made to the estimates.
First, they are aggregated to the level of source zones, compared with the available values,
and adjusted accordingly. Then, a new generalized additive model is applied to predict
updated values for all the grid cells.

Subsequent adaptations of the dissever procedure have been made by Monteiro et al. [6,7],
which considered spatial disaggregation instead of the downscaling of non-additive vari-
ables. In the first study, the authors presented a general disaggregation methodology
(which is also utilized in the present article, with minor adaptations) that combines pyc-
nophylactic interpolation with dasymetric mapping, and used it for disaggregating Por-
tuguese socio-economic variables. The authors experimented with methods such as linear
or generalized additive regression to combine the different sources of ancillary information.
In the second study, the same methodology was applied for disaggregating historical
census data for the territories of the Netherlands, Belgium, and Great Britain. However,
in this second study, the authors leveraged more advanced machine learning regression
algorithms, such as ensembles of decision trees and a neural network based on the LeNet-5
architecture [28]. The good results reported in both studies from Monteiro et al. motivated
the experimentation with more advanced neural network architectures, such as the one
used in the present article.

2.4. Deep Learning for Population Mapping

Despite the potential of deep learning methods for geospatial data analysis appli-
cations, only a few previous studies have explored their use for tasks related to spa-
tial disaggregation. Three of these exceptions are the studies from Tiecke et al. [29],
Robinson et al. [16], and Jacobs et al. [18].
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The study from Tiecke et al. describes a spatial disaggregation method for producing
population maps. It first leverages a convolutional neural network based on the SegNet [30]
and FeedbackNet [31] architectures for segmenting individual buildings in high-resolution
satellite imagery. The building footprints are then used as a mask for proportionally
allocating population counts. Specifically, the census counts are distributed proportionally
to the fraction of built-up area within cells of 30 × 30 m.

Robinson et al. outlined a deep learning approach for producing high-resolution fore-
casts of spatial variables such as population counts, leveraging satellite imagery as ancillary
information. The authors used the images to produce a high-resolution population grid
for the territory of the United States at a resolution of 0.01◦ × 0.01◦ (approximately 1 km2).
They considered five different CNN architectures based on the well-known VGG model,
which were trained on data concerning the year of 2000. The networks specifically receive
satellite imagery for each of the target areas, and output the corresponding population
forecasts. Validation was performed using two approaches, namely a quantitative approach
that compares the estimates aggregated at the county level to US Census population projec-
tions for the year of 2010, and a qualitative approach based on interpreting the predictions
in terms of the input images.

As an alternative to traditional dasymetric approaches, Jacobs et al. aimed to estimate
density functions without labels directly associated with the computed results. The authors
introduced a novel neural network component, called the regional aggregation layer (RAL),
which aggregates the pixel-level estimates to a coarser extent during the training stage. At
these new regions, aggregated values are available as supervision signals, allowing one
to train an end-to-end CNN model based on the U-Net architecture [20]. The evaluation
was conducted through tests related to the estimation of population density, leveraging
the US Census data and high-resolution satellite imagery. The model using the RAL
component achieved better MAE results when compared to a baseline approach which
instead computes pixel-level errors under the assumption of a uniform distribution across
the corresponding regions. Further testing their approach, the authors emphasized that
it could also be used to redistribute population counts using the computed densities for
dasymetric mapping. They specifically experimented with the incorporation of population
and housing density predictions to this end, although they did not quantitatively evaluate
the results due to the lack of high-resolution counts. Despite the good results, Jacobs et al.
pointed out a limitation related to the fact that their approach requires the different regions,
for which the reference data is available, to be fully contained in an input patch to the
neural network. This means that the proposed procedure can only be used to downscale
data that are already available at a relatively high resolution.

2.5. Overview and Discussion on the Related Work

Table 1 presents an overview of the previous studies that were surveyed in this section.
Seminal approaches used simple techniques that assume a uniform distribution of the
target variable across the source areas [5], or derivations that take into account spatial
auto-correlation [22]. Dasymetric mapping methods instead disaggregate the source counts
according to weights derived from ancillary data [8]. Most recent disaggregation methods
use some form of regression analysis for finding the best set of weights for redistributing
the aggregated data [4,6,7,27].
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Table 1. The spatial disaggregation approaches that have been surveyed.

Study Self-Training Deep Learning Task Method

Goodchild et al. [5] No No Disaggregate population counts Mass-preserving areal weighting
Tobler and Waldo [22] No No Disaggregate population counts Pycnophylactic interpolation
Qiu et al. [8] No No Disaggregate population counts Dasymetric mapping

Stevens et al. [4] No No Estimate population density Random forests
Cheng et al. [27] No No Disaggregate population counts Random forests and area-to-point kriging

Malone et al. [9] Yes No Downscale soil organic carbon data Generalized additive regression
Monteiro et al. [6] Yes No Disaggregate socio-economic data Linear and generalized additive regression
Monteiro et al. [7] Yes Yes Disaggregate population counts Ensembles of decision trees and LeNet-5

Tiecke et al. [29] No Yes Disaggregate population with building footprints SegNet and FeedbackNet
Robinson et al. [16] No Yes Forecasting population counts Architectures derived from VGG-Net
Jacobs et al. [18] No Yes Estimate population density Architecture derived from U-Net

Our approach Yes Yes Disaggregate socio-economic data Architecture derived from U-Net

The approach described in this article combines and extends some ideas from previous
studies. It uses an encoder–decoder neural model, such as Jacobs et al. [18], together with
a self-training procedure similar to that of Monteiro et al. [6,7], which can use one of the
seminal disaggregation procedures for initialization.

3. The Proposed Geospatial Data Disaggregation Approach

The disaggregation method proposed in this paper combines pycnophylactic interpo-
lation and regression-based dasymetric mapping, following the general ideas that were
originally advanced by Malone et al. [9], and subsequently adapted by Monteiro et al. [6,7].
As illustrated in Figure 1, a baseline disaggregation heuristic (e.g., pycnophylactic interpo-
lation) can act as an initial teacher model in our approach, creating initial estimates from
the aggregated data. The results are then iterated through a self-training procedure, in
which a student regression model infers the distribution of the target indicator, as given by
the teacher, from a set of ancillary variables. The student model is then used to produce
new estimates, which act as the teacher supervision in a next iteration. In more detail, the
different steps in the proposed procedure are as follows:

1. Produce a vector polygon layer for the aggregated information, by associating the
source counts with the corresponding regions;

2. Create a raster representation for the study area, containing disaggregated estimates
obtained from the layer in Step 1 through a baseline heuristic, such as pycnophylactic
interpolation [22];

3. Train a regression model to infer the results from Step 2 from the ancillary information
available as gridded rasters. Each ancillary dataset is normalized to the target reso-
lution, through averaging/summing cells in the cases where the original raster had
a higher resolution, or through bicubic interpolation in the cases where the original
raster had a lower resolution. After training, the regression model is used to produce
new disaggregated values;

4. Proportionally adjust the values returned by the regression model from the previous
step for all cells within each source zone, so that each source zone’s total in the target
raster is the same as the total in the original vector polygon layer;

5. Steps 3 and 4 are repeated, aiming to adjust the disaggregated estimates until the
estimated values converge (e.g., based on a stopping criterion), or until reaching a
maximum number of iterations.

