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Abstract: The digital documentation of cultural relics plays an important role in archiving, protection,
and management. In the field of cultural heritage, three-dimensional (3D) point cloud data is
effective at expressing complex geometric structures and geometric details on the surface of cultural
relics, but lacks semantic information. To elaborate the geometric information of cultural relics and
add meaningful semantic information, we propose a modeling and processing method of smart
point clouds of cultural relics with complex geometries. An information modeling framework for
complex geometric cultural relics was designed based on the concept of smart point clouds, in
which 3D point cloud data are organized through the time dimension and different spatial scales
indicating different geometric details. The proposed model allows smart point clouds or a subset to
be linked with semantic information or related documents. As such, this novel information modeling
framework can be used to describe rich semantic information and high-level details of geometry. The
proposed information model not only expresses the complex geometric structure of the cultural relics
and the geometric details on the surface, but also has rich semantic information, and can even be
associated with documents. A case study of the Dazu Thousand-Hand Bodhisattva Statue, which is
characterized by a variety of complex geometries, reveals that our proposed framework is capable of
modeling and processing the statue with excellent applicability and expansibility. This work provides
insights into the sustainable development of cultural heritage protection globally.

Keywords: cultural heritage; point cloud; 3D model; information modeling; complex geometry

1. Introduction

Digital documentation of the status of cultural relics is essential for their protection
and scientific studies during the restoration and renovation process [1]. Associating the
abundant semantic information of cultural relics with the visualized three-dimensional
(3D) models poses certain challenges for the documentation process. The Strategic Action
Plan for the Implementation of the World Heritage Convention 2012–2022 noted that “The
Outstanding Universal Value (OUV) of World Heritage sites is maintained” and “Heritage
protection and conservation considers present and future environmental, societal and
economic needs” [2]. Heritage values refer to the meanings and values that individuals or
groups of people bestow on heritage, including historical, aesthetic, economic, social, and
scientific values [3]. Existing information models that lay a solid foundation for maintaining
cultural relic values are mainly based on parametric modeling methods, including 3D
GIS, Building Information Modeling (BIM), and Heritage Building Information Modeling
(HBIM). These approaches are essentially derived from 3D modeling technology, and
support cultural heritage management, protection, monitoring, analysis, and research [4–6].
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However, 3D models only provide visual effects and visual analysis, but lack semantic
information and knowledge related to the cultural relics [7–10].

Cultural relics, such as the Bayon Temple [11] and the Digital Michelangelo Project [12],
usually have complex geometric structures and highly detailed geometric textures. The
parametric modeling method, which is a popular method for 3D modeling, is not suitable
for constructing 3D models of culture relics, because it requires a large amount of manual
work and oversimplification to model complex geometries of culture relics [13]. Another
popular 3D modeling method, named 3D GIS, is mainly used for visual display and
spatial analysis of macro scenes. BIM and HBIM have been developed for 3D modeling of
buildings with cultural heritage. Despite the complex geometric features that are necessary
for cultural relic modeling, the damaged parts on the surface of cultural relics, such as traces
of weathering, are likely to cause subtle geometric deformation, which plays an important
role in cultural relic protection. Thus, with respect to the 3D digitization of cultural relics,
the level of representation of geometric details is critical. Moreover, adding semantic
information and knowledge to the 3D models of cultural relics can significantly expand
the application range of these information models and improve the level of information
acquisition for those who use the models. As such, developing an information modeling
method with more comprehensive applicability is necessary to express high-level geometric
details of cultural relics, and to be associated with semantic information.

Smart point clouds are a new data platform that addresses the situation in which
a large amount of discrete spatial information from active remote sensing technology
is underutilized, which hinders data mining [14]. However, this is a general concept
without considering the characteristics of the cultural heritage field. Focusing on cultural
heritage, Poux et al. [15] adopted the concept of smart point clouds and developed a
built heritage information system prototype based on high-resolution 3D point cloud
data. This study emphasized the management and storage of geometric information
and semantic information for cultural heritage, but placed little focus on the fusion of
geometric scenes and the diverse information of cultural relics. Cultural relics involve
multispatial scales, multitemporal stamps, and multidisciplinary scenarios. Researchers
have mainly conducted cultural relic-related studies in macro scenes where they are located.
In addition, cultural relics undergo deformation over time, which is usually caused by
damage or natural disasters, and needs to be recorded from the temporal perspective.
Multidisciplinary integration refers to organizing the information that stakeholders are
concerned about from different perspectives into a 3D scene to facilitate information mining.
In this manner, the relationship among the multidimensional information of cultural relics
can be established in the context of space, time, and multiple disciplines.

