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Abstract: Clustering methods in data mining are widely used to detect hotspots in many domains.
They play an increasingly important role in the era of big data. As an advanced algorithm, the
density peak clustering (DPC) algorithm is able to deal with arbitrary datasets, although it does not
perform well when the dataset includes multiple densities. The parameter selection of cut-off distance
dc is normally determined by users’ experience and could affect clustering result. In this study, a
density-peak-based clustering method is proposed to detect clusters from datasets with multiple
densities and shapes. Two improvements are made regarding the limitations of existing clustering
methods. First, DPC finds it difficult to detect clusters in a dataset with multiple densities. Each
cluster has a unique shape and the interior includes different densities. This method adopts a step
by step merging approach to solve the problem. Second, high densities of points can automatically
be selected without manual participation, which is more efficient than the existing methods, which
require user-specified parameters. According to experimental results, the clustering method can be
applied to various datasets and performs better than traditional methods and DPC.

Keywords: density peak clustering; multiple density; data mining

1. Introduction

Clustering is the process of dividing objects into multiple groups, within each of which
member objects are closer in distance or more similar in attributes than non-member ones
located outside. Each group of this kind is called a cluster. With the development of big
data, clustering has emerged as a powerful data mining method to detect hotspots that
include valuable thematic information.

Clustering methods are widely used in many research domains. Different domains
include various types of objects such as location information and customer consumption [1].
Human mobility plays an important role in many research areas [2]. Mobility patterns could
be discovered by using data mining and analytics methods. For example, commuting is one
important pattern that can be determined from smart card data. Homes and workplaces
represent clear clustering characteristics. Shops can improve their marketing strategy by
understanding similar consumption characteristics. In the fields of digital heritage [3]
and laser scanning [4–6], the generation of 3D models related to clustering methods is
widespread. To measure similarity, distance functions are mostly used in order to calculate
the distance between objects and the core process involves grouping the objects on the
basis of the results to form clusters. Many clustering methods have been proposed in recent
decades.

Conventional clustering methods can be divided into four categories: partitioning,
hierarchical, density-based, and grid-based methods [7]. Partitioning methods divide
whole objects into a specified number of datasets. One popular method is k-means [8].
The core idea is to divide the dataset into k clusters, and the k value is normally defined
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manually. For each object, the nearest cluster centroid is identified to form clusters. The
centroids of the new clusters are calculated until they do not change to achieve the best
clustering results. K-medoids [9] is a similar method to k-means; the difference is the
selection of initial centroids. Both methods are easy to implement and highly efficient, but
the cluster results are affected by the selection of the initial centroids.

For hierarchical clustering methods, clusters can be formed step by step from the
top down or from the bottom up. Objects are merged with others based on the shortest
distance to form clusters until certain conditions are satisfied. The bottom-up method is
called agglomerative hierarchical clustering. In the opposite process, divisive hierarchical
clustering, the whole dataset is partitioned into a number of clusters until the conditions
are satisfied. BIRCH adopts the clustering concept to form a clustering tree to conduct
the cluster process [10]. The cluster information is stored in tree form. This method
has better clustering quality and the ability to deal with large datasets. CURE [11] and
Chameleon [12] are two other hierarchical clustering methods. With CURE, the nearest
objects are merged until the target is achieved. Instead of using one object or a centroid to
serve as a cluster, several objects are selected to represent the cluster multiple by a shrinkage
factor. Chameleon is a two-stage clustering method; the nearest points are merged to form
small clusters, and small clusters with a high value of relative interconnectivity and relative
closeness are then merged.