Given that the disaggregated estimates are produced in a self-supervised manner,
through which the result of each iteration is used to inform the training of the following,
having an appropriate stopping criterion is fundamental. Since we do not have a ground-
truth dataset, it is not possible to retain a specific iteration based on a typical evaluation of
performance improvement. Instead, in the experiments reported in this paper, we com-
puted a fixed number of iterations (in our case, 30), and also tested the standard deviation
of the values within the computed map as a heuristic for inferring the best iteration. Results
showed that the disaggregated output should have high heterogeneity, and that the best
iteration within our experimental setup is usually the one whose disaggregated map has
the highest standard deviation in the target values.
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Figure 1. The different steps involved in the proposed disaggregation method, considering the use of
initial disaggregation weights based on pycnophylactic interpolation.

The following subsections detail the aforementioned general approach. In particular,
Section 3.1 presents the heuristics that we tested for producing the initial estimates, while
Section 3.2 describes in detail the encoder–decoder CNN architecture that we tested as the
regression algorithm for combining the different sources of ancillary data. Section 3.3 details
our self-training framework, presenting its similarities to teacher/student approaches from
the literature [21]. Finally, Section 3.4 describes the use of (i) a training objective tailored
for dealing with the intrinsic characteristics of the data, (ii) a loss penalty for homogeneous
patches, and (iii) a training strategy that promotes equivariance to spatial transformations
on the input data.

3.1. Initial Disaggregation Estimates

We specifically experimented with the application of different heuristics for producing
the initial estimates. Table 2 details the tested methods, ranging from pycnophylactic
interpolation to a weighted interpolation (WI) strategy which disaggregates the data
proportionally to the population density.

The estimates obtained through pycnophylactic interpolation take into account the
property of spatial auto-correlation, which states that regions close to each other tend to
have similar values. However, the method does not enforce other properties about the
distribution of the target variable, and often leads to over-smooth results. The alternative
weighted interpolation method produces estimates that reflect different densities across
the territory, but the variable to be disaggregated may not exactly follow the population
distribution. Taking this into account, we complemented the WI procedure with a smooth-
ing process, this way promoting auto-correlation over the results. In particular, the values
are smoothed through one iteration of the pycnophylactic interpolation procedure, i.e., by
replacing all the cells with the average of their neighbors.
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Table 2. The different heuristics tested for producing the initial estimates.

Model Description

Mass-preserving areal weighting The original method from Goodchild et al. [5]
Pycnophylactic interpolation The original method from Tobler and Waldo [22]
Weighted interpolation (WI) Disaggregation proportionally to population density
Smooth weighted interpolation Smoothing WI estimates by averaging neighbors

3.2. The Encoder–Decoder Convolutional Architecture

Standard regression algorithms (e.g., linear regression or random forests) process
each grid cell independently of the others to predict the disaggregated values. The values
for each cell in the raster grid are used as the features of the model. These methods are
thus limited, since they do not consider that each cell may be directly influenced by its
neighbors. To overcome this problem, we experimented with a Convolutional Neural
Network (CNN) architecture that processes input patches of fixed dimensions. In this case,
the input layer of the CNN is a three-dimensional array of size h× w× d, where h and w
are spatial dimensions of height and width, and d is the feature dimension corresponding
to the number of different ancillary variables.

We specifically used a CNN model based on an encoder–decoder architecture. Al-
though the proposed method is generalizable to any architecture, we experimented with
an adapted U-Net model, given that these architectures typically achieve good results on
problems related to image segmentation [20]. The adapted architecture is described next,
and illustrated in Figure 2.

• A contracting path consists of a sequence of four blocks, each combining convolution
and pooling operations. Specifically, these blocks have two standard convolution
operations followed by ReLU activation functions, using 3× 3 convolution kernels, a
stride of one, and zero padding. They also feature a final 2× 2 max-pooling operation
after the second convolution. All blocks in the contracting path adopt the same
structure, each of them halving the spatial dimensionality of the input while at the
same time doubling the number of feature channels.

• A middle block consists of two convolutional operations, similar to those in the
contracting path and without considering the final max-pooling operation. The
representation resulting from the middle block is also processed through a dropout
operation, which drops out random units during training to reduce over-fitting and
improve generalization.

• An expansive path consists of a sequence of four blocks, each of them matching one
of the blocks in the contracting path. These blocks perform upsampling of the feature
maps through a 2× 2 up-convolution operation, concatenating the results with the
feature maps from the corresponding blocks in the contracting path. The results from
the concatenation are then further processed by two 3× 3 convolution operations,
similar to those used in the blocks from the contracting path.

• Different from the original U-Net architecture, we combine the feature maps resulting
from the final block in the expansive path with the values directly obtained from
the input patches through a shortcut (skip) connection. By doing so, we take direct
advantage of the input ancillary variables, which contain rich information associated
with each cell.

• The entire model is trained end-to-end, connecting the final layer with a loss function
customized to our particular problem.

It is important to notice that large study regions cannot be analysed directly as a single
input to the U-Net model due to the limited memory of the graphics processing units
used for model training. A common solution involves extracting smaller sub-patches by
sliding a window over the input, afterward processing these patches individually in order
to generate new patches with the predictions. The resulting patches are finally stitched
together in order to form a complete raster with the predictions. In the case of overlaps, the
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resulting predictions can be obtained from averaging the results at the individual patches.
Figure 3 illustrates this general procedure, which we also adopted.
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Figure 2. The adapted encoder–decoder deep neural network architecture.
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Figure 3. Illustration of the strategy to iteratively convert large spatial inputs into multiple patches.

3.3. Self-Training for Spatial Data Disaggregation

Spatial disaggregation methods that involve machine learning are particularly chal-
lenging in terms of the training process. For instance, in our tests, we disaggregate counts
to a 200 × 200 m raster grid through a combination of ancillary data that is available at
that resolution. However, at the level of the target cells, there are often no ground-truth
data (e.g., high-resolution data for a given region used to train a model that would then be
applied to a different region) concerning the variable to be disaggregated, with counts in-
stead as being available in the aggregated form. Some studies have addressed this problem
by comparing, during training, the produced estimates re-aggregated to zones at which
reference data are available, such as neighborhoods or civil parishes [18]. However, this
masks the variations at the level of raster cells. Instead, we base our training process on a
self-training framework [6,7,9] which can be used in combination with different types of
regression algorithms (e.g., encoder–decoder CNNs).

Our disaggregation method has strong similarities with self-training approaches that
have been recently outlined in the literature, such as the teacher/student framework used
for image classification by Xie et al. [21]. We use the initial estimates produced with a
relatively simple disaggregation heuristic (e.g., pycnophylactic interpolation) that can be
seen as a teacher model. These results are then used to train a regression model (i.e., the
student), whose predictions are iteratively refined until some convergence criteria are met.
Like in the study from Xie et al., in which the authors performed model regularization
through the injection of noise, dropout, stochastic depth, and data augmentation, we also
applied regularization strategies. Specifically, we used penalties based on the standard
deviation of the produced results, as well as on results computed from transformed versions
of the input data. The CNN used in our tests also considers built-in regularization in the
form of dropout in some of its layers.
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3.4. Model Training

The selection of an appropriate loss function is critical for effective model training,
quantifying the error that is back-propagated and used to adjust the model parameters.
The most typical regression loss functions are based on the Mean Absolute Error (MAE)
or the Root Mean Square Error (RMSE), respectively, presented in Equations (1) and (2).
While the MAE penalizes the errors linearly, the RMSE penalizes them quadratically, thus
being more sensitive to large differences.

