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Abstract: The rapid expansion of cities brings in new challenges for the urban firefighting security,
while the increasing fire frequency poses serious threats to the life, property, and safety of individuals
living in cities. Firefighting in cities is a challenging task, and the optimal spatial arrangement of
fire stations is critical to firefighting security. However, existing researches lack any consideration
of the negative effects of the spatial randomness of fire outbreaks and delayed response time due
to traffic jams upon the site selection. Based on the set cover location model integrated with the
spatiotemporal big data, this paper combines the fire outbreak point with the traffic situation. The
presented site selection strategy manages to ensure the arrival of the firefighting task force at random
simulated fire outbreak points within the required time, under the constraints of the actual city
planning and traffic situation. Taking Nanjing city as an example, this paper collects multi-source
big data for the comprehensive analysis, including the full data of the fire outbreak history from
June 2014 to June 2018, the traffic jam data based on the Amap, and the investigation data of the
firefighting facilities in Nanjing. The regularity behind fire outbreaks is analyzed, the factors related
to fire risks are identified, and the risk score is calculated. The previous fire outbreak points are
put through the clustering analysis, the spatial distribution probability at points in each cluster
is calculated according to the clustering score, and the random fire outbreak points are generated
via the Monte Carlo simulation. Meanwhile, the objective emergency response time is set as five
minutes. The average vehicle speed for each road in the urban area is calculated, and the actual traffic
network model is built to compute the travel time from massive randomly-distributed simulated fire
points. The problem is solved by making the travel time for all simulated demand points below five
minutes. At last, the site selection result based on our model is adjusted and validated, according to
the planned land use. The presented method incorporates the view of the spatiotemporal big data
and provides a new idea and technical method for the modification and efficiency improvement of
the fire station site selection model, contributing to a service cover ratio increase from 58% to 90%.

Keywords: fire station; spatiotemporal demand; fire risk evaluation

1. Introduction

Urban fires have been ever-increasingly frequent in recent years due to the deepened
conflicts between urban population, resources, and the environment. The number of
fire cases in China reached 252,000 in 2020, which is 65% higher than that in 2012. The
consequent direct property loss in 2020 was 4.0 billion yuan, which is 83% higher than that
in 2012. These fires seriously threaten the safety and property of individual lives, and they
severely influence normal economic activities. In this context, it is of great importance to
enhance urban firefighting efficiency. The fire risk of large cities is tremendously complex.
The rapid development of large cities has resulted in massive accumulated risks, while
the continued development brings in various new fire rescue risks. New-type disaster
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drivers interact with conventional ones; high-rise and large-volume buildings greatly
increase; new materials and new products are extensively applied; population movement
is ever diversified; and uncertainties and uncontrollable factors of outbreaks of fires grow
significantly. Thus, prevention and control difficulties and extreme requirements are
enhanced upon response time. Given this, the layout of fire stations is of utmost importance.
Rational layout of fire station is of great significance for improving firefighting security and
disaster prevention.

As is commissioned by the Nanjing Public Security Fire Bureau, this study aims to
apply the location set cover model that is integrated with spatio-temporal big data to urban
planning, based on the five-year fire data from June 2014 to June 2018. In this way, a novel
site selection model for emergency service facilities can be built. It can then be integrated
with random spatial demand simulation methods and real-time traffic networks to consider
the influences of event randomness and traffic conditions that are often ignored in previous
models. The availability of firefighting and traffic spatiotemporal big data lays an accurate
data foundation for the modeling, which is of crucial importance for the site selection of
fire station. The research findings provide sufficient theoretical support for “Nanjing fire
station layout planning” that has been implemented since 2020 by the local government.

In terms of the structure, this article consists of five parts: the first part is a literature
review; the second part is the research method and modeling; the third part introduces the
research scope and data sources; the forth part presents the detailed analysis process, test
results, and verification; and the fifth part is discussion and conclusions.

2. Literature Review

It has been a continuously important topic to investigate fire station arrangements in
cities. The U.S. and Europe have started studying the layout of fire stations and developing
relevant firefighting plans and regulations since the 1970s. Code for Planning Urban Fire
Control of China stipulates that, within the urban development land, the principle of the
ordinary fire station arrangement is to ensure the arrival of firefighting trucks within five
minutes. Moreover, taking the road and traffic conditions in the downtown and marginal
areas of cities into consideration, the layout of fire stations shall enable a firefighting
administration zone of 4–7 km2 in the downtown urban area with a marginal urban area
no bigger than 15 km2. The conventional fire station arrangement theory is mostly based
on the graph theory. The planning area is divided into the basic firefighting units, and the
center of each unit represents a node in the corresponding fire outbreak position network.
By doing so, the site selection problem is converted into the problem of coverage or the
minimum distance of facilities to multiple point sets. The early location models, represented
by the covering model, the P-center model, as well as the P-median model and its modified
models, use the geographic center or key points of each zone to replace the demand point
set. Consequently, the site selection process considers only the expansion of coverage with
the shortened distance [1–3]. It has been pinpointed that planning based on the travel
time or travel distance of firefighting trucks cannot keep pace with the city development
and that the fire station layout shall consider more factors [4]. Moreover, multi-objective
programming models are proposed to involve more factors such as the water supply for
firefighting and political interference [5]. Chen and Zhao [6] introduce the constraints such
as the weather and terrain into their case simulation and build the comprehensive objective
function of facility site selection via the analytic hierarchy process. Similarly, some scholars
apply the multi-objective model to the fire station selection in Samia, Canada. These models
attempt to introduce the factors that may trigger fires, and yet they still optimize the fire
station layout with respect to the average demand. This may lead to massive firefighting
activities in high-risk zones and, in the meantime, much fewer activities in the low-risk
zones. The firefighting response time also varies with fire risk levels as well as road and
traffic conditions in different zones. Therefore, the aforementioned fire station site selection
process would tend to result in high randomness in serve zone demarcation and sparse
distribution of fire stations.
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With progress in developing multi-objective models, random factors are gradually
incorporated in site selection for emergency responses [7,8]. Specifically, random factors
generally derive from the demand and traffic uncertainties induced by the spatiotemporal
environmental dynamic variation. Hence, how to simulate the actual demand to evaluate
the fire risk and how to overcome the traffic network restraint have become the key spots
of research. Efforts have been made to investigate the index system and methodology of
the fire risk evaluation [7,9], which is normally achieved from four aspects, namely the fire
hazard source, the firefighting facility construction status, the firefighting management
status, and the regional disaster relief capability [8,10–16]. The evaluation results are then
applied to optimize the site selection model of fire stations [17].