Density-based methods can locate clusters of arbitrary shape. Three representative
methods are DBSCAN [13], OPTICS [14] and DENCLUE [15]. DBSCAN requires a mini-
mum number of neighborhood objects, and the maximum radii of neighbors are predefined
by the user. Objects are divided into three categories: core objects, reachable objects, and
noise. Each cluster is formed by core objects and reachable objects until all objects are
assigned to one of the three categories. However, the parameter settings are mostly deter-
mined according to the users’ experience with choosing distance parameters. To overcome
this problem, OPTICS does not form clusters. Instead, it generates a cluster ordering to
represent the cluster results in a graph. The correct number of clusters cannot be calcu-
lated by this method. DENCLU adopts a density distribution such as Gaussian kernel to
estimate the density to investigate clusters of objects. It can reduce the influence of noise
via Gaussian or different kernel functions. The discovery of clusters with a non-spherical
shape is one of its main advantages. These methods use a data-driven focus to partition
the dataset into many clusters.

Grid-based methods use a space-driven focus to separate a space into cells and assign
objects to them. STING [16] and CLIQUE [17] are two representative examples of grid-
based clustering methods. STING is a multiresolution clustering method that partitions
a space into cells with a hierarchical structure. The number of cells gradually increases
from the high level to the low level. The size of each cell in the high level is formed by
a number of cells from the level just below. The quality of the cluster results depends
on the appropriate size of the cells. If a cell is too large or too small, the accuracy of
the clusters may be affected. CLIQUE uses a grid-based method and also considers the
density of objects and multiple dimensions. It partitions each dimension into different non-
overlapping levels and assigns whole objects into cells. A cell is identified as dense when
the number of objects exceeds a density threshold. After the first dense cell is located, the
neighboring cells are merged if they are also dense until no further high-density cells can
be found. The process is reiterated until all cells are marked as high-density or low-density.

The above clustering methods have unique advantages and disadvantages that are
appropriate for different scenarios. Many alternative methods in terms of density peak
clustering are being developed to overcome the disadvantages.. In this study, a density-
peak-based clustering method is proposed to detect the clusters from datasets with multiple
densities and shapes. Two improvements are made regarding the limitations of the density
peak clustering algorithm [18]. First, the proposed method has the ability to detect clusters
with multiple densities. The density of each cluster could be different, and the points
in each cluster might not be distributed evenly. This method merges the data gradually
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to solve the problem. Second, the initial cluster center points are selected automatically
without human intervention. Parameter-free [19] is a research direction for clustering
methods. The parameter values setting could affect the clustering results. The second
improvement helps to reduce the human factor’s influence on the clustering result and
improve clustering efficiency.

The rest of this paper is organized as follows. Section 2 briefly reviews related work.
Section 3 introduces the relevant concepts of the improved method. One public dataset
is used as an example to describe the detailed steps in the clustering process. Section 4
shows the experimental results using eight test datasets. Section 5 gives our conclusions
and directions for future work.

2. Related Work of Density Peak Clustering Algorithm

The detection of clusters for datasets with different shapes, densities, and sizes, even
including noise, remains an essential and open issue. Various types of techniques, such
as density methods and hierarchical methods, and even their improved versions, are
commonly used for the accurate detection of clusters, but several challenges remain. First,
it is difficult to predefine the number of clusters, such as the “k” in k-means clustering.
Second, many methods require more than one parameter, which is difficult to determine
appropriately for many cases. The choice of parameters can significantly affect the cluster
results. For example, two parameters of DBSCAN must be set manually. At the same time,
if an appropriate starting point is not selected, some points could be regarded as noise
points, for example if the starting point is selected from the low-density points.