MAE(y, ŷ) = ∑n
i=1 |yi − ŷi|

n
. (1)

RMSE(y, ŷ) =

√
∑n

i=1(yi − ŷi)2

n
. (2)

In Equations (1) and (2), yi corresponds to a ground-truth value, ŷi corresponds
to a predicted value, and n is the number of instances. Despite being commonly used,
both losses have some known problems. For example, the MAE loss produces a constant
gradient, even for small values. On the other hand, the RMSE loss can over-penalize
extreme values in the data. One possible alternative is the Huber loss, which tries to
overcome the aforementioned issues through an interpolation from quadratic to linear
penalization. We specifically tested the standard Huber loss, as defined in Equation (3).

HuberLossδ(y, ŷ) =

{
1
2 (y− ŷ)2, for |y− ŷ| ≤ δ

δ(|y− ŷ| − 1
2 δ), otherwise.

(3)

In Equation (3), δ is the threshold that separates the different behaviors of the loss
function. In other words, the Huber loss has a quadratic behavior when the error is below
δ, and a linear behaviour otherwise. This way, large differences will have a smaller impact
on the final loss value.

Further trying to improve disaggregation results, we complemented the training
loss with components that penalize predictions that are less plausible in our scenario, at
the same time benefiting the ones that contain expected characteristics in the produced
estimates. In this context, as discussed in Section 1, we know that most variables are rarely
uniform when disaggregated to high-resolution grids. Taking this into account, and also
knowing that the standard deviation of the estimated disaggregated results can be used as
a proxy for their variation, we incorporated this metric as a component within our overall
training loss.

In addition, we also took advantage of the fact that the absolute orientation of the
ancillary data used in our disaggregation approach is irrelevant. In other words, the use
that is made of the elements in the input images should not change if they suffer geometric
transformations such as rotations. Within CNNs, equivariance to transformations of the in-
puts can be approximated by using data augmentation. If a model has enough capacity and
has seen training examples after the application of a sufficient number of transformations,
it will learn to be invariant to these factors. However, instead of significantly increasing the
training data, it can be more interesting to directly promote these equivariances during
model training by changing the loss function. We therefore incorporated a loss term to
maximize the agreement between original and transformed image representations. This
solution forces the CNN to learn similar discriminative representations to both input ver-
sions, thus improving generalization. The general procedure is illustrated in Figure 4, and
detailed next:

1. First, we apply a random transformation to the input patch, such as flipping over an
axis or performing a rotation;

2. Then, we apply a forward pass with the model over both the original and the trans-
formed patch;
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3. Finally, we apply the inverse transformation to the output computed when using the
transformed patch and produce the final results by averaging both outputs.

The model training procedure is then adapted for measuring not only the differ-
ence between the produced estimates against the target values, but also the difference
between the two predicted outputs (i.e., obtained by processing the original patch and the
corresponding transformed version).

Random transformation:
» Transpose
» 90º rotation
» -90º rotation

» Horizontal �ip
» Vertical �ip
» Horizontal and vertical �ip

Model

Inverse transformation

No transformation

Minimize
differences

Average

Figure 4. Illustration of the strategy used to encode equivariances to geometric transformations.

The corresponding global loss is presented in Equation (4), and it is comprised of three
parts: (i) LCellwise(y, avg(ŷ1, ŷ2)) corresponds to a loss (e.g., the Huber loss) between
the target and predicted values at the level of individual cells within the patches, (ii)
LCompatibility(ŷ1, ŷ2) corresponds to a loss (e.g., the Huber loss) between the two versions
of predicted patches, as detailed in Figure 4, and (iii) a LHomogeneity(ŷ1, ŷ2) corresponds
to the regularization term defined in Equation (5), derived from the standard deviation
of the values computed from averaging the two predicted patches (i.e., std(avg(ŷ1, ŷ2))).
The three components are weighted by the parameters w1, w2, and w3, which control their
relative importance.

LGlobal(y, ŷ1, ŷ2) =w1LCellwise(y, avg(ŷ1, ŷ2))+

w2LCompatibility(ŷ1, ŷ2)+

w3LHomogeneity(ŷ1, ŷ2).

(4)

LHomogeneity(ŷ1, ŷ2) =
1

1 + std(avg(ŷ1, ŷ2))
. (5)

4. Experimental Setup

We evaluated the proposed spatial disaggregation approach with tests involving
the disaggregation of socio-economic data pertaining to Continental Portugal and its
administrative units. We considered the four variables detailed in Table 3, using data
for the year of 2019. These consist of information concerning (i) the overall amount of
withdrawals from automated teller machines, in thousands of euros, between January
and December (withdrawals—all year), (ii) a subset of the previous for the summer period,
i.e., for the months of June to September (withdrawals—summer), (iii) a subset of the first
for the winter period, i.e., for the months of December to March (withdrawals—winter),
and (iv) the number of live births by place of residence of the mother (live births). It is
important to notice that the reason for using different sub-datasets concerning the amount
of withdrawals relates to the aim of assessing two aspects. First, to which extent our
disaggregation method could detect patterns depending on the months that are considered,
for example resulting from the movement of the population. Second, to which extent the
model would be able to explore all the ancillary variables it receives, and more specifically
the ones that differ in both temporal periods, namely the information on night-time lights.
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We used different versions of this specific ancillary dataset, corresponding to averaged
values for the different months that are considered in the variables to be disaggregated.

Table 3. The datasets used in our experimental evaluation.

Dataset Source Year Resolution Type

Withdrawals—All year National Institute of Statistics (INE) 2019 Municipalities Aggregated
Withdrawals—Summer National Institute of Statistics (INE) 2019 Municipalities Aggregated
Withdrawals—Winter National Institute of Statistics (INE) 2019 Municipalities Aggregated
Live births National Institute of Statistics (INE) 2019 Civil Parishes Aggregated

Terrain development Global Human Settlement project 2015 38 × 38 m Ancillary
Population density Global Human Settlement project 2015 250 × 250 m Ancillary
Nighttime lights VIIRS Nighttime Lights dataset 2016 450 × 450 m Ancillary
Land coverage Corine Land Cover dataset 2018 100 × 100 m Ancillary
Human settlements Copernicus Land Monitoring Service 2015 10 × 10 m Ancillary

The evaluation process is particularly challenging since there are no ground-truth data
with which we can compare results at the level of thin-gridded cells. Most information on
socio-economic variables is only available at a coarse resolution, limiting us to infer the
quality of the results only for aggregated areas. Our evaluation procedure is illustrated
in Figure 5. We first disaggregate the information available at the level of large territorial
divisions (i.e., the 24 NUTS III regions concerning the Continental Portugal territory),
producing high-resolution estimates at the raster level. Then, we evaluate the results by
re-aggregating them to the level of municipalities (i.e., taking the sum of the values from all
raster cells associated with each municipality). At these intermediary regions, the results
are compared against the known values that are available for the 278 municipalities. Notice
that, in a real application, we would start the disaggregation from the higher resolution
(e.g., municipalities or civil parishes), which is not possible for our experiments because
we would not have the intermediate ground-truth for evaluation.

