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Abstract: On the 30 January 2020, the WHO declared a public health emergency of international
concern due to the coronavirus disease 2019 (COVID-19). Social restrictions with different efficiencies
were put in place to avoid transmission. Students living in student accommodation constitute an
interesting group to test restrictions because they share living places, workplaces and daily routines,
which are key factors in the transmission. In this paper, we present a new geospatial agent-based
simulation model to explore the transmission of COVID-19 between students living in Newcastle
University accommodation and the efficiency of simulated restrictions (e.g., facemask, lockdown,
self-isolation). Results showed that facemasks could reduce infection peak by 30% if worn by all
students; an early lockdown could keep 65% of the students safe in the best case; self-isolation could
keep 86% of the students safe; while the combination of these measures could prevent disease in
95% of students in the best case-scenario. Spatial analyses showed that the most dangerous places
were those where many students interact for a long time, such as faculties and accommodation. The
developed ABM could help university managers to respond to current and future epidemics and
plan effective responses to keep safe as many students as possible.

Keywords: agent-based model; COVID-19; 3D; geospatial; urban; pedestrian; epidemiology; SEIR;
interactions

1. Introduction

Since the 30 January 2020 the world has faced a pandemic due to coronavirus dis-
ease 2019 (COVID-19), caused by severe acute respiratory syndrome, Coronavirus 2
(SARS-CoV-2) [1]. The transmission is thought to occur mainly through respiratory droplets
generated by coughing and sneezing, and through contact with contaminated surfaces [2].
COVID-19 can be considered a serious threat to humanity, as it is a new and highly-
contagious infectious disease [1] with a clear potential for a long-lasting global pandemic,
high fatality rates and incapacitated health systems [3]. Figures from Johns Hopkins [4]
dated on the 17 May 2021 show the dimension of the pandemic: there have been reported
163,087,652 cases and 3,379,534 deaths worldwide.

Prior to the development of vaccines, the only available approach to stop the pandemic
was the reduction of the exposure between the people by applying classical epidemic
control measures, such as case isolation, contact tracing and quarantine, physical distancing,
and hygiene measures [3]. The effectiveness of these measures must be tested to determine
how, when and where to apply them. This paper proposes that students living in student
accommodation are an interesting group for studying the efficiency of these measures
because they form a small and constrained section of society exposed to similar patterns
and behaviours during their daily routines (e.g., they share living places and workplaces,
and follow similar activities in their leisure time). These daily interactions in the built
environment constitute key factors in the transmission of the disease [5]. By testing the
effectiveness of measures to reduce the transmission in this group, it could be possible to
quantify the efficiency of measures and to apply the outcomes to the general population.
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Epidemiologists have adopted different responses to epidemics and pandemics
throughout history, depending on the knowledge, tools and skills developed at the time.
Mathematical models of the spread of infectious diseases were first published by Kermack
and McKendrick in 1927 [6]. These mathematical models are simplifications of reality that
use differential equations to explain the evolution of a disease in time. An example is the
SIR model (ibid), that divides the population in three different categories (‘Susceptible’ (S),
‘Infective’ (I) and ‘Recovered’ (R)) [6]. A probability value (β) identifies the likelihood that
a ‘Susceptible’ person can be infected when in close contact with an ‘Infected’ person: and
a recovery rate parameter (α), which is the inverse of the infectious period, quantifies the
duration of the disease in the ‘Infective’ person. Thus, the following system of ordinary dif-
ferential equations (Equations (1)–(3)) defines the evolution of the disease in time between
categories based on the parameters [6]:

S′(t) = −βIS (1)

I′(t) = βIS− αI (2)

R′(t) = αI (3)

Technological development has recently allowed agent-based models (ABMs) to be-
come a useful tool in epidemiology. ABMs are stochastic computer simulations of simulated
individuals (agents) in space and time [7]. Agents move and interact autonomously in
the environment following a set of defined rules and based on their individual charac-
teristics [8]. ABMs are particularly appropriate when agents’ behaviours are a complex
function of agent attributes and characteristics, environments, and inter-agent interaction
over time, being particularly well-suited for research that is concerned with understanding
social processes [7]. Though the system is modelled from the individual point of view, its
main properties are visualised and analysed from a global perspective, observing emergent
complexity [9]. Another important factor is that ABMs are easily customised to study other
similar scenarios by simply adjusting the modelled timeline and parameters that define the
new scenario [10].

The combination of agents’ interactions in space and time with a mathematical epi-
demic model (e.g., SIR) representing the evolution of an infectious disease provides an
alternative approach to simulate the spread of a disease in society from an individual
(agent) perspective. One of the most interesting aspects ABMs contribute to epidemiology
is that spatial and temporal factors are considered in the transmission of the disease. The
use of ABMs pursues the progression of a disease and tracks the contacts of each individual
with others in the relevant social networks and geographical areas [10].

Willem et al., 2017 [11] reviewed epidemiological investigations using ABMs and
found that most studies were related to unspecified close-contact diseases (mostly used to
describe methodology and transmission dynamics), closely followed by influenza, where
many papers were published shortly after the 2009 H1N1 pandemic and the Ebola outbreak
in 2015. They also observed a shift in the use of ABMs from methodological (43% to 19%)
to application and intervention-related purposes (21% to 44%).

New epidemic ABMs have been developed recently due to the current COVID-19
pandemic. Masoud Jalayer and Orsenigo 2020 [12] developed an ABM (CoV-ABM) to
simulate spatiotemporal COVID-19 outbreaks at any geographical scale (ranging from a
village to a country) and one-hour timestamp, using census data of people and GIS infor-
mation to simulate their routines and interactions in different geographical locations. The
mathematical epidemic model applied was SEIHRD (Susceptible, Exposed, Infective, Hos-
pitalised, Recovered, Dead). The model was applied in the State of Delaware, United States,
simulating scenarios of no restrictions and quarantine only, where the top three infection
locations were schools, houses, and universities when no restrictions were imposed, but in
the quarantine scenario these changed to hospitals, public transportation and houses [12].

The ‘INFEKTA’ ABM [13] analysed the transmission of the infectious disease in the city
of Bogotá (Colombia) with a one-hour timestamp. A modified SEIR (Susceptible, Exposed,
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Infective, Recovered, see Section 2.3) epidemic model (SEIRMID) was applied, and medical
preconditions, age and daily routines were considered for each agent. Different scenarios
applying only social distancing rules were simulated, showing that it is possible to establish
a medium (i.e., close to 40% of the places) social distancing policy to achieve a significant
reduction in the disease transmission.

Cuevas 2020 [9] developed an ABM to evaluate the COVID-19 transmission risks
inside facilities only, simulating the spatiotemporal transmission process. The probability
of a person being infected depends on several factors that range from health conditions to
their discipline in following prevention measures.

Silva et al., 2020 [14] developed ‘COVID-ABS’, an open software SEIR agent-based
model of COVID-19 epidemic that simulates health and economic effects of social distanc-
ing interventions in a one-hour timestamp but not considering the geospatial environment
of any specific area of the world as some of the previous cited projects. Seven different sce-
narios of social distancing interventions were analysed (do nothing; lockdown; conditional
lockdown; vertical isolation; partial isolation; use of face masks; and use of face masks
together with 50% of adhesion to social isolation). The simulations support the notion that
lockdown and conditional lockdown were the best scenarios in terms of controlling the
number of infected and deaths.

Shamil et al., 2020 [15] proposed an agent-based model that simulates the spread
of COVID-19 among the inhabitants of a city with a one-hour timestamp, considering
five possible states in agents (healthy, infected noncontagious, infected contagious asymp-
tomatic, infected contagious symptomatic and recovered). This analysis was developed
and validated in Ford County, KS (USA), using demographic data related to the inhabitants,
data related to the COVID-19 disease and physiological characteristics. The study showed
that lockdown regulations alone can result in fewer people being infected in total compared
to contact tracing approaches, and combining lockdown and contact tracing surpasses all
the other interventions significantly.

Hoertel et al., 2020 [16] developed an open-source stochastic agent-based microsimula-
tion model of the COVID-19 epidemic in France, simulating lockdown and post-lockdown
measures, including physical distancing, mask-wearing and shielding of the population at
risk of severe COVID-19 infection. Results showed that while lockdown is highly effective
in containing viral spread, it would be unlikely to prevent a rebound and the need for a
second lockdown, regardless of duration of the lockdown period.

These previous studies demonstrate that ABMs are an effective tool for simulating
the transmission of COVID-19 and assessing the effectiveness of measures taken to reduce
infection. Some research gaps remain, however:

(1) Previous research projects are focus on the whole population of a country ([12,16]),
city ([12,13,15]) or not applied to any specific geospatial area of the world ([9,14]). Analysis
of a more concise and specific group of the society in a well-defined and compact geospatial
area could help to simulate how the disease is transmitted and to test the efficiency of the
measures to reduce the risk within them with more a detail.