At present, the evaluation methodology mainly includes the expert scoring method,
fire-grade hierarchy method, risk matrix method, and the fire risk index method [18–21].
Among applications of such methods, the studies carried out by Wang et al. [22] and
Xu et al. [23] to perform risk grading by land uses via an analytical hierarchy process are
relatively representative. Recently, it has been common to identify the factors related to
fire risks from the historic fire data owing to the rapid development of GIS, data mining,
and visualization techniques. Xu et al. [24] applies the kernel density analysis to the city
fire risk ranking based on fire outbreaks in 2013–2016, which confirms the superiority of
the site selection results based on the evaluation index of fire risk level to those of the
conventional model. Zhang [25] and Lin et al. [26] demarcate the urban risk zones and
perform comprehensive evaluations of the city protection grade, using the fire data and
kernel density of the key objects for safety; the zone with a higher grade is given priority in
fire station site selection. Wang [27] established the classification of fire risk level based on
the nuclear density of POI facilities, and substituted the SAVEE model for site selection
planning. Fire station selection based on the evaluation results of fire risks greatly improves
the effectiveness and service rates of fire stations. Nonetheless, fire outbreaks as random
events are theoretically subjected to uncertainty. In other words, every space or building
has the possibility of being on fire and shall be regarded as the potential fire outbreak
point. Furthermore, fire outbreaks are attributed to numerous factors, and thus the hot-spot
zone of fire outbreaks cannot fully manifest the outbreak risks, though it is, to some extent,
representative. Moreover, the existing fire station selection models generally fail to consider
the effects of traffic jams. The traffic network is in most cases abstracted into the road
topological map, and the response time or service zone is calculated using the minimum
weighted distance model [28–30]. It should be noted that the urban firefighting access way
is the important premise for the rapid arrival of firefighting taskforces to the scene of the fire
and thus the reduction and relief of fire disasters. The urban traffic network construction
and traffic condition are important factors affecting the fire station arrangement and its
optimization. Although there are studies considering the traffic capacity of the city road
upon the travel speed of emergency rescue trucks, which is defined as the road design
speed or assuming speed in these studies [31,32], they ignore the delay that may be caused
by the ever-growing traffic jam in the city and the great threats to life and properties
derived from the extended travel distance of firefighting taskforces. Wang [33] collects the
data of the traffic performance index of Shenzhen over three years, and maps the daily
traffic jam. Mao [34] and Ming [35] collected traffic data for one hour in the morning of
June 2020 and one week in May 2020, respectively, to evaluate fire vehicle speeds based on
Amap API. Specifically, the data collected by Ming [35] only have three constant speeds for
three different traffic congestion states, and thus they are not representative.

To conclude, much progress has been made in addressing the fire station site selection
issue based on models that consider temporal–spatial demands. However, there are two
prominent shortcomings in these models. (1) The randomness of the spatial demand
distribution is not sufficiently discussed. For random events, such as a fire, the existing site
selection model mainly uses fire-related factors to divide the risk level. However, this is
only an analysis of historical data, and the obtained site selection plan cannot be ensured
to be valid during the whole planning period. Although certain efforts have been made
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to incorporate the spatial randomness factor into the site selection model, there is still a
lack of a random simulation method for spatial demands. Specifically, such a method
is expected to not only accurately describe the demand distribution but also effectively
optimize the model based on the description. In this context, the site selection issue can
be better solved. (2) Existing site selection models generally lack consideration of travel
time and distance. Some studies have demonstrated the impact of traffic conditions on
the accessibility of emergency stations by obtaining traffic data through APIs, and they
have also have tried to include short-term data into the models. However, there are still
no sufficiently efficient site selection methods that can stream long-term data and include
traffic factors quantitatively into the model.

3. Introduction of the Model and Method
3.1. Methodology

This study targets the urban area of Nanjing City and builds the spatiotemporal dataset
of multi-source data, including the fire history from June 2014 to June 2018 as well as the
real-time traffic data and traffic network data via the Amap OPEN API. Moreover, this study
investigates the regularity behind fire outbreaks and identifies and selectively incorporates
the risk factors into the fire risk evaluation system. Based on the entropy weight method,
the risk factors of the different fire types are normalized and the weight of each factor is
obtained. After meshing the urban area of Nanjing, the fire risk value distribution across the
grid cells is identified via superposition. Meanwhile, the fire data of Nanjing in 2014–2018
are put through the clustering analysis, and the probability distribution at each point of
the cluster is calculated using the average score. The Monte Carlo simulation is performed
to map the random fire outbreak points, and then these massive randomly distributed
simulated fire outbreak points are inputted into the actual traffic network model, which is
finally transferred into the location set cover model constrained by the land use plan to
solve the site selection problem (Figure 1). The presented method overcomes the difficulty
in mapping the fires caused by the complex fire distribution and meanwhile eliminates the
error induced by the idealization of the traffic situation. It is worth noting that this research
project is granted by the Nanjing Fire Department and the Nanjing Bureau of Planning and
Natural Resources. The research findings provide important guidance on the actual site
selection of fire stations of Nanjing, and the presented method, a novel method for urban
fire station site selection in the big data era, is practical to provide references for analogous
specialized planning of other cities. Fire station site selection based on fire risk evaluation
can greatly improve the effectiveness and service rate of fire stations.