2. Re-aggregate and evaluate

1. Disaggregate

Aggregated regions Intermediary regions 200x200m disaggregated map

Figure 5. Illustration of the strategy used to evaluate the disaggregated estimates.

The following subsections describe the sources of ancillary information that have been
explored (Section 4.1), which are also summarized in Table 3, together with implementation
details (Section 4.2). Then, we present the evaluation metrics that were used to evaluate
the different methods (Section 4.3).

4.1. Ancillary Datasets

The ancillary datasets that we used in our experiments are detailed in Table 3. In partic-
ular, the information regarding terrain development was obtained from the Global Human
Settlement (GHS (http://ghsl.jrc.ec.europa.eu/datasets.php, accessed on 14 September
2021)) project [32–35], which aims to map the distribution and density of the world’s
built-up areas. This project analyzed Landsat imagery related to the periods of 1975, 1990,
2000, and 2013–2014 to quantify built-up structures in terms of their location and density.

http://ghsl.jrc.ec.europa.eu/datasets.php
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The project specifically makes available raster grids with a resolution of 38 m per cell which
express the distribution of built-up areas as the proportion of occupied footprint in each
cell. In this article, we used the GHS built-up presence grid related to the year of 2015.

Besides the terrain development raster, the GHS project also provides population
density grids for the same years, with a resolution of 250 m per cell. The methodology
for building these grids is based on raster-based dasymetric mapping, using the GHS
built-up presence to restrict and refine the population information available through the
Gridded Population of the World (GPW (http://beta.sedac.ciesin.columbia.edu/data/coll
ection/gpw-v4, accessed on 14 September 2021)) dataset. This other population grid was
constructed from national or subnational input units (i.e., from low-level administrative
units from the different countries), also through a spatial disaggregation approach. We
specifically used the GHS population density layer referring to the year of 2015.

As for the ancillary information regarding night-time light emissions, the publicly
available VIIRS Nighttime Lights—2016 dataset (http://ngdc.noaa.gov/eog/viirs/downlo
ad_dnb_composites.html, accessed on 14 September 2021) was used, which is maintained
by the Earth Observation Group of the NOAA National Geophysical Data Center. We
specifically used the global cloud-free composite of VIIRS night-time lights, which was
generated with VIIRS day/night band (DNB) observations collected on nights with zero
moonlight. Cloud screening was performed on this dataset by detecting clouds in the VIIRS
M15 thermal band. However, the product has not been filtered to subtract background
noise or to remove light detections associated with fires, gas flares, volcanoes, or aurora.
The raster data which we used, available at a resolution of 450 × 450 m per cell, consist of
floating-point values calculated by averaging the pixels deemed to be cloud-free.

Since land coverage information is expected to correlate with the distribution of socio-
economic variables [36], we also leveraged the standard Corine Land Cover (CLC) product
(http://land.copernicus.eu/pan-european/corine-land-cover, accessed on 14 September
2021) for the year of 2018, available at a resolution of 100 m. This dataset is based on
satellite images as the primary information source, and the technical details are presented
in the report by Heymann and Bossard [37]. The 44 different classes of the 3-level Corine
nomenclature, considered in the original product (e.g., classes for water bodies, artificial
surfaces, agricultural areas, etc.), were converted into a real value in the range [0, 1], which
encodes how developed the territory corresponding to a given cell in a simple dasymetric
distribution is that corresponds to a class-percent method. More specifically, cells with the
class water bodies were assigned the value of zero, cells corresponding to wetlands were
assigned the value of 0.25, different types of forest and semi-natural areas were assigned
the value of 0.5, agricultural areas were assigned 0.75, and artificial surfaces were assigned
the value of one.

Finally, regarding the presence of human settlements, we used a modern pan-European
dataset obtained from the Copernicus Land Monitoring Service (http://land.copernicus.
eu/pan-european/GHSL/european-settlement-map, accessed on 14 September 2021). The
human settlements layer is made available at a spatial resolution of 10 m, and it represents
the percentage of built-up area coverage per spatial unit, based on SPOT5 and SPOT6 satel-
lite imagery from the year of 2015. The automated information extraction process used for
building this dataset uses machine learning techniques in order to understand systematic
relations between morphological and textural features, extracted from the multispectral
and panchromatic bands of the satellite imagery [38].

4.2. Implementation Details

Our disaggregation method, previously described in Section 3, relies on a regression
model to combine the ancillary data and produce disaggregation estimates. The entire
procedure was implemented in the Python language, using frameworks such as scikit-learn
(http://scikit-learn.org, accessed on 14 September 2021) and Tensorflow (http://www.te
nsorflow.org, accessed on 14 September 2021).

http://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
http://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
http://land.copernicus.eu/pan-european/corine-land-cover
http://land.copernicus.eu/pan-european/GHSL/european-settlement-map
http://land.copernicus.eu/pan-european/GHSL/european-settlement-map
http://scikit-learn.org
http://www.tensorflow.org
http://www.tensorflow.org
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Concerning the regression algorithm, we tested an encoder–decoder CNN and com-
pared its performance against linear regression and random forest algorithms, which
process individual cells instead of patches. The first approach consists of a standard linear
least-squares fit, which computes a weighted linear combination of the predictive covari-
ates added to a bias term. In turn, a random forest corresponds to an ensemble of decision
trees, each corresponding to a non-linear flow-chart-like structure of tests over the values of
the attributes. The random forest approach fits different decision trees on random subsets
of the instances and features, and averages the results of each tree to improve accuracy and
control overfitting [39].

The hyper-parameters of the models were tuned for optimal performance. Regarding
the encoder–decoder CNN, we tested loss functions based on the Mean Absolute Error
(MAE), the Mean Squared Error (MSE), and the Huber Loss. The best configuration was
achieved when the CNN takes input patches of 16× 16 grid cells (i.e., 256 cells in total) and
when the training procedure considered batches of 64 instances, using ten epochs over the
training data per iteration. We used the Adam optimization algorithm [40] with the default
parameters in the Tensorflow library, except for the learning rate, which was set to 10−3. In
the Huber Loss, we used a δ value of 1. Finally, the value of w1 from Equation (4) was set
to 1, w2 ranged from 1 to 1.25, and w3 was set to 104.

4.3. Evaluation Metrics

The results were assessed in terms of the Mean Absolute Error (MAE), the Root Mean
Square Error (RMSE), and the Coefficient of Determination (R2) between estimated and
ground-truth values. The formulas for the MAE and RMSE have already been previously
described in Section 3.4, and R2 is defined as follows.

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 . (6)

In Equation (6), yi corresponds to a ground-truth value, ŷi corresponds to a predicted
value, ȳ is the mean of the ground-truth values, and n is the number of instances. The
coefficient of determination R2 measures the proportion of total variation in the ground-
truth values that is explained by the model. It specifically assigns a value of one to a model
whose predictions exactly match the ground-truth values, a value of zero to a model that
always predicts the average, and a negative value to a model that is worse than the baseline
corresponding to the average. Different from the MAE and RMSE metrics, in which lower
errors indicate better results, higher R2 values correspond to better estimates.

