
 International Journal of

Geo-Information

Article

Automatic Building Detection with Polygonizing and Attribute
Extraction from High-Resolution Images

Samitha Daranagama 1 and Apichon Witayangkurn 2,*

����������
�������

Citation: Daranagama, S.;

Witayangkurn, A. Automatic

Building Detection with Polygonizing

and Attribute Extraction from

High-Resolution Images. ISPRS Int. J.

Geo-Inf. 2021, 10, 606. https://

doi.org/10.3390/ijgi10090606

Academic Editors: Gunasekaran

Manogaran, Hassan Qudrat-Ullah,

Qin Xin and Wolfgang Kainz

Received: 12 July 2021

Accepted: 9 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information and Communication Technologies, School of Engineering and Technology,
Asian Institute of Technology, Pathumthani 12120, Thailand; samitha.ait@gmail.com

2 School of Information, Computer, and Communication Technology, Sirindhorn International Institute of
Technology, Thammasat University, Pathum Thani 12120, Thailand

* Correspondence: apichon@siit.tu.ac.th

Abstract: Buildings can be introduced as a fundamental element for forming a city. Therefore, up-to-
date building maps have become vital for many applications, including urban mapping and urban
expansion analysis. With the development of deep learning, segmenting building footprints from
high-resolution remote sensing imagery has become a subject of intense study. Here, a modified
version of the U-Net architecture with a combination of pre- and post-processing techniques was
developed to extract building footprints from high-resolution aerial imagery and unmanned aerial
vehicle (UAV) imagery. Data pre-processing with the logarithmic correction image enhancing
algorithm showed the most significant improvement in the building detection accuracy for aerial
images; meanwhile, the CLAHE algorithm improved the most concerning UAV images. This
study developed a post-processing technique using polygonizing and polygon smoothing called
the Douglas–Peucker algorithm, which made the building output directly ready to use for different
applications. The attribute information, land use data, and population count data were applied using
two open datasets. In addition, the building area and perimeter of each building were calculated as
geometric attributes.

Keywords: deep learning; building extraction; UAV images; aerial images; semantic segmentation;
transfer learning; polygonizing; polygon smoothing; attribute extraction

1. Introduction

With the development of and advances in remote sensing technology, high-resolution
imagery, including spaceborne and airborne images, is commonly available and creates
an ideal data source for producing up-to-date building maps [1–3]. Thus, with the high
demand for urbanization and the availability of high-resolution remote sensing images,
building footprint extraction has become an essential topic undergoing intense study in
the research community [4]. Moreover, building footprints with precise boundaries in the
vector polygon representation can be accessed directly by many geographic information
system (GIS) platforms. Therefore, it can be directly applied to different real-world appli-
cations, such as urban expansion analysis, urban mapping, disaster risk assessment, and
land use analysis [5].

Traditional building extraction techniques are based on manually delineating the
building footprints by the “digitizing” process, which is time-consuming, costly, and more
complex to human experts. Therefore, automatic building extraction is highly demanded
owing to the productivity gain. In recent years, tremendous achievements have been made
in applying deep learning (DL) techniques to the computer vision field because of innova-
tions in computational capabilities and the accessibility of big data [6]. Recent research has
shown that DL-based methods can effectively improve building extraction accuracy while
addressing the issues that prevail in traditional building extraction techniques [7,8].
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Although DL-based techniques are more powerful and accurate, automatic building
extraction is still challenging owing to the varied characteristics of the buildings and
the spatial and spectral characteristics of remote sensing images. Hence, more effective
algorithms are required for automatic building footprint extraction processes with different
environments and various building properties.

DL models for image segmentation require much labeled data in the training stage
because segmentation using high-resolution images would have millions of parameters.
However, many publicly available large remote sensing datasets can be used for building
segmentation tasks with spatial resolutions ranging from 5 cm to 1 m [9]. Yuan et al. [9]
summarized the accuracy and properties of different datasets available for the semantic
segmentation of remote sensing imagery.