3.2. The Improved LSCP Model

At present, the frequently used site selection models include the set cover model,
the P-median model, and the P-center model. The set cover model is in essence a model
dealing with the optimal site selection for discrete points, which are often the identified
distributed demand points. The site selection based on the set cover model needs to
comprehensively consider multiple factors such as the quantity and position of the facility
placement and the economic effectiveness. The set cover model can be divided into two
types by the corresponding objectives, namely the set cover model and the maximal
covering location model. The former is first proposed by Toregas et al. [36,37] and aims at
the minimum facility or construction costs under the premise that all demand points are
covered. Subsequently, Church and ReVelle [38] develop the maximal covering location
model, based on the location set cover model. The maximal covering location model targets
the facility layout that facilitates the maximum served demands under the premise of the
known service station quantity and service range. The most important difference between
the maximal covering location model and the set cover model is whether or not the facility
quantity is considered. In addition, the former highlights serving demands, while the latter
emphasizes the minimum cost. The P-median model, proposed by Hakimi [39], aims at
minimizing the total distance between each demand point and the corresponding facility,
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so as to realize the best overall service performance of fire stations. Then, Hakimi modifies
the P-median model and develops the P-center model [40]; the optimization objective of
which is to minimize the maximal distance for all demand points to the corresponding
facilities. The P-center model can result in a more distance-balanced layout of facilities.
Given the goal of the fire station planning in China to realize full coverage of the rescue
and disaster relief network across the urban and suburban areas and the reality, this paper
adopts the location set cover (problem) model (LSCP) as the basic model.
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LSCP is one of the most important site selection models for locating emergency
facilities [41]. Toregas et al. [36] for the first time apply LSCP in locating fire stations, which
is shown below:

min ∑
j∈W

xj (1)

s.t. : ∑
j∈Ni

xj ≥ 1, ∀i ∈ V (2)

xj ∈ {0, 1}, ∀j ∈W (3)

where V is the set of the demand zone; W is the set of facility points; i is the demand point
sequence number; j is the facility point sequence number; Ni is the set of the facilities that
can serve the demand point i; xj is a variable equal to one or zero, representing whether or
not to build the j-th facility.

The objective function Equation (1) requires a minimal quantity of the service facilities.
The constraint Equation (2) states that each demand point shall be served by at least
one facility. Equation (3) is constrained by the values of the variable. Equations (1)–(3)
constituent a discrete model, requiring the input of a series of spatial demand elements
(including points, lines, and planes) and the location set of potential facility sites. xj
represents the node, and j refers to being chosen to build a facility (xj = 1) or not (xj = 0).
The LSCP model realizes coverage of any continuous space by placing a minimal number
of facilities in some locations, which thus requires determining the variable value (namely
the demand point) and solving xj. However, the basic location set coverage model is not
fully applicable to the fire requirement characterization. The model is improved according
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to the characteristics of fire needs. (1) A random simulation point i is used to replace the
original event point. (2) The ideal travel time from the fire station to the demand area
(tij) should be shorter than the target time (tr

s) in the road network model (T) based on
traffic congestion corresponding to any simulated demand point. The specific steps of the
optimized location set cover model algorithm are as follows (Figure 2).
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3.2.1. Generation of Random Demand Points

The overall methodology of this research is summarized below. First, the spatiotem-
poral features are analyzed using the historic fire outbreak data, the fire outbreak factors
are identified, and each index is weighted using the entropy weight method. The study
area is ten meshed into spatial grid cells, and the weights are assigned to each grid cell to
obtain the fire outbreak risk value of each grid cell. Second, the fire outbreak points are
put through the k-means clustering analysis, which generates several clusters, each with
a cluster center; the point coordinates in the cluster are checked for compliance with the
Gaussian distribution; the mean value and variance are calculated; the average score across
a cluster is computed; and the probability distribution at the point in the cluster (interval)
and the number of points generated by each cluster are calculated. Finally, random fire
outbreak points are generated via the Monte Carlo simulation based on the mean value
and variance to calculate the confidence level.

Further explanation is needed. (1) The meshing method. The study area needs to be
meshed to study the potential distribution of different fire risk factors in space. Traditional
gridding methods are normally based on regular quadrilateral units. In contrast, this
study meshes the study area into 2784 closely connected honeycomb units that are regular
hexagons with side lengths of 1000 m in ArcGIS10.6. Although the hexagonal shape is more
complicated, its advantages are also very prominent: (i) it can reduce the sample deviation
caused by the boundary effect of the grid shape; (ii) it is the most circular polygon and can
be inlaid to form a uniform grid; and (iii) its pattern can be accurately recognized.
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(2) The entropy method. In order to minimize and avoid subjective factors and some
objective limitations in the process of weight determination, this paper uses the entropy
method to assign weight to each index. Entropy is originally a thermodynamic concept
in physics, and it can reflect the degree of chaos in the system. In the information theory,
entropy is a measure of the degree of chaos in the system, while information is a measure of
the degree of order. Entropy and information have the same absolute values but different
signs. In the index data matrix X =

{
xij

}
n∗m that consists of n plans to be evaluated and m

evaluation indexes, a large degree of data dispersion corresponds to smaller information
entropy, which means a larger amount of information, thus higher importance to the
comprehensive evaluation, and consequently a larger weight. In this way, the index weight
can be scientifically assigned to solve the problem of information overlap among multiple
indexes. Practically, this study first evaluates the degree of dispersion of each sample data,
then uses information entropy to determine the index weights, and finally assesses the fire
risk factors in the urban space. The calculation steps are as follows:

(a) Standardizing the original positive index data: xij
′ =

(
xij − x

)
/sj where xij is the

original value of the i-th sample and the j-th index, xij
′ is the standardized index

value, x and sj are the average and standard deviation of the j-th index, respectively.
(b) Quantifying all indexes in the same way and calculating the weight of the i-th factor

in the j-th index (pij):

pij = Zij/∑n
i=1 Zij(i = 1, 2, . . . , n; j = 1, 2, . . . , m)

where n is the number of samples (indexes) and m is the number of indexes.
(c) Calculating the entropy value of the j-th index (ej): ej = −k∑n

i=1 pij ln(pij) where
k = 1/ ln(n) and ej ≥ 0.