(2) Timestamp resolution in previous projects was one-hour (when data provided,
e.g., [12–15]), which indicates many of the social interactions’ agents have are not consid-
ered during their daily routines.

(3) Only one of the previous cited research projects [16] developed a case-study where
several measures to reduce transmission were simulated and compared, but the geospatial
area of a real city was not considered. Simulation of different case scenarios in a defined
urban area, considering the real location of buildings, roads and realistic agents’ daily
routines, could combine these factors.

In this paper, we present a new agent-based simulation model to explore, from a
geospatial perspective, the transmission of COVID-19 in a one-minute timestamp between
students living in university accommodation and potential measures to reduce their risk
of infection. The model was developed to simulate a case study based on Newcastle
University in the UK. Five case scenarios (no measures, facemask use, lockdown, self-
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isolation and, a combination of measures) were simulated to identify their effectiveness
at reducing the number of exposed and infected students at the end of the outbreak, the
length of the virus in the environment, and the locations of high transmission.

This paper is organized as follows: Section 2 explains the methodology followed
to develop the 3D ABM using GIS data and an epidemic model (SEIR) to simulate the
presence of COVID-19 in the environment, and the development of the scenarios to reduce
the risk of transmission. Section 3 shows the results and interpretation of each of the
scenarios from a geospatial perspective, highlighting the most relevant findings from each.
Section 4 discusses the findings and concludes with a summary of limitations in the study
future work.

2. Materials and Methods

A methodology was developed to implement an ABM for the study of a COVID-19
outbreak amongst university students, building on the literature reviewed above. The
methodology uses open-source software, ensuring wide uptake, and widely-available
spatial data. This section will describe the ABM platform selected for use, the input data
required for the study, the code development, the generated output data, the development
of COVID-19 scenarios, and the assumptions and limitations found in the model.

2.1. ABM Platform Selection

There are many free and open-source ABM platforms that can be used to develop an
epidemic simulation (e.g., [17–19]). The selected platform for this project was GAMA, a
modelling and simulation development environment for building spatially-explicit agent-
based simulations [18] that can be applied to urban areas (e.g., road traffic [20]), epidemiol-
ogy (e.g., flu outbreak [21]) and the combination of both (e.g., disease spreading in a small
city [22]). It was selected due to its easy and interpretable code language (GAML: GAma
Modeling Language), its rich online documentation with quantitative and qualitative tuto-
rials and its large variety of input and output formats. Appendix A shows a comparison of
various open-access ABM platforms considered for this project.

2.2. Input Data

GAMA allows the use of geospatial data to represent the agents that interact in
space and time within the model, with specific behaviours depending on their nature
and characteristics. Five agent types were required in this project: buildings, footpaths,
students, dynamics and statics.

2.2.1. Buildings

Buildings are 2D polygons that represent the location of each activity area in the
study region of the model. OS Mastermap building data were obtained from the Digimap
website [23] with ‘Building Height’ attribute [24] employed to obtain the ground level
and base of the roof for each building. These two attributes allow the estimation of
building height and approximate number of floors (assuming each floor is 4 m high).
After the number of floors were calculated and stored as an attribute, polygons were
manually classified into different types (i.e., ‘Accommodation’, ‘Faculty’, ‘Library’, ‘Gym’,
‘Supermarket’, ‘Leisure’ and ‘Other’), depending on their nature (2481 building features
were considered in the area of study). ‘Other’ buildings are included for context but do
not have any interaction with other agents in the model (2342 ‘Other’ features in total).
Figure 1 shows the area of the project and the range of buildings included.
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Figure 1. Area of the project in Newcastle upon Tyne, UK, covering the main university campus and surround student
accommodation. Buildings are classified in different colours as shown in the legend. Contains Ordnance Survey data ©
Crown copyright and database right 2020.

Each building type was assigned a speed attribute value that indicates the pace student
and dynamic agents (see Section 2.2.5) move when within them (Table 1). These speed
values were estimated by the authors to reflect the type of interactions and activities
expected in each building.

Table 1. Estimated speed values of student and dynamic agents when inside buildings.

Building Type Speed (m/s)

Library 0.001

Accommodation 0.005

Faculty 0.010

Leisure 0.012

Supermarket 0.015

Gym 0.020

Finally, ‘Accommodation’ buildings were divided in sub-units in order to simulate
different apartments per floor. This avoids the spread of the disease between students
that rarely have contact in real life. These sub-divisions were done based on the average
number of students that share apartments in each student accommodation, according to a
summary of accommodation provided by Newcastle University [25].



ISPRS Int. J. Geo-Inf. 2021, 10, 509 6 of 44

2.2.2. Footpaths

Footpaths are 2D line features representing the routes students use to go between
buildings in their daily routines. These data were generated using Ordnance Survey ‘OS
OpenMap Local roads’ layer [26]. This layer was used to create parallel footpaths 1.5 m
apart using QGIS software. Since the GAMA platform calculates shortest path routes for
agents, two tracks per street were created to allow sufficient realistic interactions between
students outdoors (3426 ‘Footpath’ features were used in total). A detailed view of the
generated footpaths can be observed in Figure 2.
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Additionally, the entrance and main corridors inside buildings were digitised to ensure
student agents share the same entrance (Figure 2). Manual connections were digitised in
the intersections between the footpaths and all line strings were exploded to guarantee
they are single lines as required by GAMA.

2.2.3. Students

Student agents represent students attending Newcastle University and living in uni-
versity accommodation [25]. In 2020, 10 residences were offered to undergraduates and 6
to postgraduates. In order to keep only accommodation with similar characteristics, ac-
commodation with a maximum of one student per room, a range of 6–10 students sharing
kitchens, and within walking distance of the main campus was selected. This gave nine
accommodation locations with a total of 2954 student. These students were generated as
2D geometry points, located inside the sub-building divisions created previously in the
accommodation buildings and at different floors (integer value in the attribute table, de-
pending on each building’s number of floors), keeping the range of students per apartment
as shown in Table 2. Agents were initialised with a 2 m minimum distance between them,
representing the personal space each student has in order to avoid transmission of the
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disease during the night when everyone is sleeping. Figure 3 shows a detail of initialised
students in the accommodation.

Table 2. Student accommodations selected in the project.

Residence Avg. Students Sharing Kitchen Students

Castle Leazes 7–10 305

Liberty Plaza 6 518

Newgate Court 7 86

Park View 8 1261

The View 6 329

Windsor Terrace 6 48

Grand Hotel 8 66

Kensington Terrace 10 98

Park Terrace 8 243
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Each student was then attributed with daily routines, which consist of four tasks
undertaken by each student during the day for a specific period of time (once outside of
the accommodation). These tasks are shown in Table 3:
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Table 3. Tasks undertaken by student agents during the day.

Task Approx. Duration of the Task

Faculty 6 h

Library 2 h

Supermarket 40–60 min

Leisure 2 h

Gym 2 h

Home 1 h

Eight different daily routines (differentiating between even and odd days) were created
for students based on these tasks. The percentages of students assigned to each routine
were decided assuming everyone attends a faculty building every day, 30% of students
go to a gym, 30% go to the library, 70% enjoy leisure time and 30% go to supermarkets.
These percentages were assigned arbitrarily based on assumptions. Figure 4 summarises
the eight different daily routines created:

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 8 of 45 
 

 

Table 3. Tasks undertaken by student agents during the day. 

Task Approx. Duration of the Task 
Faculty 6 h 
Library 2 h 

Supermarket 40–60 min 
Leisure 2 h 

Gym 2 h 
Home 1 h 

Eight different daily routines (differentiating between even and odd days) were cre-
ated for students based on these tasks. The percentages of students assigned to each rou-
tine were decided assuming everyone attends a faculty building every day, 30% of stu-
dents go to a gym, 30% go to the library, 70% enjoy leisure time and 30% go to supermar-
kets. These percentages were assigned arbitrarily based on assumptions. Figure 4 summa-
rises the eight different daily routines created: 

 
Figure 4. Defined daily routines followed by different percentage of students. ‘Stay in the Room’ task refers to the time 
students are located within their own rooms without any interaction with other students; ‘Home Interaction’ task refers 
to the daily interactions’ students have with their flat mates during the early mornings and late evenings. ‘University’, 
‘Supermarket’, ‘Library’, ‘Leisure’ and ‘Gym’ tasks refer to interactions within faculty, supermarket, library, leisure and 
gym buildings, respectively; the ‘Home’ task refers when students go home during the day and spend some time in com-
mon areas but not necessarily interacting with other students depending on their schedules; while ‘None’ indicates a 
student continues with the previous task. 

Students were randomly selected, assigned to one of these routines and linked to a 
specific building related to each task. These routines and locations were then stored along 
with the initial times for each task in the attribute table. This procedure was undertaken 
based on the following criteria: 
• Each student was linked to a unique faculty building randomly. The number of stu-

dents per faculty building were obtained from Newcastle University’s Press Office 
[27], where distribution of students by faculty (academic year 2019–20) is provided. 
These values were then spread in the different buildings each faculty has based on 
the area of the building (floor area x number of floors), assuming large buildings re-
ceive more students than small ones. 