When considering image segmentation using machine learning (ML) or DL models,
both the quality and quantity of the training dataset have a considerable influence on
the performance of the specific model. In an image dataset, owing to camera illumina-
tion, insufficient brightness, contrast, image details, and feature extraction accuracy can
be reduced [10]. As a solution to this issue, different pre-processing techniques can be
applied to generate ML readable datasets by increasing the quality and quantity of the
data. The quality of the training dataset can be improved by filtering images [11], data
normalization [12], and image enhancement techniques [10]. The training dataset quantity
can be increased using data augmentation techniques such as image rotation, flipping,
rescaling, and color balancing [10,13].

The semantic segmentation process of building extraction involves classification by
pixel-level labeling for all image pixels to categorize building footprints, resulting in a
single label for the entire image. Among the different semantic segmentation architectures
in DL, convolutional neural networks (CNNs) are widely used in the early stages [14–16].
However, the output feature map resolution is lower than that of the input images of these
CNN-based methods, resulting in much coarser layers. This phenomenon reduces the
accuracy of building identification and accurately labeling the building shape. Because
of the limitations of CNNs, fully convolutional networks (FCNs) enable the input of an
image of random size and generate a segmentation mask of the same size. In recent studies
that used FCNs for automatic building extraction [2,17], the authors modified existing
CNN architectures such as GoogLeNet [18] and VGG16 [19] to manage non-fixed size
inputs and outputs for the model [20,21]. However, as a limitation of FCNs, building
corners and edges are often neglected, and the global context information is not efficiently
considered, often producing “blobby” extraction results. Furthermore, three-dimensional
images cannot be easily transferred to the model [22].

Encoder–decoder-based DL architectures can effectively solve the end-to-end learning
problem in semantic segmentation [22]. Most DL-based segmentation models follow the
encoder–decoder technique [23]. However, encoder–decoder network models are more
effective and popular in image-to-image translation problems, which learn to minimize the
pixel value loss between the original input image and the desired output image. It has many
instances, such as noise reduction, super-resolution, image synthesis, and image recon-
struction. U-Net [24] architecture can be identified as a state-of-the-art method for building
extraction among different encoder–decoder-based models. The U-Net model shows a
better spatial refinement of the fine-grain details of input images through the decoding
process by allocating all feature maps between the encoder and decoder. Many studies have
been conducted by modifying this U-Net architecture to obtain better results [12,25–31].

Prathap and Afanasyev [12] proposed a U-Net architecture modified by adding batch
normalization wrappers with an activation function for all layers. Guo et al. [25] proposed
a multi-loss-based U-Net model with an attention block (AMUNet) for automatic building
extraction with higher accuracy. Pan et al. [26] proposed a new approach for building
segmentation based on a U-Net architecture containing a generative adversarial network
that includes spatial and channel attention mechanisms. According to the building pre-
diction results, this model outperformed several state-of-the-art approaches, including
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FCN [27], MLP [27], SegNet+ multi-task loss [28], mask R-CNN [29], 2-Levels U-Nets [30],
and MSMT [31].

Building extraction results should not be the final product of a study; instead, it
performs as intermediate data that can be applied to many different application areas. Most
of the existing research considers only the building segmentation part instead of converting
the results into a standard format that can be used as spatial data. Thus, to fill the gap
between the DL field and the geospatial field, an effective post-processing technique is
required to utilize the building segmentation results into a standard format of spatial data
that can be directly used for many applications.

This research develops a modified version of the U-Net architecture that can extract
building footprints from aerial images and unmanned aerial vehicle (UAV) images in
different cities with diverse building architectures. Furthermore, we evaluate the results
by fine-tuning a pre-trained DL architecture using transfer learning. It achieves almost
similar accuracy with less training time compared to training the model from scratch. This
approach is useful for adapting the model to building detection in a new context because it
saves a significant amount of training data and considerable training time.