In this work, a novel information modeling method was proposed based on 3D point
cloud data to meet the above-mentioned demands through modeling complex geomet-
ric structures with detailed geometric textures of cultural relics, and linking them with
semantic information and knowledge. This model presents a new solution for modeling
multidimensional information of cultural relics by integrating a high-precision visualiza-
tion 3D model with multidisciplinary semantics. This model is not limited to a specific
type of cultural relic, but serves as an open and extensible model framework that associates
point sets in the point cloud data with valuable information, forming a spatiotemporal and
semantic information platform. Moreover, this 3D point cloud data-based model is able to
update and enrich the digital model of cultural relics in the context of dynamic manage-
ment of space, time, semantics, files of cultural relics, and their specific environment. To
briefly summarize, our proposed smart point cloud framework based on high-density (in
the x, y, z direction) multispatial scale 3D point cloud datasets is able to:

• Provide a variety of information and support researchers from different disciplines to
study cultural relics; for example, any semantic information, or associated files, can be
attached to the point cloud.
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• Conduct virtual restoration of damaged cultural relics. Based on the acquired point
cloud data of a damaged artifact, it is feasible to reconstruct its original geometries
using a computer.

• Investigate spatial distribution of damaged information of cultural relics.
• Measure geometric deformation of cultural relics varying with time.
• Provide a conceptual model for developing a cultural relic information management

system. Based on the conceptual model, the logical data model and physical model
are established based on the selected objects.

This paper is organized as follows. Section 2 outlines the existing attempts to apply
point cloud data and current 3D modeling methods to modeling cultural relics, including
their shortcomings. Section 3 presents the basic framework of our proposed information
model based on 3D point cloud data and provides details about each step, analyzing its
main components and its purpose. In Section 4, a famous cultural relic, the Dazu Thousand-
Hand Bodhisattva Statue, which is part of the world heritage site of Dazu Rock Carving
located in Chongqing, China, was selected as a case study to illustrate the performance of
our proposed model. Finally, the results are discussed in Section 5, followed by conclusions
in Section 6.

2. Related Work
2.1. 3D Point Cloud

The point cloud model is able to express the geometric details of cultural relics. Three-
dimensional point cloud data, as the main source for constructing 3D models with complex
geometries in the cultural heritage field, are composed of a massive number of spatial
points, i.e., (x, y, z), to represent geometric shapes [16,17]. The 3D point cloud has been
widely used for digitalizing archives [18], physical reproduction of artworks with high
fidelity [19], geometric computing and analysis [20], online demonstration of cultural
heritage using remote control [21], and virtual restoration [22] and monitoring of cultural
heritage [23]. Therefore, the point cloud is an essential type of primary data to aid cultural
heritage management and protection.

Unmanned aerial vehicle (UAV) photogrammetry and 3D laser scanning technologies
have been widely applied for the 3D geometric reconstruction of cultural heritage with
image textures [24,25]. Moreover, these two techniques can be integrated to generate
3D point cloud data at different spatial scales [26]. Specifically, UAV photogrammetry
technology generates dense point clouds representing the surface of cultural relics based
on the prior parameters concerning exterior orientation and camera calibration. The
3D models of cultural relics can be further digitally constructed using either automatic
dense image matching techniques or interactive methods by extracting man-made features
and vector information from point clouds [27]. As a result, 3D scene reconstruction and
visualization are realized by point cloud interpolation, simplification, and texture mapping.
UAV photogrammetry is mainly adopted for 3D reconstruction of large scenes, such as
cultural heritage protection areas, ruins, and building groups.

In the past 20 years, 3D laser scanning technology has provided technical methods
for the high-precision digitization of cultural relics. Three-dimensional laser scanning
technology outperforms other traditional technology because it is able to detect complex
geometric shapes with high accuracy to provide more detailed geometric information [9].
This technology typically relies on terrestrial laser scanning (TLS) and hand-held laser
scanning to directly acquire 3D spatial information of cultural relics, which corresponds to
a dense point cloud dataset composed of 3D spatial coordinates [28,29]. In this manner, 3D
models of cultural relics are generated through resampling, denoising, and cleaning of the
obtained dense point cloud data. Because the increase in the distance between lidar sensors
and the measured cultural relic leads to the decrease in the scanning accuracy, 3D laser
scanning technology is mainly applied to 3D reconstruction of cultural relics in medium
and small scenes, e.g., small cultural heritage protection areas, independent buildings,
and sculptures. Furthermore, based on the 3D information, the color of each point can
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be provided by sensors through an additional passive channel. This information allows
real-time rendering of 3D models [30]. In addition, 3D laser scanners of sensors are used
to obtain the laser reflection intensity, which assists point cloud segmentation and object
recognition [31]. These additional parameters, including reflection intensity and color,
enrich the point cloud attributes, improving the object representation in 3D scenes. [32,33].
However, such additional information places little significance on semantic modeling of
cultural relics.