Rodriguez and Laio [18] proposed a fast clustering method. The core idea is that
the centers of clusters are surrounded by points with a certain relative density but far
away from others that have high density. The centers of the clusters are based on the
density functions and density radius. Theoretically, this method does not require the
parameters to be predefined. The centers of clusters can be calculated based on the product
of the density and the distance. However, this method cannot automatically select the
cluster centers, so they must be decided by observation. The selection strongly affects the
clustering result. Another drawback is that the method cannot detect clusters with multiple
densities. It is difficult to select the center of a cluster with low density. Lastly, the selection
of parameters of local density affect the clustering result. To overcome these problems,
several developments have been made to extend the original algorithm. Ding et al. [20]
explored statistical methods to choose cluster centers automatically to reduce the influence
of human factors. Liu et al. [21] proposed an adaptive clustering method to make the right
choice to pick out the initial cluster centers and global parameter. The K nearest neighbor
strategy was used to find cluster centers and detect clusters [22]. Du et al. [23] proposed
a method based on K nearest neighbor to discover the local clusters, and the imported
principal component analysis method to solve datasets with relatively high dimensions.
Jinyin et al. [24] proposed a novel algorithm that can solve the problem of parameter
selection, which are the search radius and the cluster center in the process. Their algorithm
can also deal with datasets with mixed attributes. However, noise points and multiple
densities problems still exist. Ruan et al. [25] adopted a heat diffusion method to estimate
density and used an adoptive method to select the number of cluster centers. Wang and
Song [26] proposed a method to detect the clustering centers automatically by statistical
testing. The clustering results show great effectiveness and robustness. Xu et al. [27]
proposed a density peak-based hierarchical clustering method without agglomerative or
division processes. The experiments have shown that their method is robust, efficient,
and competitively accurate. Wang et al. [28] proposed an improved density-peak-based
clustering method designed for overlapping social circle discovery. Parmar et al. [29]
adopted the residual-error-based density peak clustering algorithm to compute the local
density within a neighborhood region. Different data distribution patterns can be explored
and detected. Their algorithm can better handles the cluster centers with low density.
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Compared with the DPC algorithm [18], our proposed density-peak-based clustering
algorithm has two advantages. First, our method is capable of exploring clusters with
multiple densities. Second, our method does not need user involvement in the whole
process of clustering, as all the parameters are selected automatically. DPC could miss
the clusters with low density and fail to detect the appropriate cluster number. In the
processing of DPC, the cut-off distance and cluster number should be specified according
to experience. The proposed method handles these two problems well. The detailed steps
of our algorithm are introduced in the following sections.

3. Logical Flow of Proposed Method

Considering the limitations of the existing methods, we propose a density peak based
clustering method to determine clusters from datasets with multiple densities and shapes.
Logically, the proposed method includes five main steps: detect and select key points,
detect preliminary clusters, merge adjacent clusters, construct networks and select optimal
cluster results. First, points are calculated with high kernel values and selected to be
key points for a preliminary determination of the number of clusters. Second, using the
previous result, preliminary clusters are detected according to the shortest distance between
points. Third, the clusters that are near each other are merged to form a larger cluster.
The shortest and largest distances between two points located in separate two clusters are
regarded as thresholds to merge clusters. Fourth, all the points are connected to construct a
network. In this study, a silhouette coefficient is used to identify the optimal clustering.
To obtain more accurate results, all the points are connected to construct a network based
on distance. Lastly, according to the constructed network, the silhouette coefficient of
each clustering results in finding the optimal one. Figure 1 shows the logical flow of this
proposed method. The details of each step are described in the following sections.

Figure 1. Logical flow of the proposed clustering method.

3.1. Definition of the Relevant Concepts

To illustrate this method, several concepts relevant to the points and calculation
methods are defined here and are used in various steps. This section gives the basic
relevant definitions of the concepts.

3.1.1. Point Definitions

When merging the points to detect the preliminary clusters, three kinds of points
are defined to illustrate the process of merging. Figure 2 helps to explain the following
concepts.

Figure 2. Categories of points distribution.
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(1) Key points

Key points are those that have been marked as members of one cluster. In this method,
several key points are first selected according to distance and local density, and the number
of key points is equal to the preliminary number of clusters. When unread points or group
points are merged with key points, they become key points. At the end of the merging
process, there are only key points. In Figure 2, key points are shown in red.

(2) Group points

When merging the points, some unread points are near each other but far from key
points. These points can be merged together and called group points. At the beginning
and the end of merging process, there are no group points. In Figure 2, group points are
shown in green.