From the results, it is proved that data pre-processing with image-enhancing algo-
rithms can improve the performance of DL models. However, not all image-enhancing
algorithms can improve model performance. The building footprint detection results are
converted into polygon shapefiles, and the results are compared with different polygon
smoothing algorithms to obtain more regularized building polygon shapes. Moreover,
smoothing leads to a reduction in the complexity of the building boundaries with a re-
duced file size, which would be more convenient to use the building extraction results in
another application area. Two open datasets are used to add the population count and land
use information to each building polygon. Furthermore, the area and perimeter of each
building are calculated as geometric attributes. Finally, through this research, we produce
a more regularized building polygon layer that includes beneficial attributes that can be
used spontaneously in different applications.

The study’s main contributions are:

1. Proposing a modified version of U-Net architecture for building detection;
2. Determining the effect of image pre-processing using image-enhancing algorithms

for the building detection accuracy of DL models;
3. Developing a post-processing technique that makes the building output directly ready

to use for different applications by polygonizing the building detection results with
more regularized building footprint boundaries; and

4. Extracting different attribute categories into the building footprint polygon layer by
incorporating other data sources and basing it on the building geometry.

2. Materials and Methods

Figure 1 illustrates the study’s overall methodology, including data pre-processing,
model fitting, post-processing, and attribute extraction. The input dataset contained both
UAV and aerial images. Different pre-processing steps were performed to improve the
quality of the dataset and to generate a readable ML dataset. A modified version of the
U-Net architecture was used for the building detection process. The effectiveness of transfer
learning was evaluated by pre-training the network structure using aerial images and trans-
ferring the weights into a new model for fine-tuning the building extraction process from
UAV images. Figure 1 shows the post-processing and attribute extraction steps performed
to make the building extraction output more beneficial in real-world applications.

2.1. Dataset Selection and Study Area

Here, both high-resolution aerial images and UAV images were used as input data
to train the model. Figure 2 shows the different datasets used for training validation and
testing of the model, and they were related to the input dataset section in Figure 1. We
used both aerial images and UAV images for model training to obtain a more generalized
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model and to provide the ability to detect building footprints from images with different
spatial resolutions.
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The Inria Aerial Imagery dataset [27] was used for high-resolution aerial images. The
Inria datasets contained aerial orthorectified color imagery with a spatial resolution of
30 cm. The ground truth data consisted of two semantic classes: building and non-building.
The images in the dataset covered dissimilar urban settlements in the US and Austrian
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areas. For this study, the different urban settlement types, Austin, Chicago, and Vienna,
were selected from this dataset to train the model.

UAV data is considered a convenient method for collecting timely data at a low
cost and obtaining high-resolution images and highly accurate orthoimages. A UAV
orthomosaic of Kandy, Sri Lanka, was selected to train the proposed model using UAV
data. This dataset was taken in 2018 for an urban development project, and it had an area
of 3.7 km2 (Figure 3a). The manually digitized buildings from the UAV image were also
available and contained 3,960 building polygons. The spatial resolution of the images was
5 cm. Compared with the Inria dataset, the UAV images had a higher spatial resolution,
and the clarity of the buildings was higher.
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Another UAV orthomosaic was used only as test data belonging to Ratnapura, Sri
Lanka, to test the proposed model’s inference with entirely new data to the model. This
dataset was taken in 2019 for a highway construction project, and it had an area of 1.42 km2

with a 6 cm spatial resolution (Figure 3b). There were 1189 manually digitized building
polygons for this area. Compared to other cities used here, the Ratnapura orthomosaic was
considered a more rural area with lower building density.

2.2. Data Pre-processing

Following pre-processing, steps were conducted to improve the quality of the dataset
and generate a ML readable dataset.

• Tiling the two UAV Orthomosaics of Kandy and Rathnapura into 5000 × 5000 pixel
tile sizes;

• Removing partially captured images from the two UAV datasets;
• Converting the building polygon shapefiles of the above two areas into raster data

corresponding to image tiles;
• Resizing all the tiles of both aerial images and UAV images into a 1024 × 1024 pixel

size; and
• Creating four training datasets by applying four different image-enhancing algo-

rithms: gamma correction [32], histogram equalization [33], contrast limited adaptive
histogram equalization (CLAHE) [33], and logarithmic correction [34]. These tech-
niques were selected because they are widely used for remote sensing images to
enhance brightness, contrast, and color adjustments.
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2.3. Proposed Neural Network Architecture: A Modified U-Net Model