Although these three metrics have advantages and disadvantages, the disaggregation
errors computed through a standard MAE are more easily interpretable [41]. In particular,
the RMSE between predicted and ground-truth values can over-penalize the outliers.
Taking this into account, we attempted to optimize our models for producing lower
absolute disaggregation errors, and preferred results with better MAE throughout the
article, to the detriment of the remaining metrics.

5. Experimental Results

We designed several experiments to evaluate the use of our encoder–decoder CNN
within the self-training framework. We first compare the application of the model, with an
RMSE loss and without any type of regularization strategy, against baseline disaggregation
methods (Section 5.1). In Section 5.2, we test the impact of different initial model estimates,
while in Section 5.3 we test stopping criteria for the iterative method. Then, in Section 5.4,
we compare different loss functions, and in Section 5.5 we evaluate the strategy to promote
equivariance to spatial transformations of the input data. Finally, in Section 5.6, we show
the results for different regression models in our self-training framework, while Section 5.7
illustrates the distribution of the disaggregated results and of the standard deviation
associated with the model estimates.
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The first results (i.e., those presented in Section 5.1) are reported for the variables
related to the amount of withdrawals in three different scenarios, i.e., the overall amount
for the entire year, the summer period, and the winter period. Intermediate experiments,
which evaluate the impact of adding different components into the model (i.e., from
Sections 5.2–5.5), are reported only for the variable concerning the overall amount of
withdrawals. In Section 5.6, we use the remaining dataset to validate the approach in the
disaggregation of another variable, i.e., the number of live births.

All tables with results present the MAE, RMSE, and R2 metrics in two scenarios,
namely one corresponding to the values with our stopping criterion, and the other corre-
sponding to the best iteration (among the 30 that were used for self-training). They also
report the percentage of the gain obtained over the result achieved when using the baseline
corresponding to the smooth weighted interpolation (i.e., the best non-regression baseline
in our tests). In order to alleviate problems with random initializations, the values reported
for all experiments using CNN models result from averaging two tests. Since the variations
between the results of the two experiments were not significant, we considered that it was
not necessary to use more than two tests for computing the average. Additionally, values
in bold correspond to the best results for each variable.

5.1. Proposed Approach

Tables 4–6 show the results obtained when using disaggregation baselines correspond-
ing to (i) mass-preserving areal weighting, (ii) pycnophylactic interpolation, (iii) a weighted
interpolation (WI) method which disaggregates the count data proportionally to population
distribution, and (iv) the result of applying a smoothing operation over WI, which we
named smooth weighted interpolation. Among these, the smooth weighted interpolation
achieved the best results for all the variables.

For comparison with the baselines, the tables also present the results obtained with
our CNN architecture, trained with a loss function based on the RMSE between predicted
and real values. In this scenario, we report the results achieved with and without adding
into the CNN architecture the shortcut which directly connects the ancillary variables to
the output of the upscaling blocks.

Table 4. Results obtained with different disaggregation methods for the overall amount of national
withdrawals on automated teller machines.

Gain(%) / Baseline W/o Stopping Criterion

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Areal weighting 79,667.9 205,045.5 −0.0471 −364.1 −218.2 −105.3
Pycnophylactic interpolation 78,290.1 201,420.9 −0.0104 −356.1 −212.6 −101.2
Weighted interpolation 17,237.7 64,644.5 0.8959 −0.4 −0.3 −0.1
Smooth weighted interpolation 17,166.5 64,433.1 0.8966 — — —

SL w/ CNN (no shortcut) 15,326.9 58,395.4 0.9151 10.7 9.4 2.1 14,846.7 55,228.4 0.9240
SL w/ CNN 15,015.0 54,957.0 0.9248 12.5 14.7 3.1 15,015.0 54,957.0 0.9248

Table 5. Results obtained with different disaggregation methods for the amount of national with-
drawals during the summer months.

Gain(%) / Baseline W/o Stopping Criterion

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Areal weighting 26,815.1 67,219.3 −0.0464 −383.6 −237.4 −105.1
Pycnophylactic interpolation 26,355.0 65,990.2 −0.0085 −375.3 −231.2 −100.9
Weighted interpolation 5573.6 20,001.7 0.9073 −0.5 −0.4 −0.1
Smooth weighted interpolation 5545.0 19,925.6 0.9080 — — —
SL w/ CNN (no shortcut) 5185.8 18,514.0 0.9206 6.5 7.1 1.4 5086.7 18,491.5 0.9208
SL w/ CNN 5178.5 18,510.5 0.9207 6.6 7.1 1.4 5081.9 18,194.0 0.9234
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Table 6. Results obtained with different disaggregation methods for the amount of national with-
drawals during the winter months.

Gain(%) / Baseline W/o Stopping Criterion

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Areal weighting 26,301.8 68,711.9 −0.0471 −350.2 −209.1 −105.3
Pycnophylactic interpolation 25,840.2 67,516.5 −0.0109 −342.3 −203.7 −101.2
Weighted interpolation 5865.2 22,301.3 0.8897 −0.4 −0.3 −0.1
Smooth weighted interpolation 5842.8 22,233.1 0.8904 — — —

SL w/ CNN (no shortcut) 5178.8 20,025.9 0.9111 11.4 9.9 2.3 5090.7 19,800.2 0.9131
SL w/ CNN 5109.8 19,624.9 0.9146 12.5 11.7 2.7 5007.5 19,399.2 0.9166

The results from Tables 4–6 show that the proposed self-training approach outperforms
all the non-regression baselines, with improvements of up to 14.7% over the best baseline
in terms of the RMSE, and up to 12.5% in terms of the MAE. The incorporation of the
shortcut produced better disaggregation estimates (e.g., improvements of 1.8% in MAE
and 5.3% in RMSE). It is also interesting to note that, in all the reported experiments, the
error values obtained for the iteration corresponding to our stopping criterion (i.e., the first
three columns of the tables) are close to the best possible error values overall (i.e., the last
three columns of the tables).

5.2. Initial Estimates

Figure 6 details the results of the self-training procedure with one of the tested vari-
ables, specifically the one corresponding to the overall amount of withdrawals, during
30 iterations. This figure illustrates the importance of choosing a good heuristic for pro-
ducing the initial estimates, as discussed in Section 3.1. It compares, side-by-side, the
application of the proposed method when leveraging three heuristics for producing the
initial estimates, namely (i) the pycnophylactic interpolation, (ii) the weighted interpolation,
and (iii) the smooth weighted interpolation. In each figure, we show the behavior of our
disaggregation method, as well as the result of the corresponding heuristic used for the
initial estimates.
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Figure 6. Error values when using different heuristics for producing the initial estimates in the
proposed self-training approach for the overall amount of national withdrawals.

From Figure 6, we can see that the model achieves much better results when prior
useful information is provided as initial estimates, such as in the case of both weighted
interpolation and smooth weighted interpolation. This is an expected result, since the
initialization corresponding to the pycnophylactic interpolation consists of very smooth
and uniform estimates, and is therefore much worse in terms of providing interesting
data patterns that could be learned. The use of the CNN when leveraging more useful
information specifically results in around three times fewer disaggregation errors when
compared to using worse initial estimates.