(3) Unread points

When detecting the preliminary clusters, the process is based on the distance of two
points. Before the points become key points or group points, they are called unread points.
At the end of the merging process, there are no unread points. In Figure 2, unread points
are shown in blue.

3.1.2. Silhouette Coefficient Calculation

In this study, a silhouette coefficient [30] is used to identify the optimal cluster from
the cluster results. The silhouette coefficient considers the cluster’s internal closeness and
separation between clusters. The formula is as follows:

s(i) =



1 − a(i)
b(i) , a(i) < b(i)

0, a(i) = b(i)

a(i)
b(i) − 1, a(i) > b(i)

(1)

where a(i) is average distance between point i to points within a cluster; b(i) is the average
distance between point i and points without a cluster. The silhouette coefficient of the
cluster is the sum of the values of all points. The closer that number is to 1, the more
reasonable the cluster result is.

3.2. Detect and Select Key Points

The core idea of detecting key points is to determine each cluster’s high-density point,
that is, the point surrounded by several points within a short distance. To determine the
points, each point is computed for its two attributes (the local density and the distance
from the point of high density). Two main methods are used to compute the local density.
One is defined as follows:

Di = ∑
j

f
(
dij − ds

)
(2)

where Di is the local density of point i, ds is the specified cutoff distance, and dij is the
distance between point i and j. When dij − ds < 0 or dij − ds = 0, f

(
dij − ds

)
= 1; otherwise

f
(
dij − ds

)
= 0. The local density is the number of points with a shorter distance than ds to

point i. The other method is to use the kernel function to calculate the local density. It is
defined as follows:

Di = ∑
j

e−(
dij
ds

)
2

(3)

Compared with the cutoff method, which generates random values, the kernel func-
tion obtains continuous values and each point can be given different values. There is no
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doubt that the method of choosing an appropriate ds is important. In this study, we refer to
the work [18] and select the 2% distance as the ds.

The next step is to compute the distance from high-density points to low-density
points. First, the points are sorted in descending order based on the local density. Second,
the shortest distance from points with a larger value of local density to point i is calculated
as the distance βi. This process begins from the point with the second-highest local density
because the first point has the highest local density. The point with the greatest distance is
set as the first point.

From now on, each point has two attributes: (a) local density Di and (b) distance βi. To
determine the centers of the clusters, the two attributes must be plotted in two-dimensional
coordinates.

Figure 3 shows an example of the detection and selection key points. Figure 3a
represents the location distribution of sample data; the x-axis and y-axis make up the
coordinate system. In Figure 3b, the x-axis is the local density and the y-axis is the distance.
In Figure 3c, the x-axis is the product result order and the y-axis is product of local density
and distance.

Figure 3. Example dataset distribution and calculation result (a) distribution of dataset; (b) distribution of local density and
distance; and (c) product result of local density and distance.

Figure 3b is the plot of the local density and distance for each point, and Figure 3c is
the plot of the product result of local density and distance. Points with larger values of
local density and a long distance to other high-density points are shown in red. Specifically,
the two red points in the centers of the clusters have the largest local density and distance,
and stand in obviously distinct positions from the blue points in Figure 3b,c. Even though
the points around the center points also have high local density, they have short distances.
The calculated products of local density and distance for the rest of the points are clearly
shown in Figure 3b,c. After plotting all points, the red points are the highlighted points
that are recognized as the centers of the clusters.

This method performs well with clusters with the same density and a spherical shape.
However, the sample data set includes two clusters with different densities and a non-
spherical shape, so it is difficult to locate their center. The local density must be calculated
for each point and the results sorted to obtain the distance; the centers of the high-density
clusters would rank first, and those of the low-density clusters would rank last. It is
difficult to choose the correct number of center points. If a cluster has a non-spherical
shape, several center points may be detected. For example, Figure 4 shows the process of
key point detection from a dataset with multiple shapes and densities. Figure 4a shows an
example of dataset distribution. It clearly shows that there are two clusters to be detected,
and the two clusters have different numbers of points and densities. One cluster has a
small number of points and a low density, and the other has a large number of points and
a high density.
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Figure 4. Key points detection of dataset with multiple shapes and densities (a) distribution of the
dataset; (b) two core points are selected; (c) the distribution of two core points in the dataset; (d) three
core points are selected; (e) the distribution of three core points in the dataset.