Here, the U-Net architecture introduced by Ronneberger et al. [24] was modified to
aim at the semantic segmentation of building footprints in both aerial images and UAV
images of different cities in the world. Figure 4 shows a diagram of the proposed U-Net
architecture. The proposed network comprised convolutional and deconvolutional layers.
As Figure 4 shows, in the encoder part, convolutional layers consisted of 3 × 3 filters and
generated down-sampled outputs by convolved using ReLU followed by max pooling.
In the decoder part, transposing convolutional operations with and without stride up-
samples were used. The output of the encoder produced another image with the exact
size of the input image as the final output. Each corresponding down-sampling and up-
sampling output with the exact sizes were connected (skip connections) by a concatenation
operation. This allowed the gradient (information) to pass through different levels of
the network efficiently. Dropouts and batch normalizations were added to increase the
model performance and improve the model stability (see the dark red section in Figure 4).
Compared to the original U-Net architecture [24], the depth of the model and the number
of skip connections were increased to accurately segment the variety of buildings from
different data sources. The size of the model was decreased by reducing the number
of trainable weights to reduce the training time and the required graphics processing
unit (GPU).
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2.4. Transfer Learning Approach for Building Footprint Extraction from Different Data Sources

This study demonstrates a transfer learning approach to investigate its effect on
building extraction using different data sources (see Figure 5). Training a DL model from
scratch requires a significant amount of training data and considerable training time. If
only a few images are used for training the model, overfitting will occur. The transfer
learning method solves this challenge because the weights of a pre-trained model from
a large dataset is used as the initial value of a new model. In other words, a pre-trained
model can be used as a new model for feature extraction in a new context.
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Figure 5 represents the methodology for the transfer learning approach section in
Figure 1. The proposed U-Net architecture was pre-trained using the aerial images of Inria
dataset and the weights were transferred into a new model for fine-tuning the building
extraction process from UAV images.

2.5. Post-Processing with Polygonization and Polygon Smoothing

Up to this point, building footprints from the test datasets were generated in raster
format. Converting them to polygons would be more beneficial because polygon layers
could be directly used in any GIS platform and could be applied spontaneously in in-
dustrial applications. The following post-processing steps were conducted to polygonize
the predicted building footprint mask into a vector shapefile format and smoothing the
polygon shapes.

• Georeferencing building prediction raster tiles using coordinate information of the
corresponding input tiles;

• Merging the georeferenced building prediction tiles city-wise to create a complete
building mask raster layer for each city;
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• Converting merged raster layers into a building polygon shapefile format; and
• Testing with three polygon smoothing algorithms with different smoothing ratios to

determine which smoothing algorithm yields the best results:

1. Douglas–Peucker algorithm [35];
2. Visvalingam’s effective area algorithm [36];
3. Visvalingam’s weighted area algorithm [37].

2.6. Attribute Extraction

Building footprints resulting from DL segmentation models do not contain any use-
ful information as attributes of the predicted layer. Thus, including different attribute
information to the building layer would be beneficial when using these building polygons
in real-world applications such as urban planning and urban development monitoring.
Therefore, in the final stage of the proposed methodology, different attribute categories
were extracted into the building footprint vector polygon layer based on building geometry
and by incorporating it with other data sources. Figure 6 shows the proposed methodology
for the attribute extraction process, representing a more detailed methodology for the
attribute extraction section in Figure 1.
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As the geometry data, each building’s area and perimeter were calculated and added
to the polygon shapefile as attribute fields. Next, to incorporate land use classes into the
building polygons, Open Street Map (OSM) land use data was selected because it is an
open dataset and is available in most countries worldwide. Therefore, it was considered
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more generalized to any country or city regarding land use classes [38]. The Spatial Join
tool in ArcMap software was used to add land use data to the smoothed building polygons.
This process involved matching attributes from the OSM land use layer to the building
polygon layer based on their relative spatial locations.