(d) Calculating the difference coefficient (gj) of the j-th index: gj = 1− ej

(e) Normalizing the difference coefficient and calculating the weight of the j-th index

(gj) : wj = gj/∑m
i=1 gj(j = 1, 2, . . . , m)

(3) The Monte Carlo simulation. This is a common computation method based on
probability statistics, also called the random sampling/statistical testing method. Its
principle is that the probability of an event can be estimated using the occurring probability
of this event in a large number of tests. There are several reasons for choosing this method:
(i) it is convenient to perform a large number of repeated sampling of all spatial data, and
it can simulate the dynamic relationship between variables randomly, thereby solving
uncertain and complex problems; (ii) it is of high applicability and is less constrained
by the problem conditions than other numerical methods; and (iii) when performing
numerical calculations, its convergence speed is not related to the problem dimension. The
assumption function is presented below:

Y = F(X1, X2, . . . Xn) (4)

where (X1, X2, . . . Xn) represents the known spatial distribution probability of fire outbreak
points in each cluster after performing the clustering analysis of fire outbreak points over
five years.

In most cases, it is very difficult to calculate the probability distribution and its
mathematical features of Y via an analytical process. The Monte Carlo method using a
random number generator can perform a great amount of repeated independent random
sampling for the random variable, by generating a set of values of the random variables
via direct or indirect sampling, and can produce the probability distribution of the function
Y (namely, the simulated fire outbreaks) that is close to the reality. At last, these sampled
values are substituted into Equation (6) in Step 3.2.3 one set after another until the ultimate
results are obtained.
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3.2.2. Traffic Model T Incorporating Traffic Jam

In site selection of firefighting facilities, precisely calculating the traffic cost can result
in increased accuracy of evaluation upon the firefighting service efficiency and capacity.
This paper, with the help of the big data analysis, incorporates the traffic jam factor into the
site selection process, and thus produces an optimized planned fire station layout. Both
data acquisition and processing are implemented using Python3.6. The obtained data
are from the real-time traffic speed and congestion status data of Nanjing’s road network
provided by Amap Maps from 28 May to 10 June 2018, with a data collection interval of 1 h
and thus 24 pieces of data per day. Amap Open Platform Web Service API function is used,
and the request parameters include user authority identification, key, query road level,
return data format type, callback function, and the longitude and latitude coordinate pairs
of the lower left and upper right vertices of the rectangular area to be queried. Among
these parameters, key refers to the authorization key that the user applies for on the official
website of Amap Maps; query road level, return data format type, and callback function are
all set as the default values. The innermost distance in the rectangular area to be queried is
required to be less than 10 km, and due to this limitation, the Nanjing city area is segmented
into 230 rectangular units (each 0.06◦ by 0.06◦). Then, the units are merged into the actual
regional traffic network, and the raw data are pre-processed to link the effective traffic
situation information. In the meantime, the traffic situation acquisition program is set
to auto-run at the interval of one hour (3600 s) for 28 days in a row, and the intelligent
batch processing of streaming data is achieved, thus allowing for automatic acquisition,
pre-processing, spatialization, and storage (readable in the shapefile format) of the traffic
data of the whole city. By doing so, the spatiotemporal dataset of the traffic situation is
built. At last, the characteristic speed of each road is extracted via dimensionality reduction
and mapped for visualization.

As the speed obtained by the Amap Map API is based on real-time road conditions, it
is vulnerable to influences of holidays, major traffic accidents, and traffic jams. However, it
is critical during the traffic feature extraction by highlighting the stable traffic connections
and travel time between facilities and demand points. Therefore, it is necessary to measure
the difference and stability of the transit time obtained by the Amap Map API at different
times. Accordingly, this study chooses to collect vehicle speed data for the two weeks from
May 28 to 10 June 2018, and average them to each hour. Then, the vehicle speed data of
these two weeks are compared with those of weekdays and weekends, respectively. The
covariance calculation shows that the average speed distribution curve during the studied
two weeks can be well fitted. Therefore, it can be inferred that the difference in the average
speed between weekdays and weekends does not affect the analysis of this study. The
all-day congestion delay index of Nanjing is calculated to be 1.55, and the average speed of
the whole day is about 28.29 km/h. In contrast, the congestion delay index during the rush
hour is up to 1.81, and the corresponding average speed is as low as 24.21 km/h. The urban
traffic congestion problem in Nanjing has become a serious issue to be solved. However, it
is not suitable to use the congestion speed for the site selection model, because that will
bring inefficient resource allocation. As a countermeasure, the characteristic speed in this
model is set as the two-week average speed of each road to represent the traffic difference
in different regions. Multiple small fire stations will be considered in congested areas in
our future research.

3.2.3. Site Selection Model Based on Random Simulated Demand Points and Traffic
Characteristic Speeds

The determined demand points and the traffic network model T are then substituted
into the location set cover model to compute xj and the set of the ultimate planned station
site set W. For the existing fire stations (corresponding to the set H), the default operation is
to directly merge them into the set W (in other words, no demolition or relocation). Owing
to the predictability of fire outbreaks, the optimized algorithm of the set cover location
model is used to determine whether or not to include the station candidate j in the set M to
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the set W one after another and ultimately produce the fire station distribution with the
minimal station quantity and maximal firefighting efficiency improvement. The mentioned
algorithm is presented below:

min ∑
j∈W

xj (5)

s.t. : Pr
(
tij ≤ tr

s
)
≥ α (6)

tij ≤ tr
s, ∀i ∈ V, ∃j ∈W (7)

xj ∈ {0, 1}, ·∀j ∈W (8)

where i is the sequence number of the simulated demand point; j is the sequence number
of the new site candidate; V is the set of the demand zone; M is the set of the new site
candidates; W is set of the facility sites planned to put into service; H is the set of the
existing stations; tij is the actual travel time from the fire station j to the random simulated
point i in the demand zone, derived from the traffic network model T based on the actual
traffic jam situation; xj is a variable equal to one or zero, representing whether or not the
site candidate j will be put into service (putting into service corresponds to xj = 1, and
otherwise xj = 0).