The majority of point cloud-based models are mainly applied to visualization and
visual analysis, and are unsuitable for most other spatial analyses due to a lack of semantics.
Point clouds suffer from several structural limitations, resulting in indirect exploitation
via human-interpreted deliverables [14]. In this process of data processing, it is likely the
geometric details, and the advantage of the high accuracy of the point cloud data, will be
lost. Using laser scanners or image-based reconstruction methods to generate a point cloud
dataset, users must first identify collections of points that belong to individual surfaces, and
fit surfaces and solid geometry objects appropriate for the analysis [34]. Three-dimensional
point cloud datasets, with geometric, radiometric, and semantic properties—i.e., the rich
point cloud paradigm—based on dense and semantic 3D point clouds, such as in the case
of city 3D models, are only suitable for micro to mesoscale models, and not large spatial
scale 3D modeling [35]. In cultural relics with intricate geometric details and shapes, the
concepts of the rich point cloud or the smart point cloud can be used to address the problem
of the lack of semantic information in 3D point cloud datasets.

2.2. BIM and HBIM

In cultural heritage, BIM and HBIM are derived from point cloud data through
parametric modeling. The management of cultural heritage is realized through additional
semantic information. BIM is a standardized modeling process applied to architecture that
allows the creation of 3D building models and their expression in conjunction with digital
data, text, images, and other types of information [36,37]. BIM has conferred numerous
benefits to the construction field, such as enhanced design visualization, improved data
exchange, improved productivity, and excellent product quality. These characteristics have
led to the gradual application of BIM technology in historic building conservation [38].
Moreover, BIM models can be used to carry out structural simulations, stress analyses,
and protection analyses [39]. It is thought by specialists of point cloud processing that this
knowledge helps improve the automation, accuracy, and resulting quality of modeling [40].

Via geometric models, HBIM can be applied to the comprehensive protection and
restoration of historical buildings, the interpretation of their detailed history, and the record-
ing of various information relating to architectural heritage preservation and restoration
status over time [41]. Integration of geometric data and semantic information is essential
for managing the architectural heritage, either for its restoration, its maintenance, or for the
dissemination of the richness entailed in these historical assets [42]. By extending the capa-
bility of the BIM platform, HBIM geometric elements and semantic ontology knowledge
are joined in a unified BIM environment, including accurate parametric modeling using
computer graphics, automatic semantic segmentation of 3D point clouds from reality-based
modeling, spatial information management, analysis by GIS, and knowledge modeling
by ontology [43,44]. However, BIM is generally based on the scan-to-BIM process, which
allows the generation of 3D models from point clouds. To transform from a point cloud
to BIM or HBIM, the reverse modeling process causes accuracy problems, such as in the
case of the mesh quality, depending on the point cloud density [45–47]. Significantly, the
difficulties increase because of the peculiarity of the structural behavior and the singularity
of the geometrical shape. Thus, it is challenging to balance the geometric accuracy of
3D models with parametric modeling [48]. Therefore, there are two limitations in the
application of BIM or HBIM to cultural relics. The first is that BIM and HBIM are widely
used in buildings or historic buildings, but are not applied to other artifacts. Second, it is
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difficult to model the complex structure of cultural relics based on the parametric modeling
method because the loss of surface details is unavoidable in the process of 3D modeling.

Thus, the information modeling of cultural relics with complex geometries involves the
trade-off between geometric details and rich semantic information or knowledge. The point
cloud data can be more readily used for expressing the high-precision geometrical informa-
tion of cultural relics but lacks semantic information. However, point cloud data provides
significantly less semantic information or knowledge than BIM and HBIM. Parametric
modeling methods, such as BIM or HBIM, cannot guarantee high-precision geometric
information, but involve semantic information. Therefore, the contribution of this paper
is to propose a new information modeling framework based on 3D point cloud data that
balances the maintenance of geometric details and engagement of semantic information.