As population data, we selected WorldPop population count data because this dataset
is also an open dataset available for most countries worldwide [39]. The WorldPop dataset
consists of raster images in GeoTIFF format, and the resolution is three arcs that are nearly
equal to 100 m at the equator. The units represent the number of people per pixel. A
dasymetric method was used to add population count data to each building (Figure 6).
Because the WorldPop raster data had a low resolution, it was resampled into 2 m × 2 m
pixel size by considering that all the buildings in the study cities were larger than the
building area of 4 m2. Next, the population counted for the new pixel sizes were calculated,
and the total value of all pixels inside each building was calculated.

3. Results

This sections’ subsections illustrate the different results obtained from this research:
model training details, building detection results from the model, results of the trans-
fer learning approach, model detection accuracy with image pre-processing, results of
polygonizing and polygon smoothing, and results of attribute extraction (Figure 7).
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The proposed U-Net network was trained on a GPU on Google Colab. The Keras DL
framework with the TensorFlow backend was employed for model implementation. The
training details of the model were:

• Total training time: 124 min;
• Number of epochs: 200;
• Batch size: 2;
• Loss function: weighted root mean square error;
• Optimizer: Adam;
• Total parameters of the model: 4,241,089;
• Input image size: 1024 × 1024 RGB images;
• Output image size: 1024 × 1024 building mask images;
• Total images: 155.

3.1. Building Detection Results of the Model

Figure 8 shows the results of the building detection from the modified U-Net model of
some sample images from the test data in the four cities. Figure 8’s first column shows the
model’s results, the second column shows the RGB images, and the third column shows
the ground truth data. Table 1 shows the building detection accuracies of the proposed
model for the four cities. According to the results in Table 1, the network performed better
for UAV data in Kandy. This was because when compared with the Inria dataset, UAV
images had a higher spatial resolution (30 cm on Inria images and 5 cm on UAV images),
and the clarity of the buildings was higher. Therefore, the model performed well on the
UAV data for building detection. Table 2 shows the average building accuracies of the
validation data and test data for the four cities.

Table 1. Building detection accuracy for the four cities from the modified U-Net model.

City Country Data Source IoU % Pixel Accuracy Precision Recall

Vienna Austria Inria Aerial Images 67.73 0.89 0.88 0.87
Chicago USA Inria Aerial Images 54.32 0.91 0.81 0.78
Austin USA Inria Aerial Images 52.29 0.93 0.84 0.78
Kandy Sri Lanka UAV Images 70.85 0.89 0.89 0.79

Table 2. Average building detection accuracy of the four cities from the modified U-Net model.

Evaluation Metric Validation Data Test Data

IoU (%) 61.89 61.90
Overall Pixel Accuracy 0.92 0.91

Precision 0.86 0.86
Recall 0.83 0.82

Next, to test the model performance with a new area, the proposed U-Net model
was tested with a new UAV dataset belonging to Ratnapura, Sri Lanka, which was not
used for training. In this dataset, 22 tiles with a size of 1024 × 1024 pixels were included.
Figure 9 shows the building prediction results for the new dataset. Table 3 lists the model
interference accuracy for the new dataset.

Table 3. Model interference accuracy with UAV dataset in Ratnapura, which is new to the model and
used only as test data.

IOU % Pixel Accuracy Precision

60.56 0.92 0.83
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Figure 8. Building detection results from the developed DL network for the four cities ((a): results from the model, (b): RGB
images, (c): ground truth data).
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3.2. Results of the Transfer Learning Approach

The proposed U-Net architecture was pre-trained using the aerial images of the Inria
dataset and transferred into a new model for fine-tuning the building extraction process
from UAV images. Table 4 shows the results of the pre-trained model and the fine-tuned
model from the UAV test data in Kandy, Sri Lanka.

Table 4. Results of the pre-trained model from aerial images of Inria dataset and the fined-tuned
model from UAV test data in Kandy, Sri Lanka.