From the figure, we can also infer that our method benefits from the execution of
several iterations, since better disaggregation results are always obtained after Iteration 1.
The advantages of the iterative self-training process are particularly noticeable when the
initial estimates contain less useful information (e.g., as in the case of the pycnophylactic
interpolation), in which the CNN achieves improvements of about 35% when compared to
the first iteration. When initial estimates with more useful information are used, although
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the result obtained in Iteration 1 is much better when compared to worse initial estimates,
the improvements achieved with multiple iterations are of about 10%.

5.3. Stopping Criterion

The stopping criterion of the algorithm is also an important part of our approach.
As discussed in Section 3.4, we empirically concluded that the standard deviation of the
results at each iteration is a good proxy for the quality of the disaggregation results at that
iteration. Figure 7 illustrates this conclusion by comparing this metric against an alternative
that involved using the original source zones (i.e., the polygons from which we have the
original aggregated data) to infer the quality of the results which will be produced in the
final target zones. To this end, we first created artificial pairs of source zones by merging
neighbor polygons and by summing the associated counts. Then, at each iteration, we
computed the errors associated with re-aggregating the estimated disaggregation results,
computed when using the artificial pairs of polygons as source zones, at the level of the
original source polygons. We specifically plot, side-by-side, (i) the MAE at each iteration
when using our method, (ii) the standard deviation of the results at the same iteration,
and (iii) the R2 between the known values at each source zone against estimates resulting
from disaggregating the counts when using artificial pairs of polygons as source zones. All
the values are compared at the same scale by performing a min–max normalization. In
the case of the standard deviation and the R2 metrics, we present the complement of the
normalized values.
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Figure 7. Disaggregation errors together with the standard deviation of the results for the overall
amount of national withdrawals.

We can verify the potential of this stopping criterion in three aspects: first, the speed
of its decrease over the 30 iterations follows the behavior of the MAE closely. Then, as
illustrated in the rightmost figure which corresponds to the experiment that obtained the
best result, the minimum standard deviation value over the 30 iterations often corresponds
to the minimum MAE value. We can conclude that, through the proposed stopping
criterion, it is possible to detect which iterations are most likely to correspond to the best
MAEs, avoiding the need to execute the 30 iterations.

Different from the behavior of the standard deviation metric, the R2 coefficient has
a rapid decrease in the first iterations. This may be because the task measured by R2, i.e.,
disaggregating from artificial pairs of source zones to the original source polygons, is much
easier than the original task of disaggregating from source to target zones. In fact, while in
each artificial pair of source zones there are only two source polygons contained within,
we have that in each source zone there are never fewer than 10 target zones (i.e., the task is
harder, given the much smaller target regions). Given this, we used the standard deviation
metric as the stopping criterion on the remaining experiments.

5.4. Loss Functions

Table 7 details the disaggregation results for the variable corresponding to the overall
number of withdrawals. It specifically reports the results when testing the six loss functions
discussed in Section 3, namely (i) the MAE loss, (ii) the MAE with a penalty corresponding
to the standard deviation of the produced map, (iii) the RMSE loss, (iv) the RMSE with the
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standard deviation penalty, (v) the Huber Loss, and (vi) the Huber Loss with the standard
deviation penalty.

Table 7. Results obtained with the application of the encoder–decoder model leveraging different
losses for the overall amount of national withdrawals.

Gain(%) / Baseline W/o Stopping Criterion

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

MAE Loss 14,423.2 57,019.1 0.9190 16.0 11.5 2.5 14,395.4 57,074.9 0.9189
MAE Loss w/Penalty 14,726.3 57,646.5 0.9172 14.2 10.5 2.3 14,508.3 57,366.0 0.9180
RMSE Loss 15,015.0 54,957.0 0.9248 12.5 14.7 3.1 15,015.0 54,957.0 0.9248
RMSE Loss w/Penalty 14,981.6 55,792.0 0.9225 12.7 13.4 2.9 14,981.6 55,792.0 0.9225
Huber Loss 14,314.4 57,241.5 0.9184 16.6 11.2 2.4 14,314.4 57,241.5 0.9184
Huber Loss w/Penalty 14,282.6 57,068.0 0.9189 16.8 11.4 2.5 14,240.9 56,766.7 0.9197

Table 7 shows that the best results for the RMSE and R2 metrics were obtained with
the RMSE loss between predicted and true patches. However, the lowest MAE errors were
achieved when using the Huber Loss, which also shows, as expected, a trade-off between
the RMSE and the MAE metrics. In this specific scenario, i.e., when obtaining the best
MAE values through using a Huber Loss, one can also observe that it is helpful to use
the standard deviation for improving all the error metrics. Taking all these elements into
account, and given that the Huber Loss is a good compromise between the strengths and
weaknesses of both the MAE and RMSE losses, we used it in conjunction with the standard
deviation penalty as the loss function for the remaining experiments. Similar to what
happened in the previous tables, the standard deviation of the produced map remains a
good proxy for the best iteration of the model. In particular, in three of the six reported
experiments, the results obtained when using this metric as a selection criterion, and the
best results, are coincident.

5.5. Equivariance to Transformations

Following the discussion from Section 3.4, we also tested the incorporation of equiv-
ariance to spatial transformations into the network. One can expect that, with this new
supervision signal, the convergence behavior of the model suffers fewer oscillations. As a
consequence of this smoother process, we can also have better disaggregation results. In
Table 8, we compare this approach with the application of data augmentation external to
the model, using the same transformations. The purpose of this experiment was to validate
that a potential improvement would not only result from having more examples to learn,
but also from the way the network uses the relations between the examples in order to
improve generalization. From the results of Table 8, we can infer the benefit of this strategy,
which produced better MAE values, in comparison to the same model without promoting
equivariance and data augmentation.

Table 8. Results obtained when applying equivariance to transformations over the model for the
overall amount of national withdrawals.

Gain(%) / Baseline W/o Stopping Criterion

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

CNN 14,282.6 57,068.0 0.9189 16.8 11.4 2.5 14,240.9 56,766.7 0.9197
CNN w/Augmentation 14,591.6 59,228.0 0.9126 15.0 8.1 1.8 14,591.6 59,228.0 0.9126
CNN w/Equivariance 14,159.7 57,807.6 0.9167 17.5 10.3 2.2 14,152.4 57,489.9 0.9177

Figure 8 compares the results obtained in the experiment that incorporates equiv-
ariance to transformations of the input data (i.e., when using a Huber Loss and all the
regularization strategies) against the ones obtained with a RMSE loss and without reg-
ularization (i.e., reported in the last row of Table 4). In both cases, the figure presents
the evolution of the disaggregation errors over the 30 iterations together with the metric
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used as stopping criterion (i.e., the standard deviation of the produced patches). From
the figure, we conclude that the use of the Huber Loss with different regularization strate-
gies produced a smoother and faster convergence process, which is closely linked to the
high-quality disaggregated values that are obtained in this test.
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Figure 8. Disaggregation errors together with the standard deviation of the results, with and without
using regularization strategies, for the overall amount of national withdrawals.