One obvious characteristic is that the right cluster has a U shape and includes more
high-density points than the left cluster. Key points are detected with the method intro-
duced above. For example, Figure 4a shows the distribution of the dataset. Figure 4b,c
show the results of key point detection. Figure 4b shows that the two points at the top right
corner are the core points. Even though the number of key points is equal to the number of
clusters, both of them are in the same cluster in Figure 4c. Nevertheless, the correct number
of clusters can be detected from these results. In Figure 4d, three points are regarded as key
points. In Figure 4e, the added key point belongs to a cluster that cannot be detected above.

The comparison suggests that it is better to select as many key points as possible to
make sure the number key points is sufficient. This way the number of resulting clusters
is no fewer than the optimal number. It can lower difficulty of cluster number prediction
and reduces influences of cluster result from the selection of key points. In this step, two
methods can be used for selecting key points. One method is to select the points from
the distribution result of local density and distance by vision. It is unnecessary to select
the number of key points with great accuracy; it is sufficient to roughly choose the key
points from high values to the elbow location of points. The other allowable method is
to automatically calculate the differences between the adjacent points. Several thresholds
should be assigned at first. Normally, the cluster number is less than 10 percent of total
number of points in dataset. The number of is are selected from this range. According to
the distribution of the product result of local density and distance, if the result difference
between this point and the latter one is smaller than 3 and happens continuously 4 times or
more, the remaining points after the point should not be considered. For the two methods,
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when the cluster has clearly pattern, the second method is the more convenient, and vice
versa.

3.3. Detect Preliminary Clusters

After several key points are selected, an agglomerative hierarchical method is adopted
to form clusters. This is a bottom-up process that merges the points to form clusters from
small to large. The number of key points indicates the number of clusters that should be
formed. Three sections are included in this step. First, the distance of all pairs of two points
is calculated. Second, the distances are sorted from small to large. Third, the points are
merged to form clusters according to distance until all the points are key points. Figure 5
demonstrates the method’s logical flow.

Figure 5. Logical flow of detect preliminary clusters.

A table is built to help to detect the preliminary clusters and includes five columns.
The column contains theIDs of two points, the distances of two points and the mark
numbers of two points. If the point is a key point, the mark number is the cluster number.
Otherwise, the mark number equals the point number. The distances of all points are
calculated and the points are sorted by distance in ascending order in terms of the table.
Clusters are detected beginning from the shortest distance. Two situations can occur when
grouping two points. When one point is a key point, the other is a group or an unread
point. The mark number of the group or unread point changes to the cluster number of the
key point. For other points, the change mark number equals the group or unread point to
cluster number. These points with a changed mark number are clustered. When two points
are group or unread points, the mark number of the two points marks the same group
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number. For other points, the change mark number equals the group or the unread points
with the same group number. These points do not belong to any cluster. This process
begins from the first distance until all points are clustered. Because the preliminary cluster
number exceeds the optimal number of clusters, merging the neighboring clusters is the
next step.