Figure 4. Defined daily routines followed by different percentage of students. ‘Stay in the Room’ task refers to the time
students are located within their own rooms without any interaction with other students; ‘Home Interaction’ task refers
to the daily interactions’ students have with their flat mates during the early mornings and late evenings. ‘University’,
‘Supermarket’, ‘Library’, ‘Leisure’ and ‘Gym’ tasks refer to interactions within faculty, supermarket, library, leisure and gym
buildings, respectively; the ‘Home’ task refers when students go home during the day and spend some time in common
areas but not necessarily interacting with other students depending on their schedules; while ‘None’ indicates a student
continues with the previous task.

Students were randomly selected, assigned to one of these routines and linked to a
specific building related to each task. These routines and locations were then stored along
with the initial times for each task in the attribute table. This procedure was undertaken
based on the following criteria:

• Each student was linked to a unique faculty building randomly. The number of stu-
dents per faculty building were obtained from Newcastle University’s Press Office [27],
where distribution of students by faculty (academic year 2019–20) is provided. These
values were then spread in the different buildings each faculty has based on the area
of the building (floor area × number of floors), assuming large buildings receive more
students than small ones.



ISPRS Int. J. Geo-Inf. 2021, 10, 509 9 of 44

• Students attending gyms were assigned to a unique gym. The number of students per
gym were calculated based on the data provided by Newcastle University Sport Centre
and then extrapolating them to other gyms based on the size of the buildings. Approx-
imately 50% of students were linked to the closest gym from their accommodation.
The remaining were linked randomly to another gym.

• Students visiting libraries were linked to a unique library building. The procedure of
assigning students to each building was similar to the one followed before for gyms,
based on the size of the building. Approximately 50% of the students were assigned
to the closest library, while the rest were assigned to another, randomly.

• Students shopping at supermarkets were linked to a unique supermarket too. In
this case, 50% of the students were assigned to the closest supermarkets to campus
and the other 50% to another supermarket based on the size of the building. It was
assumed students do their shopping close to their accommodation in order to carry
their belongings the shortest time as possible.

• Leisure areas are parks, shops, and university buildings where students relax or get
advice. Students were linked to one leisure area for each task related to leisure time,
assuming no one goes to a park early in the morning but many during the evening
and the opposite for university buildings. Students were spread randomly in these
areas based on their size, not on proximity as in previous tasks.

2.2.4. Static Agents

Static agents refer to any unanimated element in the environment that can transmit
an infectious disease when has been in close contact with an ‘Infective’ agent. Examples
are door handles, items in the toilet, computers in labs, and items in supermarkets. These
agents were located inside buildings based on assumed probability of interaction, the
likelihood to be infected when in contact, and the approximate number of times students
interact with them, in each type of building. Table 4 shows the proportion of Static agents
included in each building type per unit area (e.g., gyms have four times more static agents
than accommodation, library and leisure buildings). Based on these values and the size of
each building, there were spread 477 static agents inside the buildings.

Table 4. Proportion of static agents per type of building and unit area.

Building Type Proportion of Static Agents Location

Accommodation 1 Main entrance

University 2 Randomly located

Supermarket 4 Randomly located

Gym 4 Randomly located

Library 1 Randomly located

Leisure 1 Randomly located

2.2.5. Dynamic Agents

Dynamic agents refer to any person that can interact with students in their daily
routines and static agents. They can be considered as other students, professors, university
staff and customers in supermarkets or stores, etc. A total of 471 dynamic agents were
located inside buildings. These agents do not follow any daily routine and are always
moving randomly inside the building they were located.

The number of static and dynamic agents was chosen based on available computing
power and processing time of the model.

The attribute table of each described agent can be found in Appendix B.

2.3. GAMA Code Development

Based on GAMA tutorials [28], model code was developed to import geospatial data
into the model, develop behaviours for each type of agent, and export output files. Addi-
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tionally, the code was implemented and improved with new conditions and behaviours
related to the purpose of the project, such as the existence of dynamic and static agents,
the use of different speed values depending on the building’s type, and the use of a SEIR
epidemiological model.

Several functions were created to simulate the movement of students in their daily
routines. Students move in the environment based on their tasks and starting times
allowing the simulation of the following activities:

• In the morning, between 08:00 and 08:30, they interact with other students moving
randomly in the accommodation.

• Between 08:30 and 09:30, they start their first routine and go to their assigned location
following the shortest path using the footpaths at a random speed between 3 and 5 km/h.

• For their first task inside a building, they move randomly at a speed based on the type
of building, until time to start next task is triggered and move to that place through
the footpaths again.

• Once their last task is finished, they go back to the accommodation, where they interact
randomly with their flatmates until 20:15–20:30, when they go to their initial location,
symbolising their own room with at least 2 m distance to any other student.

• They remain there until the next day, when their interactions start again with their
flatmates at 08:00.

Dynamic agents only move randomly inside buildings (always in the same floor level)
at a speed specified by the building’s type, while static agents do not move and are always
located in the same position.

Once movements of the agents were created based on space (buildings and footpaths)
and time (initial time to start the tasks), an epidemiological SEIR model was introduced for
students and dynamics. The SEIR epidemiological model is an extension of the SIR model
described in Section 1, including an intermediate ‘Exposed’ (E) category that describes
individuals infected but not infectious (Figure 5).
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Based on GAML code developed by Benoit Gaudou [29] and Tri and Hqnghi [30], this
SEIR model classifies the agents as ‘Susceptible’, ‘Exposed’, ‘Infective’ and ‘Recovered’,
depending on their status related to the infectious disease (Figure 5). The model divides
agents in these four categories and transitions between them are based on three parameters
(probability to be infected (β) when in close contact (within 2 m distance) with an infectious
agent; the incubation period (σ); and the recovery period (γ)). Additionally, β value
was split in two options, depending if agents are located indoor or outdoor. It was
considered that probability to be infected indoor is more likely than outdoor because
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outdoor there is a large volume of clean and fresh air, making transmission more difficult
but not impossible [31]. This condition was implemented in the code, assigning a greater
β value when students are indoor than outdoor (these values are set up by the user before
running the simulations). When a ‘Susceptible’ agent (student or dynamic) is within
2 m distance (3D distance) of an ‘Infective’ (student, dynamic or static) agent, and based
on β value (indoor or outdoor), the ‘Susceptible’ agent can be converted into ‘Exposed’
(infective but not contagious) or remain ‘Susceptible’. If it is ‘Exposed’, then it becomes
‘Infective’ to others after σ days, and ‘Recovered’ after γ. A flow diagram representing the
evolution of agents can be observed in Figure 6.
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These functions were created in GAML by selecting the ‘Susceptible’ agents within
2 m distance of an ‘Infectious’ agent and then calculating the probability value to infect
them. Functions to convert agents into ‘Infective’ and ‘Recovered’ were based on time (σ
and γ values) only.

Studies have observed that the COVID-19 virus can be active on surfaces for a time [32],
with experiments showing that SARS-CoV-2 and SARS-CoV-1 can remain viable and
infectious in aerosols for hours and on surfaces up to days. In the case of SARS-CoV-2, a
viable virus was detected for up to 72 h on plastic and stainless steel although the virus was
greatly reduced, while no viable SARS-CoV-2 was measured after 4 h on copper or after
24 h on cardboard [32]. Similar results were obtained for SARS-CoV-1. Since static agents,
as unanimated elements, cannot follow a SEIR model (they do not have ‘Exposed’ status),
they were classified in a SIS (Susceptible, Infective, Susceptible) model. Once a Static
agent is infected by any other agent (in the same conditions as students and dynamics)
it becomes ‘Infective’ and can infect others. If this ‘Infective’ static agent encounters a
‘Susceptible’ student or dynamic agent, these agents are infected with their probability
value and the static agent again becomes ‘Susceptible’, being possible to be ‘Infective’ again.
Based on [32], a variable ‘Infected’ lifetime for static agents was defined as a random value
between 0 and 1439 (minutes in a day). When the assigned value is equal to the current
minute of the day, then the ‘Infective’ static agent becomes ‘Susceptible’ again.

Finally, a new static agent was developed called a ‘Contaminated Element’, which
represents any element that an ‘Infective’ agent (student or dynamic) can reproduce through
coughing, sneezing, or touching, allowing the disease can be transmitted to others when
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in contact with those elements. Since COVID-19 can be transmitted by airborne particles,
these ‘Contaminated Elements’ could represent particles in the air with the capacity to
infect others in a short period of time. These ‘Contaminated Elements’ are generated based
on a probability value decided by the user. If they infect someone else, they disappear from
the model or, if not, they disappear after the same lifetime as static agents. They follow an
ID (Infective–Die) model.