The objective function Equation (5) requires a minimal quantity of the constructed
service station. The objective function Equation (6) is a global constraint requiring that,
for any simulated demand point, the ideal travel time (tij) from the corresponding fire
station to its service zone shall be lower than a specified time (tr

s), according to the traffic
network model T considering the traffic jam. Calculating the actual travel time tij from the
fire station j to the random simulated point i in the demand zone needs to determine the
corresponding distance and travel speed. Here, we first change the random demand point
generated in Step 3.1 with the potential and existing fire station, convert their coordinates
into a unified system, and export them into the spatiotemporal dataset. Subsequently, the
single-source shortest path between two points in the weighted graph (namely the traffic
network model T) is calculated using the path solver based on the Dijkstra algorithm,
which is divided by the traffic characteristic speed of the corresponding road to yield the
travel time. The travel time results are converted into the time matrix tij. This constraint
requires the response probability above 90% over the service range (considering errors, α is
artificially set as 90%). This paper takes Nanjing city as an example, and accurately dissects
the spatiotemporal characteristic of firefighting events, based on the actual demand points
of firefighting events and the traffic network data. Thus, we manage to perform more
precise measurements of each variable in the equations and develop a more reasonable site
selection plan. The next chapter introduces the fire data of Nanjing and the data sources.

4. Data Sources
4.1. Study Area

Nanjing, the capital city of Jiangsu Province, has an urban area of 1364.85 km2. By
2020, there are a total of 57 fire stations that have been built and put into service in Nanjing
(including 2 special-duty fire stations, 54 normal fire stations, and 1 firefighting support
fire station). A total of 39 stations are located in the urban area, while 18 lie in the suburban
area. There are no underground fire stations. The current distribution of the effectively-
operated fire stations is generally characterized by the high density in the central urban
area and low density in the developing urban fringe area. Xuanwu, Gulou, Qinhuai,
Yuhuatai, Jianye, Qixia, and Pukou districts are found with more existing fire stations
(points), correspondingly associated with relatively concentrated distributions (Figure 3).
The Standard for Urban Fire Station Construction (MOHURD Standard 152-2017, a national
sector standard of China) stipulates that the service area of the normal fire station in cities
should be no larger than 7 km2, and that of the normal fire station in suburbs should be
no larger than 15 km2, which means there should be at least 114 fire stations in Nanjing.
The quantity of the existing fire stations is far less than the stipulated one. The service
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area of the fire stations is, in most cases, overwhelmingly large, and the five-minute arrival
required by the standard cannot be realized (at present, the average travel time to the fire
site is about 11.6 min). The service area of an individual fire station far exceeds the upper
limit of the service area. Moreover, the traffic jam of the city is intensified over recent years.
Thus, the optimal response time for rescue and disaster relief cannot be guaranteed. It
should also be noted that the land that can be used to build fire stations is in short in the
city, which leads to the uneven distribution of fire stations and considerable firefighting
dead zone. For example, the South New Town centered at the Nanjing South Railway
Station and the Maqun area in the eastern Purple Mountain are found with no placement
of fire stations.
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4.2. Fire Outbreak Data
4.2.1. Basic Characteristics of Fire Outbreaks

Optimization of the fire station layout needs to consider the fire characteristics in
Nanjing. With the help of the Nanjing Fire Department, we collect the fire outbreak time,
fire location, fire site, and cause of fire recorded by the Emergency Call for Fires (119)
from 1 June 2014 to 1 June 2018, and identify a total of 9561 pieces of fire data (Table 1).
The location information of all fire events is translated into the latitudes and longitudes,
based on which the fire events are spatially positioned in the hexagonal grid cells with
radii of 500 m meshing the Nanjing urban area. A summary of kernel density analysis
on the fire outbreak quantity in each grid cell reveal that the hot-spot zones of fires are
mainly located in the core areas of the central urban area (including Gulou, Xuanwu,
Qinhuai, and Jianye districts), which is the intensive core of fire outbreaks. The global
spatial autocorrelation coefficient reaches 0.875, suggesting the extremely high spatial
aggregation of fire outbreaks. The major peak occurs at the Xinjiekou area, around which
the fire outbreaks gradually decline radially towards the opposite direction, and meanwhile,
another peak of fire outbreaks occurs at the outward Gaochun area (Figures 4 and 5).
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Table 1. Example of GPS data for emergency service events.

Administrative District Fire Time Fire Location Fire Site Cause of Fire

Yuhuatai District 31 December
2015 16:12:00 The fourth block of Langshilv Others Unknown

Jianye District 31 December
2015 14:50:00

The Eighth Bureau of Construction,
Youth Olympic Village, Jianye District Waste Other-residual fire

Yuhuatai District 31 December
2015 13:53:00 Jindi Free City reed marshes Others Unknown

Xuanwu District 31 December
2015 12:30:00 East of Jiming Temple, Xuanwu District Others Electrical fire-electrical

circuit failure-other

Yuhuatai District 31 December
2015 08:55:00

Old glass factory next to Oasis
Machinery Factory Others Unknown

Gulou District 31 December
2015 03:03:00

North Gate of Workers’ New Village,
Gulou District Others Electrical fire-electrical

circuit failure-other

Gulou District 30 December
2015 21:48:00

1st Floor, No.49 Yucai Apartment,
Gulou District Residence Electrical fire-electrical

circuit failure-other

Gulou District 30 December
2015 16:48:00

Room 101, Unit 7, Building 16, Xinyi
Village, Jinling Community,

Gulou District
Residence Electrical fire-electrical

circuit failure-other

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 12 of 23 
 

 

Table 1. Example of GPS data for emergency service events 

Administra-
tive District 

Fire Time Fire Location Fire 
Site 

Cause of Fire 

Yuhuatai Dis-
trict 

31 December 
2015 16:12:00 

The fourth block of Langshilv Others Unknown 

Jianye Dis-
trict 

31 December 
2015 14:50:00 

The Eighth Bureau of Construction, Youth 
Olympic Village, Jianye District Waste Other-residual fire 