3.4. Merge Adjacent Clusters

After detecting preliminary clusters by the hierarchical method based on the key
points, the dataset was divided into multiple clusters. The number of preliminary clusters
is larger than the real number of the dataset. This method adopts the technique of merging
the neighboring clusters to reduce the number of clusters. It considers the minimum
distance and maximum distance between two clusters. The minimum distance is the
shortest distance between two points belonging to two clusters; the other is maximum
distance. First, we calculate the minimum and maximum distances between any two
clusters, sort them, respectively, into ascending order and save them in two tables. Second,
we use the minimum and maximum distances as thresholds to merge neighboring clusters.
The merging process starts from the minimum distance table and considers three situations.
When the largest minimum distance is smaller than half of the second largest, the two
clusters that have the largest minimum distance should be merged. When the largest
minimum distance is equal to or greater than half of the second largest, and in the meantime,
these two clusters with the largest minimum distance are also the ones with the largest
maximum distance, they should be merged; if not, the same cluster-pair regarding the
largest minimum/maximum distance, two clusters which have the largest maximum
distance should be merged. After merging once, two types of distance tables will be
recalculated. This merging process is repeated until two clusters remain. If only one
cluster exists in the dataset, there is no need to use the cluster method. Considering the
minimum and maximum distances as thresholds for merging adjacent clusters can reduce
the influence of shapes. For example, if only using minimum distance to merge clusters,
the cluster with linear shape could affect the merging result.

Figure 6 shows the results of merging clusters based on the different minimum and
maximum distances. Three clusters in different colors are detected with the hierarchical
method. The nearest and farthest two points of two clusters are calculated and compared
to decide whether the two clusters should be merged. Observing Figure 6a,b, it seems that
Cluster A is near Cluster B and Cluster B is near Cluster C. However, the merging results
are different. For Figure 6a, the distance between points 1 and 3 is the shortest distance
between Clusters B and C. The distance between points 5 and 2 is the shortest distance
between Clusters A and B. The former is smaller than the latter. The distance between
points 2 and 4 is the largest distance between Clusters B and C. The distance between
points 6 and 1 is the largest distance between Clusters A and B. The former is still smaller
than latter. Cluster B and C are merged. For Figure 6b, even though the shortest distance
between Cluster B and C is smaller than the shortest distance between cluster A and B, the
largest distance between cluster B and C is larger than the largest distance between Cluster
A and B. Cluster A and Cluster B are merged. As Figure 6a shows the resulting dataset, in
which Cluster B and Cluster C become Cluster C. Cluster A and Cluster B become Cluster
A as shown in Figure 6b.
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Figure 6. Examples of merging process (a) the process of merging Cluster B and C; (b) the process of
merging Cluster A and B.

3.5. Construct Network

After detecting the various cluster results from the above step, the silhouette coefficient
of each cluster result is calculated to obtain the largest value. The conventional method used
to calculate the silhouette coefficient is using Euclidean distance between two points without
considering shape characteristics. To obtain an accurate silhouette coefficient of each cluster result,
a network is constructed first. The process is similar to the step of detecting the preliminary
clusters. All the distances between each two points are calculated and sorted in ascending order.
On the basis of the sequence, the points are linked and marked until all the points are marked in
the same way. All the points are connected with the point which is the closest to them.

3.6. Identify the Optimal Cluster Result

To identify the optimal cluster result, the silhouette coefficient of each cluster result is
calculated using the constructed network. The cluster results are different from each other,
and the same as the silhouette coefficient. The optimal cluster result is the largest value of
the silhouette coefficient.

4. Experimental Results

Eight datasets were selected from the public dataset to test and evaluate the proposed
method. The datasets are regarded as a benchmark by which the proposed method could be
verified. To explain the whole process of the improved method, one of datasets represents
the detailed results of each step. The others compare the final clustering results. Figure 7
shows the distribution of the dataset.

Figure 7. Dataset distribution.
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The first step is detecting and selecting key points. The local density and distance of
each point is calculated and their products are sorted in descending order. Figure 8a shows
the product result distribution of the local density and distance. In Figure 8b, the red points
are the key points selected by using the automatic method. The x-axis is the product result
order and the y-axis is the product of local density and distance.

Figure 8. Calculate and select key points: (a) the distribution of product results; (b) key points’
selection result.

After selecting key points, the next step is to detect the preliminary clusters. Figure 9a
shows the key points’ distribution in the original dataset. The red points are the key points.
Figure 9b shows the detected result of the preliminary clusters’ distribution. Each color
stands for one cluster. The number of key points equals the number of clusters.