Metrics Initial Model by Training
Only with Aerial Images

Fine-Tuned Model by
Retraining with UAV Images

IoU (%) 11.31 69.86
Accuracy 0.66 0.90
Epochs 150 80

Training Time 60.9 min 37.8 min

The results in Table 4 reveal that the transfer learning approach improved the per-
formance when fitting the model to data with a new context. Moreover, this strategy
demonstrated that the number of epochs required and the training time was less to fine-
tune the model for building extraction from different data contexts. Furthermore, compared
to the accuracy results obtained by training the model from scratch using UAV and aerial
images together, this transfer learning approach achieved almost similar accuracy with
less training time. Finally, to extract building footprints from a new dataset with different
properties, a transfer learning approach could preserve the low-level features from one
dataset to another and can be reused without training from scratch.

3.3. Building Detection Accuracy of the Model with Image Pre-Processing

We evaluated the accuracy of the proposed model with each enhancing image algo-
rithm, which was applied to the input images (see Table 5). According to the comparison
of the results, it was evident that the Gamma correction method was not practical for
both UAV and aerial images, which was used here because the accuracy was decreased.
The building prediction accuracy for the aerial images was improved after applying the
logarithmic correction method to the input images. The CLAHE method improved the
building prediction accuracy for UAV images. The histogram equalization algorithm
slightly improved the building prediction accuracy for both the UAV and aerial images.

We compared the accuracy of the proposed U-Net model with that of the original
U-Net architecture [24], created for biomedical image segmentation (Table 6). Without
adding batch normalization, the original model did not predict the buildings for the
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selected dataset. Table 6 shows the experimental results of the different DL architectures
for building extraction. Compared with the original U-Net architecture, the performance
of the proposed model was higher with an IoU of 33.4% with the same dataset.

Table 5. Accuracy of the model with different image-enhancing algorithms (highest IoU value for each city is bolded).

Original Images Gamma Corrected Histogram Equalized CLAHE Applied Logarithmic Corrected

City IoU % Pixel
Accu. IoU % Pixel

Accu IoU % Pixel
Accu. IoU % Pixel

Accu. IoU % Pixel
Accu.

Vienna
(Aerial) 67.73 0.89 64.86 0.88 68.68 0.89 67.42 0.89 71.39 0.88

Austin
(Aerial) 52.29 0.93 46.98 0.93 51.21 0.94 50.66 0.93 55.21 0.94

Chicago
(Aerial) 54.32 0.91 52.42 0.91 54.38 0.91 52.91 0.91 56.88 0.91

Kandy
(UAV) 70.85 0.89 63.23 0.85 70.92 0.89 71.07 0.89 69.72 0.89

Ratnapura
(UAV) 60.56 0.92 52.13 0.88 65.64 0.93 68.0 0.94 57.04 0.92

Table 6. Accuracy comparison of the proposed U-Net model with the different state-of-the-art DL architectures.

Model IoU (%) Overall Pixel Accuracy

Original U-Net [24] with same dataset 28.48 0.89
Proposed U-Net 61.90 0.91

Proposed U-Net with pre-processed images by Logarithmic corrected 63.30 0.91
FCN [27] * 53.82 92.79

Mask R-CNN [29] * 59.53 92.49
2-Levels-U-Nets [30] * 74.55 96.05

GAN-SCA [26] * 77.75 96.61

* Models are trained on the Inria aerial image dataset, and the results are referenced from the study of Pan et al. [26].

According to the accuracy comparison in Table 6, the accuracy metrics of the model
developed here were lower than those of state-of-the-art DL networks [26,30]. The main
advantage of our DL network is that it is cost-effective because we developed it in Google
Colab, generated outputs with less training time (124 min), and detected building foot-
prints in both UAV and aerial images. Moreover, the main contribution of our research
is to evaluate the effect of post-processing and generate polygon data with regularized
boundaries, including beneficial attribute information. Our methodology can be applied
to any state-of-the-art building detection network for semantic segmentation to generate
building footprint polygons with attribute information.