3. A General Framework for Smart Point Clouds of Cultural Relics

Figure 1 shows the overall modeling process based on the proposed smart point cloud
framework for 3D modeling of cultural relics with complex geometries.
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3.1. Time

Time information is a necessary indicator for tracking the geometric deformation of
cultural relics. Geometric deformation is usually caused by changes in the microenviron-
ment, such as cracks caused by temperature and humidity, tilting of the geometric structure
caused by uneven pressure, natural disasters, and other factors. A better understanding of
the causes of geometric deformation enables evaluation of the safety and appropriateness
of cultural heritage management, and heritage protection can support auxiliary decisions
for the sustainable conservation of cultural relics. In addition to the timestamp indicating
when the 3D point cloud data of a cultural relic is collected (i.e., Tcol) to investigate whether
it has been deformed, the time information regarding the same cultural relic also includes
the timestamp after natural disasters such as earthquakes, floods, and rainstorms (i.e.,
Tnd), and the timestamp after protective restoration (i.e., Tpr). In this manner, the time
information with regard to a cultural relic is composed of a time series in the proposed
information model, which can be described as TCR =

(
Tcol , Tnd, Tpr

)
. Therefore, the time
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information of 3D point cloud data is first provided in the information model framework,
and acts as a basis to organize other information.

3.2. Levels of Detail (LOD)

The LOD of 3D point cloud data are analyzed from the spatial perspective. The
hierarchical framework indicating the multispatial scale of cultural relics, including the
macro-, meso-, and micro-scenes of the object, involves a hierarchical relationship under
different observation scales. Therefore, a hierarchical framework with different spatial
scales is required to connect the acquired data to fulfill the requirements of research from
different disciplines. Multispatial scales mean that 3D point cloud data of multiple scales
are required to meet various cultural relics modeling demands [49,50]. It is necessary to
select data acquisition methods with different spatial resolutions according to the specific
application requirements. The data volume and point cloud accuracy of the model meet
the needs of current research. The hierarchical LOD are divided into three levels in this
framework as follows.

LOD0: macro-scene, i.e., the surrounding environment where the cultural relics
are located.

LOD1: meso-scene, i.e., the main research object.
LOD2: micro-scene, i.e., part of the research object or details on cultural relics.

3.3. Complex Geometric Information
3.3.1. Feature Extraction

Geometric feature extraction refers to extracting the representative geometric infor-
mation contained in the 3D point cloud data of cultural relics [51–54]. Some features are
obvious and easy to extract, such as those obtained by projection or measurement, whereas
other geometric features must be extracted by running complex algorithms. For example,
as shown in Figure 2a, by calculating the degree to which the local curvature of the neigh-
borhood point cloud changes, the roughness of the cultural relic’s surface can be obtained,
which can be used to identify its sharp features. In particular, for certain microscopic
features, geometric descriptors need to be expressed, such as the roughness of the model
surface, and the extraction of convex and concave parts, which are geometric features used
to identify and splice cultural relic fragments. Local surface descriptors representing the
geometry of local regions of the surface support extraction of salient geometric features,
which assists the search for self-similarity among 3D models [55]. The purpose of local
surface descriptors is to automatically identify salient features that have a multitude of
similar occurrences across the given surface. The skeleton line usually holds essential
information that supports the stability of the object. The Laplacian operator is a feasible
method to extract the skeleton line from the point cloud and mesh. This operator iteratively
and smoothly contracts the point cloud or mesh to form a point set that provides the shape
of a skeleton. Accordingly, a number of key points are selected to generate a fitted skeleton
by simplifying the point set [56]. Figure 2b shows the result of the skeleton lines as a
basic geometric shape of an object and the topological relationship between the fingers.
The skeleton line extraction is carried out using the method proposed by Au et al. [57],
thus illustrating the performance of this applied method for extracting the skeleton line of
cultural relics.