Figure 7 summarises the behaviours and interactions between the different agents
in the model, with blue boxes defining the agents that can transmit the infectious disease
directly, and the grey box defining the ‘Contaminated Elements’ generated by student
and dynamic agents. Orange boxes define the buildings included in the model, while the
green box identifies the generated footpaths. Arrows describe the relationships between
the different agents during the simulations.
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Figure 7. Spatial and temporal relationships of ABM agents during simulations. Blue boxes relate
to the agents that can transmit the disease and be infected by someone else; a grey box relates to
the contaminated elements and is linked to the agents that can produce them and be infected by
them; a green box represents the footpath and is linked to the agents that can use them; while orange
boxes represent the buildings with and without interactions and are linked with the agents that move
inside them.

The developed model contains six initial parameters to be specified by the user before
running any simulations. These parameters depend on the nature of the infectious disease
and can be adjusted according to the disease being simulated (Table 5):

Table 5. ABM parameters related to the infectious disease to set up before simulations.

Parameter Description

β indoor Probability to be infected indoor (0–1)

β outdoor Probability to be infected outdoor (0–1)

σ Incubation period of the disease (days)

γ Recovery period of the disease (days)

Probability to generate contaminated elements Probability to generate ‘Contaminated Elements’ by students and dynamics (0–1)

Number of initial random ‘Infective’ agents Initial value related to students, dynamics and/or static agents.
(0 to any number)



ISPRS Int. J. Geo-Inf. 2021, 10, 509 13 of 44

Additionally, the speed of agents within buildings can be adjusted in the attribute
table of the building dataset and speed of students in footpaths can be adjusted directly
in the code, while routine tasks and initial times for each student can be modified in the
student dataset.

Figure 8 shows different perspectives of the 3D ABM developed showing agents
(students, dynamics and statics) in different locations and in different colours depending
on their infectious disease status (‘Susceptible’ (green), ‘Exposed’ (yellow), ‘Infective’ (red)
and ‘Recovered’ (blue)):
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Figure 8. Perspective view of the ABM, when students are located at home at the beginning of the outbreak (top left) and
their daily interactions during the outbreak (bottom left and right), showing different infectious status. A short video of the
agents’ interactions can be watched in the following GitHub repository (https://github.com/DACNC/ABM_COVID19
_Students_Transmission) (accessed on 26 July 2021). Contains Ordnance Survey data © Crown copyright and database
right 2020.

2.4. Output Data

Simulations ended when the number of ‘Exposed’ and ‘Infective’ students reached
zero, meaning the disease has disappeared from the environment. When these two condi-
tions occur, four output files (three CSV and a text file) are generated, containing informa-
tion about the evolution of the disease in space and time:

• ABM_SEIR_values_per_day.csv: this file contains the evolution in time of the disease.
It shows the number of ‘Susceptible’, ‘Exposed’, ‘Infective’ and ‘Recovered’ students
per day. When plotting this data in a chart, it is possible to identify the duration of the
disease in the environment, when ‘Exposed’ and ‘Infective’ peak values were reached
and the speed in the evolution based on the slopes of the curves (Figure 9).

• Agents_after_simulations.csv: this file contains individual information of every stu-
dent in the model, recording their status related to the disease (SEIR), and time and
location (x, y, z coordinates in EPSG 27700) of infection and by whom in the case of
infection. This information allows spatial analysis of infection, identifying the places
where most infections occurred (Figure 10).

• Transmission_list.csv: this file contains information about how the disease was trans-
mitted between agents recording the ID value and the ID value of the agent that
infected them for each student, dynamic and static agent. This information allows
tracking the transmission of the disease between agents and could be used to generate
graph representations of transmission.

https://github.com/DACNC/ABM_COVID19_Students_Transmission
https://github.com/DACNC/ABM_COVID19_Students_Transmission
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• Initial_data_and_parameters.txt: this file contains the initial input data and parameter
values set up by the user before running the simulation. This file is useful to keep
track of the parameters used in each simulation.
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The attribute table of each described output file is shown in Appendix C.

2.5. Infectious Disease Scenario: COVID-19 Outbreak

As described above, the model has six initial parameters directly related to the infec-
tious disease that need to be set up (Table 5). Some of these parameters can be obtained
from literature, but due to the novel nature of this disease, there is some disagreement about
accurate values. A reasonable consensus on σ and γ values was found in the literature,
with WHO indicating the incubation period (σ) is between 5 and 6 days [33], while Public
Health England indicates it is from 1 to 14 days (median 5 days) [2]. Five days was chosen
for this value. The recovery period (γ) was set at 7 days based on Public Health England
findings [34] (although this has since been modified to 10 days).
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A greater variety of β (probability to be infected) values was found in the literature
(Appendix D), however, suggesting that precise knowledge of the disease has not yet been
achieved. In some cases, the value is given as time-dependent, and the range of values are
not given. In others, the values ranged from 8.68 × 10−8 to 1.68, referred directly to the
reproductive number of the area of study, or calculated values based on factors such as the
location of the pandemic outbreak and the social interactions of the people in each area.

Since a definitive value could not be found, an approximate value for β indoor was
determined related to the reproductive number (R0), which is the average number of
secondary infections produced by an infectious case in a population where everyone is
susceptible [35]. Four different scenarios were selected (each one run eight times) with
different β indoor values (0.1, 0.05, 0.025 and 0.005) and constant σ and γ values (5 and 7,
respectively). Then these simulations were analysed by calculating the average number of
secondary direct (person-to-person) infections produced by students and dynamics using
the ‘Transmission_list.csv’ file obtained from each simulation, obtaining the average and
standard deviation results in Table 6. These average values cannot be considered as an
equivalent to the R0 value because they were obtained considering all students during the
simulation, while R0 definition estimates the value when everyone in the population is
susceptible (i.e., at the beginning of the outbreak). For the purpose of this project, however,
and given the difficulty obtaining a definitive β indoor value, a similarity between these
infections and the R0 number was assumed.

Table 6. Secondary infections between student and dynamic agents obtained from different β indoor values.

β Indoor = 0.1 β Indoor = 0.05 β Indoor = 0.025 β Indoor = 0.01

Secondary
infections

Average 4.30 3.69 3.10 2.44

Std. dev 6.03 4.77 3.60 2.36

These results were compared against the study by Flaxman et al. (2020) [36] where
an approximate R0 for the UK was estimated between 3.5 and 4.0. Based on this R0 value,
and assuming an excess value in the ones estimated in this project (‘Infected’ students and
dynamics at the beginning of the epidemic should infect more people than others at the
end of the epidemic), it was decided to use a β indoor value of 0.025 (R0 ≈ 3.10).

The rest of initial parameters related to COVID-19 infectious disease (β outdoor
and probability to generate contaminated elements) were obtained based on β indoor,
σ and γ values after several simulations. The number of ‘Infective’ people outdoors was
decided to be minimum (approximately a 2% of all infections) and the approximate number
of ‘Contaminated Elements’ generated by each ‘Infective’ person was one per infected
day. All simulations commenced with two random initial ‘Infective’ students. Table
7 summarises the parameters selected to simulate a COVID-19 outbreak in Newcastle
University:

Table 7. Initial parameters used in the ABM to simulate a COVID-19 outbreak.

Initial Parameter Value

β indoor 0.025

β outdoor 0.005

σ 5 days

γ 7 days

Probability to generate contaminated elements 0.001

Number of initial random ‘Infective’ Students 2

As ABMs are stochastic tools, where different results are obtained in every simulation,
20 simulations were run in order to identify the range of minimum, maximum and average
values in the evolution of the disease in space and time.
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A baseline scenario (Scenario 1: no measures implemented) was simulated, where the
disease is only eradicated when ‘Susceptible’ agents reach 0, with ‘Recovered’ people being
protected (‘herd immunity’); or the disease is weak and only infects a small proportion of
the population.

2.6. Risk Reduction Measures

When an epidemic or pandemic occurs, measures to control and reduce the risk of the
disease must be taken by the authorities, especially when pharmaceutical measures (e.g.,
vaccination) are not an option. Social distancing, for example, is a measure that reduces
the risk by keeping a minimum distance between people, avoiding the transmission of
the disease when in contact with ‘Infective’ persons. By avoiding contact, the infectious
disease disappears after time.

Since COVID-19 is a very infective disease that requires measures to reduce transmis-
sion risk, a number of measures to reduce the risk of infection were analysed individually
and in combination in the following scenarios:

• Scenario 2: Facemasks: the use of facemasks to protect and reduce transmission is a
controversial topic. WHO, in an Interim guidance from the 5 June 2020, highlighted
a lack of evidence on the effectiveness of universal masking of healthy people in
the community to prevent infection with respiratory viruses such as COVID-19 [37].
The guidance was updated, however, to advise that to prevent COVID-19 transmis-
sion effectively in areas of community transmission, governments should encour-
age the general public to wear masks in specific situations [37]. Some studies have
shown that use of facemasks by the general public should be encouraged as soon as
possible [38–42]. WHO additionally adds that the purpose of the use of face masks is
two-fold, preventing transmission of the virus to others in case the wearer is infected
(source control) and self-protection for a ‘Susceptible’ person (prevention) [37].