Figure 9. Detected preliminary clusters: (a) key point distribution in dataset; (b) cluster distribution
of detected preliminary result.

The next step is merging the adjacent clusters based on the minimum and maximum
distances. For this dataset, twelve preliminary clusters are detected. This step seeks to
merge the clusters gradually. Two adjacent clusters are merged once until two clusters
remain. We do not show the process of merging. To identify the optimal cluster result,
a network is constructed in the next step. The objective is to connect all the points to
construct a network, and each point is linked to the nearest point. Figure 10 shows the
constructed network.
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Figure 10. Network construction.

From the figure, we can see that each point is connected to its nearest point, and all the
points are connected. The following step involves calculating the silhouette coefficient of
each clustering result. When computing the silhouette coefficient, the distance between two
points is the shortest path acquired fromthe constructed network. Among the clustering
results, the largest value of the silhouette coefficient is the optimal cluster result. Figure 11
shows the silhouette coefficient results.

Figure 11. Silhouette coefficient results.

The x-axis is the cluster number, the y-axis is the silhouette coefficient result. We can
see from the figure that when the cluster number equal to two, the silhouette coefficient
value is the largest, which means the optimal cluster number is two. Figure 12 shows the
cluster distribution, which is the same as the benchmark.

Figure 12. The optimal clusters distribution.
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The above result proves the proposed method has the ability to detect clusters with
multiple shapes and densities. In the following section, the other seven datasets are used to
verify this method. We compared our method and the DPC algorithm with its extension, as
well as popular density-based clustering methods, such as DBSCAN and K-means, which
are shown in Figures 13 and 14 and Table 1. Three clustering evaluation methods are used
to access the performances of six methods. Figures 13 and 14 show the cluster distribution
results of the clustering methods. In Figure 13, the first column and second column show
the cluster results by traditional clustering methods of K-means and DBSCAN. The third
column represents the cluster results by DPC. In Figure 14, the first column and second
column show the cluster results by DPSLC and LKSM_DPC. The last column shows the
cluster results using our proposed clustering method. Each color stands for one cluster.

Figure 13. Cont.
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Figure 13. Clustering results by K-means, DBSCAN, and DPC of dataset a–h.
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Figure 14. Cont.
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Figure 14. Clustering results by DPSLC, LKSM_DPC and proposed method of dataset a–h.

We compared our method with five clustering methods: k-means [31], DBSCAN [13],
DPC [18], DPSLC [32], and LKSM_DPC [33] by using ARI [34], AMI [35] and FMI [36]. ARI
(Adjusted Rand Index) is a development of RI (Rand Index), which reflects the degree of
overlap between two clusters. AMI (Adjusted Mutual Information) is based on Shannon
information theory, which is very popular in the clustering evaluation. FMI (Fowlkes–
Mallows index) is used to measure the similarity either between two hierarchical clusters or
a clustering and a benchmark classification. Some of cluster methods need set parameters
in the process, such as the number of clusters. To obtain results that are the same as
the benchmarks, we set the optimal parameters. In general, it is very hard to set the
optimal parameters manually. According to the table, our method can accurately detect the
cluster number from four datasets and the accuracy is close to the benchmark: for example,
dataset (a) and the dataset mentioned in the previous section. The clustering result of the
proposed method is the same as the benchmark. The same happened with dataset (b); the
cluster number and accuracy are the same as the benchmark. For dataset (g) and dataset
(h), the accuracy of the proposed method is nearly 100%; only a few points are not the
same as the benchmark. For dataset (g), even though the cluster numbers are different,
most of clusters are the same as the benchmark. It can therefore be concluded that the
proposed clustering method is highly effective for detecting clusters with multiple shapes
and densities. However, for dataset (c), (d), (e), and (f), there are big differences in the
cluster results between the benchmark and the proposed method. The main reason is that
the proposed method is more susceptible to noise. For the above four datasets, there are
always a small number of points located in the space between every two clusters, making
it difficult to separate one cluster from another. Compared with DPSLC and LKSM_DPC,
the main advantage of the proposed method is that it does not require parameter settings
that not user-friendly and require extensive experience and repeated attempts during the
clustering process. The disadvantage of this method is that it considers all the data for
clustering without noise filtering. Some of the data may be meaningless and should be
ignored.
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Table 1. Clustering evaluations on dataset a–h.