5.6. Different Regression Algorithms and Variables

In Tables 9–11, we summarize results for the three datasets used in the tests so far
and compare them with the application of the self-training approach using alternative
regression models. In particular, we report, for each case, the disaggregation results with
(i) the best baseline, i.e., smooth weighted interpolation, (ii) the result of replacing the
regression algorithm of the proposed approach with linear regression, (iii) the result of
replacing the regression algorithm of the proposed approach with a random forest model,
(iv) the proposed approach using an RMSE loss and without incorporating regularization
strategies, and (v) the proposed approach with regularization using a Huber Loss. From
these tables, one can confirm the good performance of the proposed method. The optimized
version produces improvements over the best non-regression baseline of up to 19.4% in
terms of the MAE, which also represents a considerable increase when compared to using
the same model without the tested strategies (i.e., an increase from 12.5% to 19.4%). Our
approach also produced better disaggregation results, when compared to the application
of the self-training framework with alternative regression models, in the majority of the
experiments. In particular, it outperformed the linear regression in all scenarios and the
random forest model in two of the three tested variables. In the remaining variable, it
achieved similar results.

Table 9. Results obtained with the self-training approach using different regression algorithms for
the overall amount of national withdrawals.

Gain(%) / Baseline W/o Stopping Criterion

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Smooth weighted interpolation 17,166.5 64,433.1 0.8966 — — —
SL w/linear model 17,083.9 61,438.7 0.9060 0.5 4.6 1.0 16,826.0 59,999.8 0.9103
SL w/random forests 14,582.4 56,598.0 0.9202 15.1 12.2 2.6 14,582.4 56,598.0 0.9202
SL w/baseline CNN 15,015.0 54,957.0 0.9248 12.5 14.7 3.1 15,015.0 54,957.0 0.9248
SL w/optimized CNN 14,159.7 57,807.6 0.9167 17.5 10.3 2.2 14,152.4 57,489.9 0.9177
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Table 10. Results obtained with the self-training approach using different regression algorithms for
the amount of national withdrawals during the summer months.

Gain(%) / Baseline W/o Stopping Criterion

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Smooth weighted interpolation 5545.0 19,925.6 0.9080 — — —
SL w/linear model 5777.6 18,961.7 0.9167 −4.2 4.8 1.0 5727.7 19,152.4 0.9150
SL w/random forests 4929.6 17,574.0 0.9285 11.1 11.8 2.3 4929.6 17,574.0 0.9285
SL w/baseline CNN 5178.5 18,510.5 0.9207 6.6 7.1 1.4 5081.9 18,194.0 0.9234
SL w/optimized CNN 4902.7 18,569.9 0.9202 11.6 6.8 1.3 4895.5 18,583.5 0.9200

Table 11. Results obtained with the self-training approach using different regression algorithms for
the amount of national withdrawals during the winter months.

Gain(%) / Baseline W/o Stopping Criterion

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Smooth weighted interpolation 5842.8 22,233.1 0.8904 — — —
SL w/linear model 5746.4 21,169.5 0.9006 1.6 4.8 1.1 5588.3 20,508.4 0.9067
SL w/random forests 4919.2 19,569.2 0.9151 15.8 12.0 2.8 4919.2 19,569.2 0.9151
SL w/baseline CNN 5109.8 19,624.9 0.9146 12.5 11.7 2.7 5007.5 19,399.2 0.9166
SL w/optimized CNN 4707.6 19,235.0 0.9179 19.4 13.5 3.1 4703.0 19,401.0 0.9165

Figure 9 compares the behavior of the self-training framework for three regression
algorithms: our optimized encoder–decoder CNN, a linear regression, and a random forest
model. It specifically plots, side-by-side, the disaggregation results during 30 iterations
of the algorithm, obtained for the variables corresponding to (i) the overall amount of
withdrawals, (ii) the amount of withdrawals during the summer, and (iii) the amount of
withdrawals during the winter. From the figure, we can see that the use of alternative
algorithms tends to result in a higher MAE. More specifically, the CNN has a better MAE
than the alternative models over almost all the 30 iterations, and in particular in the first
iteration. This demonstrates that even without the application of a self-training framework
(i.e., if we only ran the algorithms for one iteration), the use of our encoder–decoder CNN
could lead to better results. Among the different regression algorithms, the random forest
appears to benefit more from the execution of several iterations, which allows it to have
significantly better overall results than the linear regression, despite not always having the
best result in the first iteration. Second, the results highlight once again the importance
of choosing appropriate stopping criteria, since in the case of the CNN and the linear
regression models, better results are obtained before iteration 30.
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Figure 9. Error values when using different regression algorithms in the proposed self-training
approach for the overall amount of national withdrawals, the amount of national withdrawals during
the summer, and the amount of national withdrawals during the winter.

In Table 12, we report the results obtained from further validating the disaggregation
method in a separate variable, i.e., the number of live births. We specifically compare
the results obtained when leveraging (i) the same baselines presented in previous tables,
and (ii) the proposed approach when leveraging a Huber Loss and all the regularization
strategies that were tested. From this table, one can confirm again the potential of our
method, since it achieves the best results in all metrics (e.g., improvements of 12% in terms
of the MAE over the best non-regression baseline).
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Table 12. Results obtained with the self-training approach using different regression algorithms for
the number of live births.

Gain(%) / Baseline W/o Stopping Criterion

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Areal weighting 20.9 59.9 0.3354 −318.0 −403.4 −65.6
Pycnophylactic interpolation 19.4 53.9 0.4615 −288.0 −352.9 −52.6
Weighted interpolation 5.0 11.4 0.9759 0.0 4.2 0.2
Smooth weighted interpolation 5.0 11.9 0.9740 — — —
SL w/linear model 5.0 11.3 0.9763 0.0 5.0 0.2 4.8 11.4 0.9758
SL w/random forests 4.5 11.2 0.9766 10.0 5.9 0.3 4.4 10.8 0.9785
SL w/optimized CNN 4.4 10.7 0.9788 12.0 10.1 0.5 4.4 10.7 0.9788

5.7. Qualitative Analysis

In Figure 10, we present the resulting disaggregation map for the variable correspond-
ing to the overall amount of withdrawals when using as source zones the lower aggregation
units available (i.e., municipalities). We specifically plot for the territory of Continental
Portugal, side-by-side, (i) the map obtained with the baseline disaggregation method
corresponding to the smooth weighted interpolation, (ii) a map obtained when using a
linear model as the regression algorithm within the self-training framework, and (iii) a map
obtained when using the proposed encoder–decoder CNN with a Huber Loss and all the
regularization strategies. For illustration purposes, we also present a zoom on the regions
corresponding to the South Alentejo and the Algarve for the three methods. In general,
one can see that more-developed areas have higher values for the withdrawals. Moreover,
the baseline corresponding to smooth weighted interpolation, as well as the application of
the self-training approach with linear regression, produced interesting estimates. However,
both approaches tend to result in insufficient detail in some areas (e.g., in regions in the
south of Portugal, such as the Alentejo). Oppositely, the CNN produced results with higher
spatial detail in these regions.