ABM simulations were developed for different proportions of student and dynamic
agents using facemasks from different starting days. The percentage of people using face-
masks were 40, 60, 80 and 100%, starting from Days 1, 10 and 15. A total of 12 simulations
were run four times each in order to check the efficiency of each combination of options,
with mask efficiency based on the literature [39] (20 to 80% efficiency for cloth masks,
with 50% possibly more typical), set as 50% in all simulations. This indicates that when a
‘Susceptible’ agent wears a mask, the probability to be infected is reduced by 50% while
when an ‘Infective’ agent wears a mask the probability to infect others and the probability
to generate ‘Contaminated Elements’ is also reduced by 50%. These conditions were in-
corporated into the ABM code, identifying mask-wearing students and dynamics with a
purple circle around them (Figure 11).
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Additionally, some of these agents appear with a purple circle around them, symbolising the use of
facemasks. Contains Ordnance Survey data © Crown copyright and database right 2020.

• Scenario 3: Lockdown: in a pandemic scenario, a ‘Lockdown’ consists of keeping
people isolated at home to reduce the transmission of the disease. This is the most
restrictive and extreme measure in terms of its impacts on the economy and personal
freedom. In the UK, for example, GDP in April 2020 fell by 20.4% based on the
negative impact of the national lockdown, the largest fall since monthly records began
in 1997 [43]. This scenario was simulated in the ABM with a different percentage of
randomly selected students kept at home (daily tasks were disabled for them) from
a specific day during the epidemic. As in Scenario 2, the percentage of people in
lockdown were 40, 60, 80 and 100%, starting from Days 10, 15 and 17 in this scenario.
A total of 12 simulations of combinations of these values were run four times each to
analyse their efficiency.

• Scenario 4: Self-isolation: self-isolation is a responsible act that an ‘Infective’ person
does to protect others. For highly infectious diseases like COVID-19, ‘Infective’ people
should stay at home away from others, however external factors, such as personal cir-
cumstances, work environment or lack of symptoms when ‘Infective’ (asymptomatic)
influence this decision. This scenario was implemented in the ABM by either self-
isolating an ‘Infective’ student or dynamic agent (assuming a test and trace contact)
or allowing them to continue their daily routines based on a percentage value. If
self-isolation is chosen, then the individual is moved to a safe location to avoid contact
with flatmates. If self-isolation is ignored, the individual continues with their daily
routines with the ability to infect others. Different percentages of adherence to self-
isolation were simulated (40, 60, 80 and 100%), starting from Days 10 and 15 of the
epidemic, with the parameters combined in eight simulations, each run four times to
check their efficiency.

• Scenario 5: Realistic: in real life, these previous measures are not considered indi-
vidually but in combination. Four simulations were run, four times each, combining
some of the previous measures with different values in order to identify an optimum
combination to remove the disease from the environment in a short period of time,
with small consequences to the population, and keeping as many away from the
disease as possible.

The decision about the selected days to apply these various measures was guided
by the results obtained in Scenario 1. It was observed that in Day 10, 5% of the students
were ‘Exposed’ and 1% ‘Infective’. In Day 15, the percentages were 25 and 5, while in
Day 17, they were 31 and 10, respectively. Implementing measures at these times in the
simulations allows the identification of the appropriate implementation time and testing
when measures are not efficient because they were applied too late.

2.7. Model Simulation

The model simulation can either be run using the graphic user interface (GUI), where
the user can set up the initial parameters (left hand side of the interface), start the simulation
and see how agents behave in real time (central part of the interface) and obtain real time
information about the evolution of the infectious disease (right hand side of the interface).
Figure 12 shows the GUI in the GAMA platform:
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The model can also be run in batch mode, allowing several simulations to be run in
parallel with the same parameters but with random starting conditions. Initial parameters
are defined in the code and results are only shown when all simulations are finished.

2.8. Assumptions and Limitations

Simulations are run with one-minute time steps starting on the 14 March 2020. There
is no differentiation of agents in terms of age or gender, and all accommodation is identical.
All students return to their original accommodation each night. Students are assumed to
be aged between 18 and 30 years, and as such deaths were not considered in the model as
deaths from COVID-19 are almost zero in this age group [44].

Software requirements and characteristics of the laptop used in the research can be
consulted in the Appendix E.

3. Results

The five scenarios described above were run and results obtained with different
parameter values used to reduce the risk in the transmission of the disease. Results are
interpreted from a spatial-temporal perspective with the aim of testing the efficiency of the
measures to reduce the risk of COVID-19 transmission between the students.

3.1. Scenario 1: No Measures Implemented

Scenario 1 shows how COVID-19 evolves and behaves in time and space when no
measures to reduce the risk are applied. Twenty simulations of Scenario 1 were analysed
with the values defined in Table 7, and maximum, minimum and average values were
obtained (Figure 13). It can be observed that the number of ‘Susceptible’ agents decreases
over time as more students become ‘Exposed’ and ‘Infective’, with most students no longer
‘Susceptible’ by Day 25. The ‘Exposed’ peak value was obtained between Days 17 and
23 (mean Day 20). The peak in ‘Infective’ students was reached between Days 24 and 30
(mean Day 26), with a maximum of two thirds of the population infected (‘Infective’) at the
same time. After 40 days, all students (2954) were ‘Recovered’.
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This scenario was also analysed from a spatial perspective. Figure 14 shows a heat
map identifying the areas of the city where more infections occurred. Two main hotspots
are visible, one in the SE of the study area where two student accommodations and a
busy supermarket are located, and one in the main campus where most faculty buildings
and another supermarket are located. Accommodations and faculty buildings are where
students spend most of their time, while those supermarkets are very small buildings
where many of them go at the same time, based on students’ schedules.

3.2. Scenario 2: Facemasks

Similar results were generated for the Facemask scenario described in Section 2.6,
with the 12 combinations of facemask use simulated four times each. Figure 15 shows the
evolution of the disease in time when different percentages of facemask use was adopted
by agents from Days 1 (blue), 10 (green) and 15 (orange) of the simulation, compared
against results from Scenario 1 (grey).

It can be observed in Figure 15 that when only 40% of the students were using face-
mask (top chart), the behaviour of the disease in the environment was very similar to
Scenario 1 with no facemask use. When this percentage was increased to 60, 80 and 100%,
more differences were observed in shapes and duration of the disease in the environment.
With 100% mask use (bottom chart) the ‘Exposed’ and ‘Infective’ peaks are reached ap-
proximately 16 days later when facemasks were used from Day 1 (blue line). When 100%
of students used facemasks, the maximum ‘Exposed’ and ‘Infective’ peak values were
reduced by 25 and 30% respectively. There are also differences in the required time to
eradicate the disease from the environment. More time was needed when more people
used facemasks, with 63 days on average being needed with 100% mask use from Day
1. Finally, it was observed that only 1% remained ‘Susceptible’ when 100% were using
facemask from Days 1, 10 and 15. This shows that facemasks with 50% efficiency help
to flatten the curves but are insufficient to eradicate the disease and reduce the ultimate
infection risk. This confirms the observation highlighted by Eikenberry et al. (2020) [39]:
‘masks should not be viewed as an alternative, but as a complement to other public health
control measures (including non-pharmaceutical interventions, such as social distancing,



ISPRS Int. J. Geo-Inf. 2021, 10, 509 20 of 44

self-isolation, etc.)’. Spatial analysis of infection locations revealed no major difference
between Scenarios 1 and 2, as daily routines (and therefore locations of major interactions
between students) are not altered by the use of facemasks. A spatial hotspot map for
Scenario 2 is included in Appendix G.
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3.3. Scenario 3: Lockdown

Simulations were undertaken for the Lockdown scenario when different percentages
of people stay at home starting from different days of the simulation (see Section 2.6). The
combination of these parameters produced twelve simulations, run four times each, in
order to find the range of minimum, maximum and average values.

Figure 16 shows a comparison of different percentage of people in lockdown starting
from Day 10. The graph shows that curves were flattened even when only 40% were in
lockdown (reducing the ‘Exposed’ and ‘Infective’ peaks a third and over a quarter, respec-
tively). The most extreme peak reductions were obtained when 80% were in lockdown but
the disease remained longer in the environment (up to 80 days as an average). When all
students were in lockdown, peak values were higher than when there were 80% (‘Infective’
students were sharing the apartment with other ‘Susceptible’ students at all times, infecting
them), duration shorter (43 days as average) and this kept approximately two thirds of the
population away from the disease (students that did not share accommodation with any
‘Infective’ agents). When lockdown started in Day 15, differences between results were
less visible and closer to Scenario 1, while when lockdown started just two days later, the
results were extremely close to Scenario 1 in shape and time.
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The best results were obtained when lockdown started in Day 10, independent of the
percentage of people following it. The more people in lockdown, the longer the disease
remained in the environment except when all students were at home. Results also suggest
that early lockdowns followed by the majority of students keep a higher percentage of
students safe from the disease, with a maximum of 65% kept safe when all students are at
home from Day 10, and only a 22% when lockdown was raised on Day 15.