Yuhuatai Dis-
trict 

31 December 
2015 13:53:00 Jindi Free City reed marshes Others Unknown 

Xuanwu Dis-
trict 

31 December 
2015 12:30:00 East of Jiming Temple, Xuanwu District Others 

Electrical fire-electri-
cal circuit failure-

other 
Yuhuatai Dis-

trict 
31 December 
2015 08:55:00 

Old glass factory next to Oasis Machinery Fac-
tory Others Unknown 

Gulou Dis-
trict 

31 December 
2015 03:03:00 

North Gate of Workers’ New Village, Gulou 
District 

Others 
Electrical fire-electri-

cal circuit failure-
other 

Gulou Dis-
trict 

30 December 
2015 21:48:00 

1st Floor, No.49 Yucai Apartment, Gulou Dis-
trict 

Resi-
dence 

Electrical fire-electri-
cal circuit failure-

other 

Gulou Dis-
trict 

30 December 
2015 16:48:00 

Room 101, Unit 7, Building 16, Xinyi Village, 
Jinling Community, Gulou District 

Resi-
dence 

Electrical fire-electri-
cal circuit failure-

other 
 

 
Figure 4. Fire outbreak distribution (3D view). Figure 4. Fire outbreak distribution (3D view).

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 5. Fire outbreaks by month. 

4.2.2. Fire-Triggering Factors 
The cause and site of fires are analyzed using the dominance index. The electrical fire 

is the main cause of fires for all districts, accounting for 76.3%, followed by the careless 
living fire activity (11.1%), the production operation fire (4.5%), and self-ignition fires 
(2.5%). The electrical fire is mainly triggered by electrical circuit failure, electrical equip-
ment failure, and electrical heating devices, and often occurs in summer and winter. The 
high ambient temperature (plus the self-heating of the running electrical equipment) and 
thunderstorms in summer promote occurrences of electrical fires. In winter, the overhead 
electrical lines are prone to contacting and connecting driven by intensive winds and dis-
charging electricity to cause fires. Moreover, inappropriate applications of heating devices 
and burning inflammable materials are also the characteristic causes of fire in winter. 
These analysis results are consistent with the temporal characteristics of fire outbreaks 
mentioned above. Weather, hazardous goods, gas pipe network distribution, and popu-
lation distribution are all main factors related to fire outbreaks. 

Furthermore, the fire outbreak sites are divided into five types, namely the residence 
land, industrial land, facility land, commercial land, and land for plazas and plants. The 
uppermost outbreak site is the residence land, accounting for 71.2%, while the shares of 
the other four types of lands are 4.5%, 12.7%, and 2.4%, respectively, and other types of 
fire account for 9.2%. Residence fires are mainly caused by electrical failures, with a cor-
relation coefficient of 0.725. Their frequency distribution of daily outbreaks is found to 
conform to the exponential law. In other words, for most days, the daily fire outbreaks are 
very low, and yet for some specific dates, the fire outbreaks dramatically grow. The pre-
sented analysis further reveals that fire outbreaks are highly dependent on the residential 
land and population distribution, and present a certain regularity. 

5. Optimization and Application of the Site Selection Model 
5.1. Underlying Fire Risk Evaluation 

The fire risk evaluation of the urban area involves various aspects, such as the occur-
rences, development, control, and firefighting and rescue in the urban area, and is char-
acterized by numerous and complex influential factors. The fire risk evaluation calculates 
the fire outbreak probability, predicts the disaster consequence, and quantifies the fire 
risk, by analyzing the factors affecting fires. It can provide scientific references for devel-
oping the urban firefighting plan and direct the urban fire safety management to improve 
the resistance of cities to fire disasters. By far, the previous urban fire risk evaluation cases 
in China and other countries mostly focus on the evaluation index system establishment, 

Figure 5. Fire outbreaks by month.



ISPRS Int. J. Geo-Inf. 2021, 10, 542 12 of 20

From a temporal point of view, the fire outbreaks are obviously periodic. Regarding
months, July and August are associated with periodic high fire outbreaks, resulting in
nearly 200 fire events over the last three years. However, July–August in 2014 presents
itself as a rare valley of fire outbreaks, which is attributed to the fire security circles (for
fire prevention and facility protection) set up by the Nanjing Municipal Government for
the Youth Olympic Games held at that time in Nanjing. Besides, January and February
in winter are the secondary periodic peak for fire outbreaks. April in 2014 is seen with
aperiodic ultra-high fire outbreaks (360 outbreaks).

4.2.2. Fire-Triggering Factors

The cause and site of fires are analyzed using the dominance index. The electrical fire is
the main cause of fires for all districts, accounting for 76.3%, followed by the careless living
fire activity (11.1%), the production operation fire (4.5%), and self-ignition fires (2.5%). The
electrical fire is mainly triggered by electrical circuit failure, electrical equipment failure,
and electrical heating devices, and often occurs in summer and winter. The high ambient
temperature (plus the self-heating of the running electrical equipment) and thunderstorms
in summer promote occurrences of electrical fires. In winter, the overhead electrical lines
are prone to contacting and connecting driven by intensive winds and discharging elec-
tricity to cause fires. Moreover, inappropriate applications of heating devices and burning
inflammable materials are also the characteristic causes of fire in winter. These analysis
results are consistent with the temporal characteristics of fire outbreaks mentioned above.
Weather, hazardous goods, gas pipe network distribution, and population distribution are
all main factors related to fire outbreaks.

Furthermore, the fire outbreak sites are divided into five types, namely the residence
land, industrial land, facility land, commercial land, and land for plazas and plants. The
uppermost outbreak site is the residence land, accounting for 71.2%, while the shares of
the other four types of lands are 4.5%, 12.7%, and 2.4%, respectively, and other types of fire
account for 9.2%. Residence fires are mainly caused by electrical failures, with a correlation
coefficient of 0.725. Their frequency distribution of daily outbreaks is found to conform
to the exponential law. In other words, for most days, the daily fire outbreaks are very
low, and yet for some specific dates, the fire outbreaks dramatically grow. The presented
analysis further reveals that fire outbreaks are highly dependent on the residential land
and population distribution, and present a certain regularity.