In Figure 11, we assess the uncertainty of the produced estimates by showing the
respective standard deviation. We take advantage of the fact that the disaggregated values
for each cell are calculated by averaging all the corresponding outputs from overlapping
patches. We plot a grid which shows (i) a map containing the standard deviation associated
with averaging the different pixel values from the different patches that contain them (at the
right), (ii) a scatter-plot that compares the standard deviation values against the produced
disaggregated results at the level of 200 × 200 m cells (bottom left), and (iii) a violin plot
that contrasts the standard deviation values with the error that is subsequently obtained
at the level of the corresponding municipalities by showing the associated distribution in
municipalities with error values lower or higher than the median error. In this figure, all
the values result from disaggregating the variable corresponding to the overall number
of withdrawals at the NUTS III level. From the scatter-plot and from the map, we can
conclude that higher disaggregated counts are also associated with higher uncertainty
in the production of the results. One can also notice from the violin plot that estimation
uncertainties are also correlated to zones that end up obtaining higher disaggregation
errors. The distribution of the standard deviation in municipalities with disaggregation
errors above the median (i.e., the right part of the chart) is wider, and includes the highest
standard deviation values observed, when compared to the case of municipalities with
disaggregation errors lower than the median (i.e., the left part of the chart).
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Figure 10. Spatially disaggregated results for the variable corresponding to the overall number of
national withdrawals.

Figure 12 details the variation between the disaggregated results corresponding to
different periods of the year. We attempted to check for patterns associated with the
well-known movement of people in the summer and winter period in areas related to
tourism such as the Algarve (i.e., in the south of the country). For this same region, we
present (i) the monthly average of the overall number of withdrawals, (ii) the difference
between the monthly average of the overall number of withdrawals against the monthly
average during the summer period, (iii) the difference between the monthly average of
the overall number of withdrawals against the monthly average during the winter period,
and (iv) the difference between the monthly average of the number of withdrawals during
summer against the monthly average during the winter. All the results included in this
figure were obtained when leveraging our approach with a Huber Loss and including
all the regularization strategies and when disaggregating data collected at the level of
municipalities. The figure shows, as expected, a higher volume of withdrawals in coastal
regions (e.g., corresponding to regions known to be tourist attractions, such as Portimão or
Albufeira) during the summer.
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Figure 11. Standard deviation associated with the disaggregated raster cells for the variable corre-
sponding to the overall number of national withdrawals.
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Figure 12. Difference between the disaggregated results for the variables corresponding to the
number of withdrawals during summer and the number of withdrawals during winter.

6. Conclusions and Future Work

This article reported on a novel spatial disaggregation method that uses self-training.
We specifically used an encoder–decoder CNN for iteratively refining initial estimates
produced by a seminal disaggregation heuristic, such as pycnophylactic interpolation.
We presented results that indicate that the proposed method outperforms seminal dis-
aggregation baselines, or variations of the proposed approach that use more traditional
regression models (i.e., linear regression or random forests, which have been commonly
used in previous studies). We also showed how successive iterations of our self-training
approach improve disaggregation results over the use of a single iteration with any of the
considered regression models, particularly when considering our CNN guided by tailored
regularization strategies.

Our method was evaluated on variables collected for Continental Portugal (i.e., the
number of withdrawals on automated teller machines and the number of live births).
However, it can naturally also be applied to the disaggregation of other types of socio-
economic variables concerning other territories. The proposed method can thus have
many practical applications. For instance, disaggregated socio-economic statistical data
can inform the quantitative assessment and the dynamic monitoring of the sustainable
development goals from the United Nations 2030 agenda [8]. We effectively combined
different ideas from the literature (see Table 1 for a summary), improving on previous
methods through the combination of deep learning methods with self-training for spatial
data disaggregation. Besides disaggregation, we believe that similar ideas can also have
applications in other ill-posed and/or generative spatial modeling tasks, such as data
interpolation [42,43].

Looking closer at the obtained results, we can see that seminal disaggregation methods
(i.e., mass-preserving areal weighting or pycnophylactic interpolation) are 300–400 times
worse than a non-regression baseline that uses the population distribution. An adapted
version of this method (i.e., smooth weighted interpolation) was used to initialize the
self-training procedure. In doing so, our method achieved improvements of up to 14.7%
in RMSE, and up to 12.5% in MAE, over the stronger non-regression baseline. We also
saw further improvements when optimizing the CNN model, used within the self-training
procedure, in order to (i) better use the input data associated to each individual raster
cell, (ii) be less susceptible to strong outliers, (iii) force heterogeneity in the disaggregated
results, and (iv) promote equivariance to spatial transformations. The percentage of gains
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can increase from 12.5% in MAE to 19.4%, and all the tested strategies had an impact on
improving the error values (e.g., gains of 1.8% when adding a shortcut connection into
the network, 0.2% when promoting heterogeneity in the results, or 0.7% when encoding
equivariance to spatial transformations).

Despite the interesting results, there are also many open challenges for future work.
The general method reported in this article can, for instance, easily be extended to con-
sider different regression algorithms or combinations of algorithms. Different CNN or
transformer-based architectures can be used in place of the U-Net model, similar to those
that are currently achieving state-of-the-art results on different types of image process-
ing and computer vision problems (e.g., in tasks such as segmentation or image super-
resolution). Moreover, our experimental results showed that the application of the self-
training framework with regression algorithms such as random forests is also competitive.
Taking this into account, it may be interesting to investigate if co-training strategies, in
which models using individual pixels are trained alternately with an encoder–decoder
CNN, can be used to improve results. In addition, our approach can be extended to
explore other sources of ancillary data as model features (e.g., information on points-
of-interest [12,13]), other loss functions (e.g., using Tukey’s biweight loss function as an
alternative to the Huber Loss [44] or using additional components in the global loss), or
auxiliary prediction tasks. Concerning the use of additional loss components, one possibil-
ity includes comparing patches computed in iterations far away from each other within
the self-training procedure. We expect the disaggregation results to improve over the
self-training iterations, and thus the values produced in later iterations should be different
from those produced initially. Concerning the use of auxiliary prediction tasks, we can
consider extending the encoder–decoder model for multi-task learning, producing other
related predictions in addition to the disaggregated values. Examples include predicting
land usage information, when available for model training, or a local spatial autocorrelation
index [43]). Auxiliary prediction tasks can perhaps help the model to learn interesting local
spatial properties, complementing the learning of the primary task.

It is also important to notice that we rely on a sliding window approach to pro-
cess/generate patches of 16× 16 cells with the target predictions and the estimates regard-
ing the variation of the results. The stride of the sliding window defines the size of the
overlapping regions between two consecutive patches, and consequently the number of
predictions that are considered for averaging the results. Most self-training approaches
adopt confidence measures to select and/or weight the instances for the next iteration, on
the basis of the confidence over results produced by previous iterations. In future work, the
same procedure used for computing the variation in the predicted results can be used to
weight the input patches with the ancillary variables, so that the training procedure assigns
higher importance to those instances likely to be associated with lesser errors. Alternative
strategies may also include using more robust statistics to combine the patches, such as the
median of the different values instead of the average.

Furthermore, in terms of future work, we plan to extend our disaggregation method-
ology by leveraging an adversarial learning framework [42,43]. The encoder–decoder
model can be seen as a generator, and one can simultaneously train an auxiliary model
(i.e., a discriminator) to differentiate between more realistic and less plausible patches. The
results of this discriminator can be used as yet another component in the complete loss
function. However, one challenge in implementing this idea again relates to the difficulty
in obtaining ground-truth data (i.e., real patches of disaggregated data supporting the
discrimination between instances). Our particular data disaggregation application would
thus be different from the standard training of a generative adversarial network.
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