Additionally, areas of the city were identified with more infections when different
percentage of students were in lockdown from different starting days. The main differences
were observed when lockdown started from Day 10 and was followed by everyone, where
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a more diffuse pattern of infection was found. In the remaining versions of Scenario 3,
an increase of cases in accommodation areas and a reduction in faculty buildings were
observed due to the students spending more time at home in isolation. Spatial hotspot
maps for Scenario 3 is included in Appendix G.

3.4. Scenario 4: Self-Isolation

In the self-isolation scenario, ‘Infective’ students voluntarily decided to avoid contact
with others by staying at home alone. As described in Section 2.6, various simulations were
conducted with differing percentages of self-isolated students starting from different days,
generating eight simulations, run four times each. Figure 17 shows the results when the
same percentage of student agents were in lockdown starting from different days compared
to Scenario 1.
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Results show that 40% of self-isolation (top chart) did not have an impact in the results
when compared against Scenario 1. It was from a 60% self-isolation when results were
visible (only from Day 10), being more efficient when the measure was followed by at
least 80% (bottom chart), but staying longer in the environment and keeping only 4 and
3% of the students safe, when starting Days were 10 and 15, respectively. Self-isolation
followed by 100% of students provided the best results in both starting days, in terms of
peak values, length of the disease in the environment and number of students safe (86%
and 58%, starting from Day 10 and 15, respectively). These results highlight the importance
of testing people to identify infectiveness and isolating them as soon as possible.
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It is important to highlight that even when every ‘Infective’ student was self-isolated,
disease transmission continued growing for a few days in both starting day scenarios.
This fact occurs because some ‘Exposed’ students became ‘Infective’ but also because
some ‘Infective’ static and ‘Contaminated Elements’ remained in the environment with the
ability to infect students for one more day. If the percentage of self-isolated students was
lower, the effect of ‘Infective’ static and ‘Contaminated Elements’ in the environment was a
more important factor in the transmission of the disease. Based on this finding, it can be
highlighted the importance of cleaning contaminated areas to reduce the transmission.

When results were analysed spatially, observed hotspots were similar to Scenario 1,
keeping the same two main focii, except when 100% of students were self-isolated. In
this case, especially starting from Day 10, those focii were not generated because 86% of
the students were kept safe and therefore case numbers (and densities) were much lower.
This demonstrates that self-isolation does not change the locations of infection unless
imposed early (before agents are Infective). Spatial hotspot map for Scenario 4 is included
in Appendix G.

3.5. Scenario 5: Realistic

This scenario combines measures from Scenarios 2, 3 and 4 in order to reduce the risk
of infection. From previous scenarios, it was observed that facemasks help flattening the
curves but not reducing the risk, an efficient lockdown must be deployed early and be
followed by most of the population, and self-isolation helps flattening the curves but is
only effective when all agents are self-isolated when ‘Infective’. Based on these results,
it was decided to create four realistic situations to face COVID-19 (each one simulated
four times), combining previous measures with differing percentages of people following
each, and applying them from different days. Table 8 specifies the parameters used in
each simulation.

Table 8. Parameters used in each simulation for Scenario 5 to reduce the risk when measures were combined.

Parameter Simulation 5.1 Simulation 5.2 Simulation 5.3 Simulation 5.4

% wearing facemask 80 100 100 100

First day wearing facemask 1 1 1 1

% in lockdown 40 - 40 60

First day lockdown 10 - 15 10

% self-isolated 60 80 80 80

First day self-isolated 10 10 10 10

Results from Figure 18 show a major improvement from Scenario 1, flattening the
curves in all cases and reducing in the worst case the ‘Exposed’ and ‘Infective’ peak values
by 45 and 56% respectively (48 and 63% in the best case). This implies extending the
presence of the disease in time, especially when lockdown was not deployed (Scenario 5.2).
The least restrictive Scenarios (5.1 and 5.2) kept fewer people safe than Scenarios 3.4 and 4.4,
where everyone followed lockdown from Day 10 and everyone followed self-isolation
from Day 10, respectively. A great improvement in the percentage of safe people from
the disease was obtained in the two more restrictive Scenarios (5.3 and 5.4), where on
average 90 and 95% of students remained ‘Susceptible’ (and therefore, disease-free) at the
end of simulations.



ISPRS Int. J. Geo-Inf. 2021, 10, 509 24 of 44
ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 25 of 45 
 

 

 
Figure 18. Average disease evolution in time for Scenario 5 ‘Realistic’, when realistic simulations 
were run. Results are compared against Scenario 1 (grey curves). 
Figure 18. Average disease evolution in time for Scenario 5 ‘Realistic’, when realistic simulations
were run. Results are compared against Scenario 1 (grey curves).



ISPRS Int. J. Geo-Inf. 2021, 10, 509 25 of 44

Interesting results were obtained when comparing Scenarios 5.1 and 5.3. More restric-
tive measures were applied in Scenario 5.3 related to facemasks use and self-isolation but
a later lockdown with same percentage of people than in Scenario 5.1. Results showed a
five-fold reduction in peak values, 23 days reduction of disease in the environment and 67%
more students safe in Scenario 5.3. These results suggest the importance of the facemasks
and self-isolation even when lockdown is applied.

Very little and compacted areas of infection were observed when results were analysed
spatially in Scenarios 5.3 and 5.4 (mainly in the two areas highlighted in Scenario 1). This
is because the number of students that remained susceptible (healthy) at the end of the
simulation were 90 and 95%, respectively. Scenarios 5.1 and 5.2 showed closer results to
Scenario 1, but with less number of infections (23 and 47% of students remained susceptible
at the end of the simulations, respectively). A spatial hotspot map for Scenario 5 is included
in Appendix G.

Applied individually, measures are not as effective as when combined, obtaining the
best results in Scenario 5.4, when measures with restrictive controls were applied, seeing
exposed and infective peak values reduce to 2 and 3% of students respectively, and keeping
95% of students safe from the virus. These results suggest the need of commitment from
students to follow the measures with the aim of reducing and minimising infection. Results
demonstrated that when even a small percentage of students fail to follow the measures,
the risk increases to everyone, obtaining higher ‘Exposed’ and ‘Infective’ peak values and
keeping fewer students safe.

Table 9 shows the best obtained result from each of the case-scenarios simulated.
Values about the day when ‘Exposed’ and ‘Infective’ peak values were reached, the percent-
age of students exposed and infective in the ‘Exposed’ and ‘Infective’ peak days, and the
percentage of students remaining susceptible at the end of the simulation are compared.

Table 9. Best obtained results from each of the case-scenarios simulated.

Day Exposed
Peak Value Was

Reached

% Exposed
Students in the
Exposed Peak

Value

Day Infective
Peak Value Was

Reached

% Infective
Students in the
Exposed Peak

Value

% Students
Remaining

‘Susceptible’ at
the End of the

Simulation

Scenario 1: No measures 20 56 26 72 0

Scenario 2:
Facemask use (100%

from Day 1)
36 31 42 42 1

Scenario 3: Lockdown
(100% from Day 10) 16 27 22 32 65

Scenario 4:
Self-isolation (100%

from Day 10)
13 14 19 17 86

Scenario 5:
Realistic (100% facemask

use from Day 1; 60%
lockdown from Day 10;
and 80% self-isolation

from Day 10)

14 2 20 3 95

Appendix H shows a table comparing detailed results from all five developed
case-scenarios.

4. Discussion and Future Work

The results obtained when simulating a COVID-19 outbreak applying no measures
(Scenario 1) showed that disease evolves quickly in time (in less than two weeks the disease
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was spread to almost all agents), with extremely high ‘Exposed’ and ‘Infective’ peak values
(half and two thirds of the population, respectively).

The ‘Facemask’ scenario (Scenario 2) showed that the use of facemasks (50% efficiency)
helps to ‘flatten the curves’ and increase the duration of the disease in the environment
but does not reduce the ultimate risk of infection. Higher mask use results in lower
‘Exposed’ and ‘Infective’ peak values (a reduction of 25 and 30%, respectively in the best
case-scenario), but at the end of simulations just 1% of students remained uninfected.
Clearly, the actual efficacy of facemasks will vary from the 50% simulated in this paper and
the effect of more efficient facemasks should be considered.