3.4. Post-Processing: Polygonizing and Polygon Smoothing

The predicted building raster masks were converted into polygon shapefiles, and
Figure 10 shows some sample results. Next, the generated building polygons were tested
with three polygon smoothing algorithms using the Mapshaper application, and Figure 11
shows the results. For simple building architectures with rectangular shapes, all three
simplification algorithms yielded similar results. However, when the architecture of the
buildings became more complicated (see the white dashed lines in the example images of
Figure 11), polygons smoothed with the Douglas–Peucker algorithm showed more refined
boundaries and were more similar to the actual building shape. Figure 12 compares the
results of the initial polygons and smoothed polygons from the Douglas–Peucker algorithm
(DPA) with a smoothing ratio of 2%. The smoothing process reduced the complexity of
the building boundaries, resulting in a building polygon with more refined boundaries.
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Furthermore, it reduced the file size, which would be more convenient to use the building
extraction results in another application area.
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3.5. Attribute Extraction

The geometric data, building area, and perimeter of each building were calculated
and added to the polygon shapefile as attribute fields using ArcMap software (Version
10.8.1). Figure 13a shows an Austin building area map. In addition, open street map land
use data are incorporated into the building polygon files as land use attributes. Figure 13b
shows the added land use classes for each building in Austin. The population count is also
added to the building polygon layer from the WorldPop population count data. Figure 14
shows a map of the calculated population for each building in Vienna.

Figure 15 shows an evaluation of the results of the attribute extraction process. Here,
we compared the same part of Vienna with land use data and population data. Buildings
belonging to different land use categories and buildings showing a higher population
count were selected, and the selected buildings were identified in Google Street View.
The selected land use categories belong to commercial, industrial, residential, retail, and
others. When these buildings were identified, it was proved that these land use classes
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were correctly added to the building layer. Moreover, when examining the buildings
with a higher population count, these buildings were either high-rise buildings, industrial
buildings, or hospitals (see Figure 15).
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Figure 15. Evaluation of the results in the attribute extraction process with the help of Google Street View. (Average
population values shown in the buildings of the left map are the values from the attribute extraction process).

4. Discussion

This section discusses the limitations of the proposed DL network and investigates
the effect of polygon smoothing.
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4.1. Model Limitations

Note that the loss of building prediction accuracy of the proposed approach here was
due to the undetected buildings presented in the ground truth data (false negatives) and
the detection of buildings in non-building locations (false positives). When observing the
building prediction results of the proposed model, the following limitations were identified:

• When the size of the buildings became minor compared to the other buildings in the
area, the minor buildings tended to go undetected;

• When buildings were partially covered with trees, such buildings were undetected;
• The shapes of some detected buildings were odd because, in those areas, it was

difficult to distinguish the building’s edge from the surrounding area.

Figure 16 shows the building detection results for undetected buildings in a high-
density urban area from aerial images. The detected buildings are yellow, and the unde-
tected buildings are red. When examining these figures, it was obvious that most of the
undetected buildings were smaller in size than the surrounding buildings in the area. We
calculated that the building area of these undetected buildings was less than 25 m2.
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Figure 16. Undetected buildings from the proposed model due to the building size becoming minor.

Figure 17 shows the detected and undetected buildings from a less urban area that
mostly contained residential buildings. In this area, most of the undetected buildings were
partially or entirely covered with trees. In addition, due to many trees being located around
the buildings, the edges of the buildings were not clear. Thus, the shapes of some detected
buildings were not accurate.
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Figure 17. Undetected buildings due to being covered by trees.

In some detected buildings, the shapes were odd because it was challenging to dis-
tinguish the building edges from the surrounding areas. In the aerial images, buildings
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in the areas with shadows, overexposed areas, and areas with complicated backgrounds
mostly showed these imperfect shapes (Figure 18(a1,a2)). UAV images have fine-grained
targets with higher amounts of complicated details because of their high spatial resolution.
Sometimes, these finer details acted as noise when identifying the building edges from the
surroundings. Thus, these buildings also had imperfect shapes (Figure 18(b1,b2)).
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Figure 18. Detected buildings with imperfect boundaries in aerial and UAV images: (a1,a2) show
imperfect building boundaries in aerial images; (b1,b2) show imperfect building boundaries in
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4.2. Effect of Polygon Smoothing