An object is made up of some essential elements that correspond to technical terms
in cultural heritage. The element is the cognition of the structure of cultural heritage.
Geometric structure (i.e., different regions with semantics in the point cloud and the
topological relationship between those regions) provides significant assistance in the
analysis of the geometric form and structure of cultural heritage objects. For example,
extracting repeated geometric textures of the same shape or extracting the same type of
damaged information leads to similar geometric deformation. From another perspective,
point cloud segmentation can be understood as adding one or more attributes to the spatial
point, categorizing points and point sets, and assigning additional information to them.
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The result can be expressed with meaningful semantics (e.g., words) in line with people’s
understanding of the geometric structure of the cultural heritage object.
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Point cloud segmentation aims to correctly partition the scene and essential elements
of cultural relics. These partitioned elements aid the cognition of the geometric structure of
cultural relics. To achieve this goal, the automatic and accurate partition of the geometric
elements of cultural relics poses certain challenges, which usually involve point cloud
segmentation and clustering algorithms [58–61]. However, in practice, bottlenecks exist
regarding the segmentation of 3D point cloud data of cultural relics, which restricts the
automation of the 3D point cloud-based framework proposed in this paper. The prominent
bottlenecks mainly relate to two aspects. First, the clustering and segmentation of 3D
point cloud data used by artificial intelligence methods are mainly applied to 3D city
modeling, and acquiring training datasets for cultural relics is difficult. Second, cultural
relics are characterized by special features, which cannot be easily addressed by the existing
methods. As a result of the above-mentioned bottlenecks, point cloud segmentation
mainly relies on manual annotation. Currently, commercial software is generally used
for manual segmentation and semantic annotation of segmented regions. Nonetheless,
successful attempts have been made that demonstrate the potential for practical application.
For example, following an initial partition of point cloud data, a RANSAC-based plane
fitting algorithm has been used to segment point clouds into meaningful subsets [62]. E.
Grilli et al. [63] analyzed the efficiency of the capability of geometric covariance features
supporting cultural relic point cloud segmentation and classification.

3.3.2. Semantic Linking

Semantic linking is the process of linking the 3D point cloud data, as a whole or a
subset (i.e., an element), with semantic information and related files. Semantic information
mainly includes terminology, semantic descriptions, spatial location, geometric charac-
teristics, damage investigation results, heritage values, and other relevant information.
The formats used to explain cultural relics include audio, video, text, image files, and
3D models.

3D point cloud data has spatial properties (i.e., (x, y, z)), color properties (i.e., (x, y, z,
R, G, B)), and reflection intensity properties (i.e., (x, y, z, R, G, B, ref)). Structured data is
formed by storing point cloud data in a database (e.g., Oracle or MySQL) according to the
defined data structure. In addition to spatial coordinates organized as (x, y, z), which are
necessary properties of point cloud data, other semantic information, such as descriptions
of damage investigation results, heritage value is organized in terms of an individual point
or a point cluster. These additional semantic properties are usually generated by clustering
and segmenting 3D point cloud data of cultural relics. In addition, these properties are
associated with specific files by setting the property of a unique identifier or the path to a
file (e.g., a unique URL). Thus, semantic properties of cultural relics are related to files in
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differentiated ways, which distinguish one from another. Our proposed smart point cloud
framework essentially reflects the relationship between individual points or point clusters
and other multidimensional information, which together constitute a 3D point data-based
information model. It should be noted that the framework is also able to express complex
and interdisciplinary content. Therefore, there is a possibility of an intersection among
different 3D point datasets; that is, a point included in several point cloud datasets is likely
to be assigned with multiple attributes or elements.

4. Case Study

We conducted a case study using the Dazu Thousand-Hand Bodhisattva Statue in Dazu
Rock Carvings, Chongqing, China, which is a representative cultural relic with complex
geometries, to demonstrate the performance of our proposed smart point cloud framework.

4.1. Cultural Relic Background

The Dazu Rock Carvings are a famous world cultural heritage site located in Dazu dis-
trict, Chongqing city, China. As shown in Figure 3, the Dazu Thousand-Hand Bodhisattva
Statue is a gilded clay and cliff stone sculpture with thousands of hands. The diverse hand
postures and the held objects indicate different Buddhist meanings, generating a huge
number of complex geometries. The statue is 7.7 m in height and 10.9 m in width. The
rock face is carved with 830 Guanyin hands gripping different accessories. The surface of
the stone-carved statue is gilded, and the objects are painted in various colors. Due to the
statue’s age, the gold leaf and colored paintings on the surface of the statue have fallen off,
exposing the rock mass. The fingers of some Guanyin hands are broken and missing.
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by Su Yang.