The ‘Lockdown’ scenario (Scenario 3) showed an important reduction of ‘Exposed’
and ‘Infective’ peak values (29 and 40%, respectively) and a high percentage of people kept
away from the disease (65% in the best case) when lockdown was followed by everyone
and if it was raised early (Day 10). If lockdown was deployed later, its efficiency was
reduced considerably in all terms, being similar or even worse than when measures were
not applied. This suggests that governments or university management must be brave and
pro-active when applying lockdowns if they are to be effective.

The ‘Self-Isolation’ scenario (Scenario 4) showed that, when at least 60% or 80% of
‘Infective’ students self-isolated from Days 10 or 15, the ‘Exposed’ and ‘Infective’ peak
values were reduced considerably. The student community was only kept safe, however, if
every ‘Infective’ person self-isolated; if a small percentage of ‘Infective’ agents continued
their normal routines then the disease continued spreading and a very small percentage
of the population was kept safe. These results show the importance of testing, in order to
identify ‘Infective’ people and isolate them as soon as possible.

The ‘Realistic’ scenario (Scenario 5), showed a remarkable reduction in peak values
(down to 2 and 3% of ‘Exposed’ and ‘Infective’ peaks) and an impressive percentage
of people kept safe (95% in the best case). The disease, however, stayed longer in the
environment (the average duration was around three times Scenario 1). The more restrictive
the parameters used, the better results were obtained. The scenarios simulated in the
model showed the variable importance of each measure depending on their efficiency, the
percentage of students following them, and the starting day. All four restrictions simulated
(i.e., facemask use, lockdown, self-isolation and realistic) reduce the peak values (exposed
and infective) and the number of infected agents, but only one delays the exposed and
infective peak values (facemask use) (see Table 9). In this scenario, students’ daily routines
are not altered (only the probability to be infected is modified by those wearing a facemask).
In the rest of the scenarios: (1) measures applied are more restrictive than just waring
a facemask; (2) daily routines are altered and fewer interactions are generated between
students (especially with those that do not share accommodation); and (3) restrictions are
applied early in time. The best results were obtained when lockdown, self-isolation and
realistic scenarios were applied in Day 10 (10 days earlier than the exposed peak value was
reached in Scenario 1). Restrictions arrested the increase of the disease between the agents,
reaching the peak values faster with a much lower percentage of agents affected.

It was also observed that measures implemented in isolation are not as effective as
when combined. It is required that a realistic percentage of people follow several measures
at the same time to reduce the risk, flatten the curves and keep as many people as possible
safe. Commitment between society and governments is required when applying measures
to reduce the transmission.

The results obtained from the modelling in this paper suggest that ABMs are useful
tools for simulating the spread of the COVID-19 disease in populations such as students, as
results obtained are analogous to those obtained by other researchers in papers cited above
in the Introduction section. Each scenario was simulated a limited number of times, which
may affect the quality and quantity of final results due to the stochasticity of the model
outputs. Further simulations should be conducted in order to perform a true sensitivity
analysis and identify these ranges more precisely. Additionally, it was not possible to
perform a validation of results against reality. Currently, the pandemic is still spreading in
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the world and reliable data are difficult to obtain, especially data related to the number of
people infected (the majority of the population does not require healthcare and these cases
are not counted in the statistics). In the future, when more information about the disease
and the impact in population is known, it could be possible to compare results and identify
how accurate these scenarios are. Additionally, the study area is considered a closed system,
where only students living in student accommodations and a limited number of other
persons are simulated. Clearly, in reality, students will interact with additional agents from
outside the university environment, but this assumption was required in order to study
the spread of the disease (and measures adopted) amongst the student population. This is
a limitation that must be considered when analysing the results.

Future work could extend the ABM in a number of ways to improve results and obtain
a better understanding of the transmission in space and time. These may include:

• Eliminate some of the assumptions and limitations in the model, such as additional
variation of the population including different severities and asymptomatic cases.

• Develop students’ daily routines based on real data and not based on assumptions.
The use of mobile phone locations, daily registers of students at faculties and the
average number of customers in supermarkets, among many others, could generate
realistic daily routines. These routines could simulate accurate spatial interactions
and a more precise understanding of the spread could be achieved.

• Comparison of disease numbers against local hospital capacity to set targets for
avoiding overwhelming health services with severe cases.

• Simulation of additional measures to reduce the risk, such as social distancing and
regular cleaning of contaminated elements.

• Develop spatial analyses more exhaustively in order to identify more patterns and
differences between scenarios, applying spatial statistics and other spatial techniques.

• Extrapolate the model to the entire population of a city (not only students). This
would clearly be dependent on availability of data (see above) and computing power.

5. Conclusions

This paper presented the development of an ABM to simulate the spread of COVID-19
and explored the transmission of the disease from a geospatial perspective to identify
potential measures to reduce infection within students living in student accommodation.
The model demonstrated that it is possible to combine spatial data and a mathematical
epidemic model in ABMs to capture the dynamics of the spread of an infectious disease,
with results analogous to those simulated by other models. The paper demonstrated the
use of the GAMA platform for developing a 3D ABM of buildings, footpaths, students,
other dynamic and static agents. Their interactions, based on daily routines, and the
implementation of a mathematical epidemiological SEIR model, allowed the simulation of
generic outbreaks in the area of study.

This ABM is a customisable and versatile tool that can be used to simulate different
infectious disease scenarios when parameters of the disease are known. Additionally, the
model can be applied to other areas of the world where geospatial data related to the
agents (such as home locations and routines) are available, following the structure shown
in Appendix B. The use of ‘Static’ and ‘Contaminated Element’ agents in the model adds
an additional layer of complexity to the analysis of the spread of an infectious disease,
simulating the effect of contaminated areas and surfaces.

The model also simulated disease prevention measures to test their efficiency in
reducing the risk of infection when a COVID-19 outbreak occurs in the area of study. The
ABM code was implemented with measures such as the use of facemasks, the deployment of
lockdown and the ability of self-isolation when ‘Infective’. These measures were simulated
individually and combined, applying them to different percentage of students and starting
them from different days.

Spatial analyses in all scenarios showed that the most dangerous places were those
where many students interact for a long time (university buildings and accommodation)
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and small buildings where many go at the same time (most popular supermarkets). The
use of this type of model and analysis of outputs could help medical practitioners and
university managers to respond to such epidemics and plan effective responses to keep as
many students safe as possible.
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Appendix A

Table A1 shows the comparison of different open-source ABM platforms to develop a
3D geospatial epidemic model.

Table A1. Open source ABM comparison.

Characteristic Repast GAMA NetLogo

Purpose

Multiple application domains
(e.g., Transport
Urban planning
Epidemiology
Environment)

Multiple application domains
(e.g., Transport
Urban planning
Epidemiology
Environment)

Multi-agent programmable
modeling environment.

Urban mobility Yes Yes Yes

Epidemiology Yes Yes Yes

Language ReLogo and Java GAML Logo dialect

Documentation Yes Yes Yes

Tutorials Yes Yes Yes

User guide Yes Yes Yes

Mailing and contact list Yes Yes Yes

License

Free and open-source
agent-based modeling and
simulation platforms ‘New

BSD’ style license:

GNU General Public License
v3.0

GNU General Public License,
version 2 or any later version

License link
https://repast.github.io/lic

ense.html (accessed on
26 July 2020)

https://github.com/gama-pl
atform/gama/blob/master/

LICENSE (accessed on
26 July 2020)

https:
//ccl.northwestern.edu/netlo

go/docs/copyright.html
(accessed on 26 July 2020)

Input data format Excel, shapefiles, raster Shapefiles, rasters and others GIS extensions, text files, CSV
and others

https://github.com/DACNC/ABM_COVID19_Students_Transmission
https://repast.github.io/license.html
https://repast.github.io/license.html
https://github.com/gama-platform/gama/blob/master/LICENSE
https://github.com/gama-platform/gama/blob/master/LICENSE
https://github.com/gama-platform/gama/blob/master/LICENSE
https://ccl.northwestern.edu/netlogo/docs/copyright.html
https://ccl.northwestern.edu/netlogo/docs/copyright.html
https://ccl.northwestern.edu/netlogo/docs/copyright.html
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Table A1. Cont.

Characteristic Repast GAMA NetLogo

Export data format Microsoft Excel (xlsx, csv)
ASC, CSV, GeoJson, Geotiff,

KML, PNG, SHP, Text,
shapefile

Plain-text and CSV

Agents type
The agents are individual

people in the
innovation network

Buildings, roads, people and
any other agent representing

an element in the space
and/or with skills

Four types of agents: turtles,
patches, links, and

the observer

Visualisation Yes Yes Yes

Use of PostgreSQL Db (Data
Management) - Yes -

Several experiments
simultaneously - Yes -

Sources https://repast.github.io/
(accessed on 26 July 2020)

https://gama-platform.gith
ub.io/wiki/Home (accessed

on 26 July 2020)

https://ccl.northwestern.edu
/netlogo/ (accessed on

26 July 2020)

Appendix B

GIS attribute tables of students (Table A2), footpaths (Table A3), buildings (Table A4),
dynamics (Table A5) and static (Table A6) agents. Attribute names, type of attributes,
examples, notes and considerations are defined for each of them. These tables can be
generated in a GIS software (e.g., QGIS) or in a PostGIS database.