To investigate the effect of building smoothing, the number of vertices was counted in
the initial and smoothed polygons. Figure 19 shows the smoothing results for buildings
in urban areas that have simple building shapes and relatively large building sizes. As
Figure 19 shows, when the boundaries of buildings were clearly visible in the image
and buildings had simple shapes, smoothing with a 2% ratio resulted in more refined
polygon shapes and removed more than 95% of unnecessary vertices in the initial polygons.
However, when buildings’ sizes were relatively small and buildings were partially covered
with trees, the shapes of the polygons were less accurate, and the shapes became more
complex (see Figure 20). In this case, when applying lesser smoothing ratios, such as 2%,
the polygon boundary tended to be more distorted.
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5. Conclusions

This study proved that data pre-processing with image-enhancing algorithms could
improve DL models’ performance. However, not all image-enhancing algorithms could
improve model performance. Furthermore, different image-enhancing algorithms were
performed differently on aerial images (Inria Dataset) and UAV images. The logarithmic
correction algorithm showed the most significant improvement in the building prediction
accuracy for aerial images, and overall, IoU increased by 3%. The CLAHE algorithm
showed the highest building prediction improvement for UAV images, and overall, IoU
increased by 4%. The histogram equalization algorithm slightly improved the building
prediction accuracy for both data types.
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We modified the standard U-Net architecture proposed by Ronneberger et al. [24] to
extract building footprints by semantic segmentation of both aerial and UAV images. In the
proposed model, dropouts and batch normalization increased the model performance and
improved the model stability. In addition, the number of skip connections and the depth of
the model increased to accurately segment the variety of building types. In the decoder
part, strided transpose convolutional operations were used to increase the efficiency of the
proposed model. Compared with the original U-Net architecture, the number of trainable
weights was decreased to reduce the size of the model. Hence, the training time and
required GPU were lowered in our approach.

To make the model more generalized, it was trained with images belonging to four
cities in three countries with different building architectures. Compared with the original
U-Net architecture [24], the proposed model performed higher by 33.4% for the same
dataset. Next, the model was tested with a new UAV dataset that was not included in the
training, and it also provided reasonably good results.

This study demonstrated a transfer-learning approach to investigate its effect on
building extraction using different data sources. The proposed U-Net architecture was pre-
trained using aerial images of the Inria aerial imagery dataset and transferred into a new
model for fine-tuning the building extraction process from UAV images. The experiment
showed that transfer learning with fine-tuning achieved almost similar accuracy with less
training time than training the model from scratch. Furthermore, this approach proved
that, to extract building footprints from a new dataset with different properties, a transfer
learning approach could preserve the low-level features from one dataset to another and
be reused without training from scratch.

We developed a methodology to polygonize the building prediction rasters and
smooth the polygons to obtain more refined boundaries. The building footprints resulting
from the DL segmentation models did not contain any useful attributes of the predicted
layer. Thus, including different attribute information to the building layer will be a benefit
when using these building polygons in real-world applications such as urban planning,
urban development monitoring, disaster preparedness, environmental surveying, and
population estimation. Here, we developed a procedure to add the area, perimeter, land
use class, and population count of each building to the prediction results of different cities.
We selected OSM land use data and WorldPop population data for this procedure because
these two datasets are accessible to the public and are available for most countries in
the world.

Although this model is trained with data belonging to different areas with different
building architectures, most of these areas have an urban nature with high building density.
Hence, to develop this model to predict buildings in larger areas, such as the entire region,
the transfer learning approach stated here can fine-tune the model with sub-urban and
rural data rather than training from scratch.

Here, validation of the ground truth data was not performed. Therefore, the accuracy
of the building extraction also depends on the quality of the ground truth data. For the
Inria Aerial Imagery Dataset, ground truth data were obtained from local or statewide GIS
websites. However, for UAV images, buildings were manually digitized, and human errors
could have occurred during this process. Therefore, obtaining building data from civil
engineering surveys and GNSS surveys is recommended.

This research can be further developed by adapting a more advanced DL network,
providing higher accuracy for the building detection process. Furthermore, if the building
height can also be incorporated into the attribute extraction process, it will be easy to
validate the results, and the accuracy will also be higher.
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