5. Optimization and Application of the Site Selection Model
5.1. Underlying Fire Risk Evaluation

The fire risk evaluation of the urban area involves various aspects, such as the oc-
currences, development, control, and firefighting and rescue in the urban area, and is
characterized by numerous and complex influential factors. The fire risk evaluation cal-
culates the fire outbreak probability, predicts the disaster consequence, and quantifies
the fire risk, by analyzing the factors affecting fires. It can provide scientific references
for developing the urban firefighting plan and direct the urban fire safety management
to improve the resistance of cities to fire disasters. By far, the previous urban fire risk
evaluation cases in China and other countries mostly focus on the evaluation index system
establishment, the evaluation model and its application, etc. The risk ranking of the U.S.
considers risk factors such as the application scenario of architectures, building density, and
fire separation, while the “urban ranking system” of Japan mainly considers the type and
structure condition of buildings, climate condition, and firefighting system [8,10]. Ding and
Wang [42] choose the population, firefighting infrastructure, firefighting capacity, public
security condition, and major hazardous source as the five primary factors. Zhang [11]
further refines the risk factors into the firefighting key area, population density, high-rise
building distribution, large crowded underground space, and firefighting taskforce to
build the fire risk evaluation framework, from the perspective of the urban space, and
identifies the high, medium, and low-risk areas. In general, when it comes to building
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the evaluation system, previous studies often focus on investigating and refining the fire
hazardous source, firefighting capacity development, firefighting management status, and
regional disaster-resistant capacity. The relevant studies are increasingly mature, and yet
with the ever-complicated development of large cities, the urban fire risk evaluation shall
highlight the spatial analysis of each underlying factor, quantify the risk fire evaluation into
the material space, and precisely rank the underlying fire risks of each urban land blocks, in
order to realize refined management of the urban firefighting security. Hence, based on the
previous studies, the features of this research, and the characteristics of the fire outbreaks in
Nanjing, the population density, high-rise building distribution, underground space distri-
bution, site distributions of gas facilities, and hazardous chemical substances, and historic
fire outbreak frequency are determined as the six major underlying factors for evaluation.
The weight and score of each factor and the comprehensive score distribution across the
urban area are calculated using the entropy weight method (Table 2, Figures 6 and 7). This
research simulates the underlying fire outbreaks and assumes that the firefighting capacity
is limited to putting out fires and rescue. Thus, the firefighting capacity is not included as
an evaluation factor.

Table 2. Fire risk ranking.

Underlying Fire Risk Ranking

Risk Factor Evaluation Factors Weight

Fire outbreak probability Historic fire outbreak frequency 0.14
Population density 0.15

Fire hazardous source
Gas pipe networks 0.24

Hazardous chemical substances 0.14

Regional disaster resistance Underground space distribution 0.12
High-rise building distribution 0.17
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5.2. Ranking of Demand Zones
5.2.1. Determining the Fire Station Site Candidates with the Urban Planning Taken
into Consideration

By comprehensively considering the urban land use plan and the current land use
and construction status and eliminating the positions that are unfavorable for building
fire stations (e.g., hills and lakes), the land blocks over 2000 m2 (according to Standard
for Urban Fire Station Construction, a national sector standard of China) are screened out.
There are a total of 4084 region blocks, which are defined as the site candidate set M.

5.2.2. Clustering and Simulation of Historic Firefighting Data

The three-dimensional K-means clustering analysis is carried out for the demand
spatiotemporal points of fire outbreaks from 2014–2018, and the cluster quantity is K. The
average horizontal and vertical coordinates µ of the relative cluster center for points of
each cluster are calculated, which is combined with the fire risk value of the corresponding
grid cell to form the 3D coordinates for clustering analysis. The clustering adopts the
mean-variance normalization, and the clustering and Gaussian distribution fitting results
of the data of 2014–2018 are used. It shall be noted that the K-means clustering requires
determining the cluster quantity K, which is set as seven in this research. The main
clustering process has three steps: first, K random starting points are chosen as the mass
centers; second, the data in the dataset are assigned to each cluster according to the distance
to the mass centers, and the averages of each cluster are calculated and set as the new
mass centers; and third, the second step is repeated until there is no change for all clusters
(Figures 8–10). According to the elbow method, K = 7 brings about the best classification
performance for spatiotemporal features, which means no concealing features and in the
meanwhile clear grouping. The data clustering and Gaussian fitting results are used for
the Monte Carlo simulation to generate several random demand (fire outbreak) points.
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5.2.3. Building the Traffic Network Model and Calculating the Minimal Time Matrix tij

Based on the processed traffic network shapefile-format files, the traffic network
dataset is constructed as the traffic network model, via topological operations, such as
road intersection breaking and interface merging. The model consists of the road intervals
and intersections. The road interval is the line element of the traffic network, which
is represented using the arc in ArcGIS. Each interval is assigned the attributes of the
jam vehicle speed (km/h), average vehicle speed (km/h), travel time at the average
speed (s), and length (km). The road intersection, represented by the node in ArcGIS, is
combined with the turning table for road intersections to vividly mimic the actual on-the-
road scenarios, such as waiting for the traffic light, no straight-through, no left turn, and
passing through the elevated road. The travel time for each road interval is calculated in
ArcGIS, according to the actual traffic network and corresponding characteristic speed,
which is defined as the average actual travel time. The vehicle speeds between two adjacent
weeks in the study period are compared and the covariance calculation results show that
the distribution of the average vehicle speed at exact hours during the two weeks can be
well fitted, with the correlation coefficient of 0.973. Thus, the data of every two weeks is of
periodic representativeness in our research.
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5.2.4. Generating the Set of the Planned Sites W

It is determined that the set of the current 57 stations (the H set) is directly merged
with the set W, with no station demolition and relocation. Based on the algorithm presented
in Chapter 1, the calculation is made for each station site j to determine whether or not
to be included in the set W, and the actual factors of Nanjing are all input into the global
constraint equation. tr

s is set as five minutes, and α is set as 0.90, which means that, for the
clustering-based random simulated demand point j, the travel time to the station i included
in the set M (the travel time is added with the OD time matrix) is less than five minutes.
The problem is solved in Matlab R2021a using the genetic algorithm, and the minimal
station quantity and station distribution (xj and j) that can best improve the firefighting
efficiency are obtained.