Dataset Method ARI AMI FMI

Dataset (a)

K-means 0.318 0.364 0.698
DBSCAN 0.941 0.864 0.977

DPC −0.051 0.177 0.550
DPSLC 1.000 1.000 1.000

LKSM_DPC 1.000 1.000 1.000
Our method 1.000 1.000 1.000

Dataset (b)

K-means −0.006 −0.005 0.328
DBSCAN 1.000 1.000 1.000

DPC 1.000 1.000 1.000
DPSLC 1.000 1.000 1.000

LKSM_DPC 1.000 1.000 1.000
Our method 1.000 1.000 1.000

Dataset (c)

K-means 0.453 0.397 0.736
DBSCAN 0.878 0.791 0.941

DPC 0.080 0.171 0.551
DPSLC 0.988 0.970 0.994

LKSM_DPC 1.000 1.000 1.000
Our method 0.521 0.668 0.735

Dataset (d)

K-means 0.538 0.713 0.642
DBSCAN 0.976 0.950 0.982

DPC 0.578 0.754 0.680
DPSLC 0.788 0.846 0.856

LKSM_DPC 0.783 0.858 0.855
Our method 0.437 0.585 0.676

Dataset (e)

K-means 0.461 0.543 0.662
DBSCAN 0.529 0.640 0.687

DPC 0.438 0.455 0.622
DPSLC 0.000 0.000 0.577

LKSM_DPC 0.000 0.000 0.000
Our method 0.126 0.290 0.554

Dataset (f)

K-means 0.762 0.878 0.816
DBSCAN 0.980 0.971 0.984

DPC 0.851 0.876 0.884
DPSLC 0.998 0.996 0.998

LKSM_DPC 0.890 0.924 0.917
Our method 0.734 0.835 0.819

Dataset (g)

K-means 0.993 0.994 0.993
DBSCAN 0.921 0.936 0.927

DPC 0.975 0.980 0.976
DPSLC 0.993 0.994 0.993

LKSM_DPC 0.986 0.989 0.987
Our method 0.986 0.989 0.987

Dataset (h)

K-means 0.953 0.966 0.955
DBSCAN 0.550 0.768 0.565

DPC 0.031 0.445 0.176
DPSLC 0.585 0.869 0.653

LKSM_DPC 0.935 0.956 0.938
Our method 0.928 0.951 0.930

5. Conclusions and Future Work

This study has proposed a density-peak-based clustering method that can detect
clusters of multiple shapes and densities. In this method, first, key points are detected
and selected based on density and distance. Second, a hierarchical method is adopted
to detect preliminary clusters by using the key points. Third, the adjacent clusters are
merged gradually based on the minimum and maximum distances. Fourth, a network is
constructed based on the original dataset. Lastly, the silhouette coefficient of each cluster
result is calculated to identify the optimal cluster result. The proposed clustering method
shows great efficiency in complex datasets that include clusters of multiple densities and
shapes. For example, the detection of detailed clusters in GPS data is complicated. Hot
regions with commercial buildings that attract lots of visitors may generate larger volumes
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of GPS data than remote regions. The advantage of this method is it does not require the
manual assignment of the number of clusters and cluster center points. All the parameters
that are needed in the clustering process can be automatically decided. Two improvements
must be addressed in future studies. Firstly, noise is a problem that could reduce the
effectiveness of this method. We plan to consider improving the noise proofing ability in
complex conditions. Secondly, the time efficiency could be improved in the future work.
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