4.2. Smart Point Cloud of Dazu Thousand-Hand Bodhisattva Statue

Based on the conceptual smart point cloud framework that was introduced in Section 3,
the Dazu Thousand-Hand Bodhisattva Statue was used to illustrate how this model is
applied to cultural relics with complex geometries. As shown in Figure 4, the extended
framework regarding the smart point cloud includes the time at which the data was
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collected, the scenes of three spatial scales, the point cloud data collected for different
levels of detail (i.e., LOD0, LOD1, LOD2), and the related semantic information and
associated files.
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Three-dimensional point cloud data were collected for the Dazu Thousand-Hand
Bodhisattva Statue in 2011 and 2015. During 2011 and 2015, a restoration project was
undertaken for the statute. The data were collected according to the three detail levels that
were introduced in Section 3.2, namely LOD0, LOD1, and LOD2. It is noted that LOD0
data was not collected in 2011. Table 1 summarizes the technology and equipment used for
the 3D point cloud data collection. More details are provided below:

• LOD0 in the macro-scene was generated from the 3D point cloud data that were
collected using UAV photogrammetry technology in a large area where the cultural
relics are located (see Figure 5). A fixed-wing UAV system coupled with an RTK
and equipped with a Sony A7RII full-frame camera was used. The area was around
one square kilometer. The UAV’s flying height was about 100 m and more than 8000
images were produced. The computed Root Mean Square Error (RMSE) of seven
targets was 2, 2, and 3 cm in the X, Y, and Z direction, respectively. These parameter
values meet archaeological and research requirements. The collected 3D point cloud
data were linked to semantic information, including basic information such as name,
age, background, and description, in addition to the information extracted from
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the collected historical documents, research papers, audiovisual materials, project
drawings, etc.

• LOD1 in the meso-scene was generated from the 3D point cloud data of the Dazu
Thousand-Hand Bodhisattva Statue that were collected using TLS technology (see
Figure 6). This scene recorded the statue with a total of 50 million points. The data
collection area was around 12 m long and 8 m high. This area was bigger than the
statue because we took the edge area of the statue into account. Then, a variety of
damaged areas, different surface materials (e.g., golden, painted, exposed rock), all of
the Guanyin hands, and decoration objects held by the hands, were extracted, during
which a unique identification was assigned to each. For instance, the damaged area
was associated with semantic information, such as the type and extent of damage.
After applying the segmentation or clustering, the area of the damaged parts was
calculated from the point clouds, which contain the semantic information (e.g., damage
type) attached to each point or point patch.

• LOD2 in the micro-scene was generated from the 3D point cloud data that were
collected using handheld 3D laser scanners. Because the point cloud data collected
in this manner were dense (e.g., sample spacing of 0.1 mm), the subtle geometric
forms on the surface of the statue were able to be clearly observed (see Figure 7). Even
the slightly damaged areas that did not result in geometric deformation can also be
marked by our model. The point set representing a finger was linked with semantic
information describing its preservation status. As shown in Figure 4, LOD2 can be
composed of multiple 3D point cloud datasets (i.e., LOD2-1, LOD2-2, . . . , LOD2-n). In
spite of the damaged areas, LOD2 also includes other areas, such as the well-preserved
areas of cultural relics, of which the expression form is consistent with the description
method of the hand on the statue, i.e., LOD2-1. In the scene of LOD2, point cloud
data for a total of 829 Guanyin hands were collected, comprising 320GB in total. In
addition, about 4000 photos were taken to record the status of each Guanyin hand
under visible light.
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Figure 5. LOD0—The macro-scene in which the cultural relic is located was collected in 2015.
A visualized 3D model was created by Beijing Digsur Science and Technology Co., Ltd. (Beijing,
China) using the oblique photogrammetry technique with UAV data. Data was collected by UAVs,
and dense point clouds were generated by oblique photography. Triangular mesh models were then
constructed with textures.
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Figure 6. (a) LOD1—the meso-scene, comprising 3D point cloud data of the Dazu Thousand-Hand
Bodhisattva Statue in 2011; (b) partial capture of point cloud data in 2011; (c) LOD1—3D point cloud
data of the Dazu Thousand-Hand Bodhisattva Statue in 2015; (d) partial capture of point cloud data
in 2015.
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Figure 7. (a) LOD2—the micro-scene, comprising 3D point cloud of a Guanyin hand in 2011; (b) The
3D model is the result of virtual restoration, one special eye (heavenly eye) in the palm of hand and
finger joints shown high ability to express geometric details.

Point cloud data does not contain semantic information. An information model is
formed after the construction of the overall point cloud, or after a point set is associated
with the semantic information. In this case, the information model contains two different
time points. Each time point has three different spatial scales, and each point cloud
model can be divided into point sets that are meaningful for cultural relic protection and
associated semantics or files. This information model plays a vital role in the conservation
and management of cultural heritage.
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Table 1. Details of data collection.