5.2.5. Adjusting the Model-Produced Results and Reviewing the Planned Land Use for the
Fire Station Sites According to the Regulatory Plans of Each District to Ensure the
Feasibility of the Ultimate Planned Fire Station Layout

There are 274 ultimate planned fire stations (Figure 11), including 57 existing stations
and 217 to-be-built stations. It should be noted that 28 of the model-planned fire stations
are adjusted. Among these fire stations, 125 stations mainly serve the central urban area
and its surrounding, while 149 stations mainly serve the urban fringe area. The average
service range for each fire station is 4.3 km2, less than the specified upper limit of 7 km2.
Our calculation shows that in this plan, the service area that realizes the five-minute arrival
of the firefighting taskforce in the central urban area and concentrated construction area
accounts for 91% of the total construction land use, and 99% of the construction land use of
the central urban area. The locations of 217 fire stations have been fed back to the regulatory
plan development group for approval of their land uses. The fire stations are all placed
in the street-facing sections of the main and secondary main roads, more than 200 m far
away from the sites storing hazardous goods, such as gas and LNG stations, and 50 m from
crowded sites. The firefighting response time is decreased from the current 11.6 min to
5 min.
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6. Discussion

(1) Optimization of the emergency facility site selection has always been a classic
research topic in geography. Given that the fire outbreak probabilities are different for
demand points of the varied fire risk zones, this research proposes a site selection method
that manages to realize the arrival of firefighting taskforces within the target time to
all random simulated fire outbreak points under the constraints of the administrative
regulatory plan and actual traffic situation. The solution workflow based on the set cover
model is designed, and a case study of Nanjing city is performed. Compared with the
conventional model, the optimized location set cover model greatly improves the covering
range and effectively reduces the firefighting response time. Our research also reveals
the considerable flaws of the layout of the fire stations in Nanjing. Specifically, due to the
insufficient and unbalanced distribution of firefighting resources in the districts, the current
firefighting facility is far from satisfying the emergency response demand. The overall
cover ratio of the fire station service is only 58%. The firefighting resources are excessively
concentrated in the Gulou and Xuanwu districts. Consequently, the firefighting service
has formed a large regional cover across the central urban area, while multiple firefighting
dead zones exist in other current urban built-up areas. A lack of fire stations is the main
reason for the large firefighting dead zone.

(2) Various fire risk factors have increasingly emerged due to the continuous concen-
tration of population and resources in large cities. Moreover, the accessibility and rescue
efficiency of the urban road network have been seriously affected by the overwhelming
large traffic flow and, thus, the unsmooth fire control passages in the central and new urban
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areas. Furthermore, fire control facilities in many large cities of China are not sufficient and
outdated. All these factors bring about severe challenges to fire safety management in large
cities. This study manages to accurately assess the distribution of urban fire risks, road
traffic conditions, and other situations by analyzing the spatial data. In this way, much
progress has been made in effectively suppressing the negative impacts of random fire
occurrences and traffic delays on site planning, thereby saving urban public resources. As
more and more cities are entering a digital era, our future research will consider and inte-
grate different tools into the ArcGIS toolbox, which will be more conducive for the relevant
department to optimizing fire station planning. These results will provide references for
similar cities in China and thus help enhance the fire control capacities of cities.

(3) The site selection of fire stations in this paper assumes that facilities all belong
to the same level. However, firefighting facilities are in fact subjected to differentiation
in types, levels, scales, and service ranges. Such an assumption to some extent results in
errors, which shall be corrected in further studies. In addition, the traffic cost based on the
traffic network model may change due to road modification and widening. Therefore, it is
critical to adjust and update the dynamic factors in this model in a timely manner. The next
step is to integrate different tools into the ArcGIS toolbox and visualize it, so as to facilitate
the timely correction of the road network and update the data. Given this, we plan to
collect the traffic data over a prolonged period of time and investigate the vehicle speed
variation with different seasons and months to more accurately calculate the time-cost
factors and substitute them into our model. We also plan to collect the fire outbreak data in
2019–2020 and import them into our model for further comparison and validation. The
firefighting response time is decreased from the current 11.6 min to 5 min.

7. Conclusions

Digitalization in the new era has penetrated into all aspects of urban life, transporta-
tion, and medical care. In this context, the emergence and development of spatio-temporal
big data provide new opportunities for the optimization of emergency site selection. This
study first introduces the basic model of emergency site selection based on actual traffic
conditions and the simulation method based on random demand in space. Then, this
study employs the K-means clustering method to quantitatively describe and simulate fire
demand based on actual data. Subsequently, an optimization algorithm is established that
integrates the actual speed of the road network into the location set cover model, which
contributes to the shortest travel time from the fire station to the simulated demand point
at the actual speed. In order to evaluate the validity of the proposed model, this study
analyzes the spatio-temporal characteristics of fire data from 1 June 2014 to 1 June 2018
in Nanjing City, identifies various necessary factors based on the modeling analysis, and
solves the model with a set target time of 5 min under the conditions of land-use con-
straints. Compared with traditional models, the optimized location set cover model greatly
improves the coverage area and effectively shortens the fire response time. This study is
commissioned by the Nanjing Public Security Fire Bureau, and the results of this study
provide important theoretical support for the statutory plan, i.e. the Nanjing Fire Station
Layout Plan, implemented by the local government in 2020. Nonetheless, congestion status
might change as the city develops, which will have an impact on the existing research
results. In future work, we will regularly monitor changes in the road network status and
adjust the fire station layout accordingly, including adding some small fire stations where
necessary.
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