Year LODs Technology Equipment Data Description

2011

LOD0 - - -

LOD1 3D laser scanning Faro LS420 Sample spacing 3 mm
Sampling density 1 mm

LOD2 3D laser scanning CIM CORE Infinite 2.0 Sample spacing 0.1 mm
Sampling density 0.045 mm

2015

LOD0 UAV tilt photography FEIMA F200(UAV)
Sony A7RII full-frame camera Ground resolution 2.6 cm

LOD1 3D laser scanning Faro LS420 Sample spacing 3 mm
Sampling density 1 mm

LOD2 3D laser scanning CIM CORE Infinite 2.0 Sample spacing 0.1 mm
Sampling density 0.045 mm

4.2.1. Investigating the Spatial Distribution of Surface Material at LOD1

Because the surface of the cultural relic reveals 3D complex geometric shapes, it is
impossible to calculate the damaged area using an orthoimage. As shown in Figure 8a,
a 3D mesh was constructed using the 3D point cloud data of the Dazu Thousand-Hand
Bodhisattva Statue. The whole 3D point dataset was not associated with any attribute
information. As a result, its application was limited to 3D visualization and basic geometric
measurements, such as distance, volume, and area using the spatial information of the
point clouds. Subsequently, by manually selecting the area covered with gold leaf, semantic
information was added to the point set in the covered area, such as (X, Y, Z, gold leaf-
covered). Therefore, the gold foil covering of cultural relics was able to be generated to
realize the management of the relics’ surface material (see Figure 8b). In the same manner,
semantic information concerning the occurrence of gold leaf damaged was added to the
point set, as shown in Figure 8c. The 3D mesh with added semantic information enabled
multiple visualizations based on the different attributes, and supports the computation of
damaged areas. Finally, the surface area of the whole statue was calculated as 211.534 m2,
and the surface area of the gold leaf damage was 130.629 m2. The area of damaged gold
leaf accounted for 61.75% of the total area of the statue.
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Figure 8. (a) LOD2—3D mesh of the Dazu Thousand-Hand Bodhisattva Statue in 2011; (b) the gilded area in yellow in 2011;
(c) the damaged area of gold leaf in red.

4.2.2. Identifying Damaged Area at LOD2

Regardless of whether the damaged areas are automatically extracted from the point
cloud or manually labeled, the distribution areas of different kinds of damaged parts are
essential information for protecting cultural relics [64,65]. In the traditional approach, the
damaged area of cultural relics is labeled using traditional 2D images. However, due to the
occlusion of geometric structures, this approach makes it difficult to express the 3D shape
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and details of cultural relics with complex geometric structures. In addition, the calculation
of the damaged area using 2D images is not accurate. Figure 9 presents an example of a
damaged information map, in which the points located at different damaged regions are
associated with damaged types, as shown with different colors. Specifically, red indicates
broken parts, green indicates the area of flaking paint, yellow indicates the area of gold leaf
warping, and blue indicates the area where gold foil is missing.
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Figure 9. (a) 3D mesh of a hand from the Dazu Thousand-Hand Bodhisattva Statue; (b) different
damage types are visualized in different colors.

4.2.3. Geometric Deformation Analysis at LOD2

Obtaining point cloud data for cultural relics at specific time intervals is important
because it enables geometric deformation to be detected. The cause of geometric deforma-
tion is a major concern among cultural relic researchers. The smart point cloud modeling
framework can correlate data collected at multiple timestamps to calculate the geometric
changes in the artifacts through spatial analysis. Moreover, the model can continuously
enrich semantic information via spatial analysis algorithms.

Figure 10a shows the mesh model of a damaged Guanyin hand. Figure 10b shows
the virtual restoration result (i.e., the restoration of the damaged parts using a computer)
based on the mesh model of the damaged hand. For this purpose, we used the grid editing
function provided by the Geomagic Studio commercial software (https://www.3dsystems.
com/ accessed on 25 July 2021). Furthermore, the actual repair work was carried out by
referring to the virtual restoration result model shown in Figure 9b. The Hausdorff distance
was used to calculate the degree of variation by comparing the two models in Figure 10a,b,
which were at the same spatial scale [66]. Different colors represent the degree of variation
and add additional semantic information to the point cloud. The red area indicates the
variation degree between the two models is less than 20%, the yellow area indicates the
variation degree is between 20% and 40%, the green area indicates the variation degree
is between 40% and 60%, and the light blue area indicates the variation degree is more
than 60%. Although successful attempts were undertaken, difficulties in the overlap of
these two models remain. For example, the accuracy of the matching of corresponding
points relies mainly on the selection of these points. Different people may select different
corresponding points, resulting in randomness and uncertainty, which affects the final
result of geometric deformation analysis, e.g., the quantitative variation degree.

https://www.3dsystems.com/
https://www.3dsystems.com/
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5. Discussion

In a practical application of a smart point cloud of cultural relics with complex ge-
ometries, point cloud models of different spatial resolutions of the Dazu Thousand-Hand
Bodhisattva Statue from the macro-scene (LOD0), the cultural relic itself (LOD1), and the
cultural relic’s details (LOD2), were established. These data were linked based on spatial
scales. Thereafter, point clouds or subsets of point clouds were semantically related to
the material and damage information of the relic. The point cloud contains attributes;
thus, it can be used to visualize the spatial distribution of the cultural relic, to support the
investigation of damaged areas and engineering drawings. In addition, because the data of
two time periods can be obtained, the geometric changes in a cultural relic over time can
be obtained through change detection. This fully demonstrates the potential of applying
smart point clouds for relics having complex geometries.

The main difference between the modeling method proposed in this paper and HBIM
is based on the point cloud model. HBIM is a parametric modeling method for geometric
components, and one of its purposes is to reduce the size of the model. The second differ-
ence is the parameterized expression form, which can be reused for recurring components,
thus reducing the time cost of information modeling. However, the disadvantage of HBIM
modeling is that, using this approach, it is difficult to accurately express geometric textures
in the parameterization of complex geometric shapes. Additionally, HBIM is mainly lim-
ited to historic architecture, and cannot by easily adapted to other types of cultural relics,
such as statues of various sizes. The method proposed in this article can be applied to a
broader range of relics and scenarios. When using our method for modeling, it should be
noted that:

(1) Information related to cultural relics is hugely fragmented and involves multiple
disciplines. Some materials are old and have a wide variety of information. Therefore, it is
crucial to organize the data when constructing a model.

(2) When investigating the historical background and essential details of cultural
relic objects, it is also necessary to pay attention to the hierarchical perspective during the
interpretation of the cultural relic information. The historical background of cultural relic
information is also an essential reference.

(3) When segmenting and clustering point cloud data, attention should be paid to the
geometric structure, original form, and historical function to ensure that the results of this
process can meet human cognition requirements.

In the digitization of cultural heritage, deep learning technologies [67–69] have been
widely used for semantic segmentation of 3D point cloud datasets. These advanced data
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processing technologies can improve the efficiency of modeling and reduce time and labor
costs. However, engineering drawing production, feature extraction, classification, and
segmentation still require significant manual intervention in real-world applications.

6. Conclusions

In this study, smart point clouds of cultural relics with complex geometries were
proven to be an information model framework with potential in managing, protecting, and
applying cultural heritage. This approach emphasizes the correlation between point cloud
data in different special scales and time periods, in addition to the correlation between
point clouds and semantics or files. At present, in the field of cultural heritage, independent
data cannot support the research of multiple disciplines and different stakeholders. Thus,
information integration plays a significant role in data sharing. Due to the differences
among cultural relics, this paper does not present detailed proposals of either key algo-
rithms or implementation technologies, but emphasizes the framework of smart point
clouds and the benefits of this approach for cultural heritage. Smart point clouds of cultural
relics result from the logical integration of multisource data, and contain a large amount of
semantic information. This provides a framework for the use of digital cultural relic data
to realize greater potential. Semantic segmentation of point clouds via machine learning
methods has the potential to make the framework more automatic and intelligent, which is
an important future research direction.

A case study showed that the proposed method is feasible. This framework balances
the contradiction between geometric accuracy and semantic information of 3D models,
particularly for artifacts with complex geometric structures, and has broad applicability
and strong expansion potential. This information modeling framework can be used to
guide the design of conceptual and logical models in the cultural heritage information
system. This method allows flexible queries and retrieval between datasets (e.g., point
cloud data and point cloud data, point cloud data and their subsets, point cloud data and
semantics, point clouds and other files). Due to the integration of semantic information
with spatial information, spatial analysis can be carried out at different scales, such as
3D GIS. The spatial distribution of additional attributes provides a reference for thematic
engineering drawing.
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