Table A2. GIS attribute table of Students.

Attribute Type Example Notes Considerations

id String S100 Unique value. PK ‘S’ + unique integer

residence String Park_Terrace Accommodation’ s name -

init_floor Integer 3 Floor number -

t1_even String Faculty_1 Building’s name for Task 1 in
even days -

t1_t_even Integer 510 Minute in which student starts Task 1
in even days Time in minutes (0–1439)

t2_even String Gym_1 Building’s name for Task 2 in
even days -

t2_t_even Integer 700 Minute in which student starts Task 2
in even days Time in minutes (0–1439)

t3_even String Supermarket Building’s name for Task 3 in
even days -

t3_t_even Integer 800 Minute in which student starts Task 3
in even days Time in minutes (0–1439)

t4_even String Library_2 Building’s name for Task 4 in
even days -

t4_t_even Integer 900 Minute in which student starts Task 4
in even days Time in minutes (0–1439)

home_t_e Integer 1230 Minute in which student goes home in
even days Time in minutes (0–1439)

t1_odd String Library_3 Building’s name for Task 1 in
odd days -

t1_t_ odd Integer 520 Minute in which student starts Task 1
in odd days Time in minutes (0–1439)

https://repast.github.io/
https://gama-platform.github.io/wiki/Home
https://gama-platform.github.io/wiki/Home
https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/
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Table A2. Cont.

Attribute Type Example Notes Considerations

t2_ odd String Gym_3 Building’s name for Task 2 in
odd days -

t2_t_ odd Integer 830 Minute in which student starts Task 2
in odd days Time in minutes (0–1439)

t3_ odd String Faculty_1 Building’s name for Task 3 in
odd days -

t3_t_ odd Integer 950 Minute in which student starts Task 3
in odd days Time in minutes (0–1439)

t4_ odd String Leisure_4 Building’s name for Task 4 in
odd days -

t4_t_ odd Integer 1000 Minute in which student starts Task 4
in odd days Time in minutes (0–1439)

home_t_o Integer 1235 Minute in which student goes home in
odd days Time in minutes (0–1439)

geom Geometry - Point 2D (Point) -

Table A3. GIS attribute table of footpaths.

Attribute Type Example Notes Considerations

id Integer 1 Unique value. PK Exploded lines

geom Geometry - Line 2D (LineString) -

Table A4. GIS attribute table of buildings.

Attribute Type Example Notes Considerations

id Integer 1 Unique value. PK Exploded lines

type String Faculty Type of building (faculty, residence, gym,
leisure, supermarket, library, other) -

faculty String Medical_Science Name of the faculty to which the building
belongs to

If building type is not
faculty, this attribute is

black

name String Faculty_1 Name of the building -

bui_floor Integer 4 Number of floors Ground floor is 0

bui_speed float 0.010 Speed (m/s) agents can move when
inside the building -

geom Geometry - Polygon 2D (Multi-polygon) -

Table A5. GIS attribute table of dynamics.

Attribute Type Example Notes Considerations

id String D1 Unique value. PK ‘D’ + unique integer

init_floor Integer 3 Floor number where the agent
is located -

geom Geometry - Point 2D (Point) -
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Table A6. GIS attribute table of statics.

Attribute Type Example Notes Considerations

id String X1 Unique value. PK ‘X’ + unique integer

init_floor Integer 3 Floor number where the agent
is located -

geom Geometry - Point 2D (Point) -

Appendix C

Tables providing information about the structure of the output files generated once simu-
lations are finished: ABM_SEIR_values_per_day.csv (Table A7), Agents_after_simulations.csv
(Table A8) and Transmission_list.csv (Table A9).

Table A7. ABM_SEIR_values_per_day.csv attribute table.

Attribute Type Example Notes Considerations

day_of_simulation Integer 8 Day of the simulation Simulation’s first day is 1

nb_S_students Integer 2500 Number of ‘Susceptible’ students -

nb_E_students Integer 245 Number of ‘Exposed’ students -

nb_I_students Integer 23 Number of ‘Infective’ students -

nb_R_students Integer 4 Number of ‘Recovered’ students -

contaminated_elements Integer 20 Number of total contaminated
elements generated -

Table A8. Agents_after_simulations.csv attribute table.

Attribute Type Example Notes Considerations

id String S41 Unique value. PK -

type String Student Only students are stored in this table -

t1_even String Faculty_1 Building’s name for Task 1 in even days -

t2_even String Gym_2 Building’s name for Task 2 in even days -

t3_even String Supermarket_1 Building’s name for Task 3 in even days -

t4_even String Library_2 Building’s name for Task 4 in even days -

t1_odd String Library_2 Building’s name for Task 1 in odd days -

t2_odd String Gym_2 Building’s name for Task 2 in odd days -

t3_odd String Faculty_1 Building’s name for Task 3 in odd days -

t4_odd String Leisure_4 Building’s name for Task 4 in odd days -

is_susceptible Boolean FALSE True if student is ‘Susceptible’ -

is_exposed Boolean FALSE True if student is ‘Exposed’ -

is_infective Boolean FALSE True if student is ‘Infective’ -

is_recovered Boolean TRUE True if student is ‘Recovered’ -

infective_contact_counter Integer 5
Number of times the student was in

contact with an ‘Infective’ before
becoming exposed

-

infected_x Integer 423909.118 Coordinate x where student was infected Dependent of the used
EPSG code

infected_y Integer 565205.819 Coordinate y where student was infected Dependent of the used
EPSG code
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Table A8. Cont.

Attribute Type Example Notes Considerations

infected_z Integer 12 Coordinate z where student was infected ground level = 0 m

exposed_minute Integer 815 Minute of the day when student becomes
exposed -

exposed_day Integer 86 Day of the year when the student
becomes exposed -

infected_by Integer S46 Id value of the agent that infected
him/her -

infective_day Integer 91 Day of the year when the student
becomes ‘Infective’ -

infective_minute Integer 815 Minute of the day when student becomes
‘Infective’ -

is_using_facemask Boolean FALSE True if the agent is using facemask Only when the use of
facemask is considered

Table A9. Transmission_list.csv attribute table.

Attribute Type Example Notes Considerations

id String D123 All agents (students, dynamics
and statics) are stored -

type String Dynamic Type of the agent (students,
dynamics and statics) -

infected_by String S145 Id value of the agent that
infected him/her -

Appendix D

Research documents read in order to find an appropriate β indoor value for this project.
As it can be observed in Table A10, there are many differences between the probability
infection values (β) given at each paper.

Table A10. Probability infectious value (β) comparison between different research projects.

Source Epidemic Model Prob. Infection (β) Incubation Period (σ)
(Days)

Recovery Period (γ)
(Days)

[13] ABM-SEIIRDM 0.1 5 10

[45] SEIR Time dependent 5.1 11.36

[46] SEIR Based on reproductive number R0 5.2 2.3

[47] SEIR 0.1 7 10.25

[48] SEIR 8.68 × 10−8 0.631 0.1

[49] SEIRNDC Range {0.5944, 1.68} 3 5

[50] SEIR Scaled to the right value of R0 6.4 3 or 7

[51] SEIR 0.1 7 10.25

[52] SEIR 3.11 × 10−8/person/day 7 15

Appendix E

ABM software requirements (Table A11) and laptop characteristics (Table A12).
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Table A11. ABM software requirements.

Requirements

GAMA Platform, version 1.8 (released on the 31 July 2019) (https://gama-platform.github.io/download) (accessed on
18 May 2020).

Java 8 64 bits

Update environmental variables: PATH variable should contain an option pointing to folder: /Java/jre1.8.0_171/bin

Table A12. Characteristics of the laptop used in the research project.

Laptop Characteristics

Processor Intel® Core™ i7-8650 CPU @ 190 GHz 2.11 GHz

32.0 GB memory RAM

4 cores

In total, approximately 289 h were required to obtain the results of the simulated
scenarios (simulation tests and validations excluded from these hours).

Appendix F

Comparison of the evolution of the disease between Scenarios 2 (Figure A1), 3
(Figure A2), 4 (Figure A3) and 5 (Figure A4) against Scenario 1.
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Appendix G

Spatial hotspot maps obtained from Scenarios 1 (Figure A5), 2 (Figure A6), 3 (Figure A7),
4 (Figure A8) and 5 (Figure A9). These figures show the best obtained result for each scenario
in terms of reduction of the number of infections.
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Figure A5. Heat map for Scenario 1 showing the areas (in light yellow) where more infections were produced. Two main
hotspots are visible, one in the SE where two student accommodations and a busy supermarket are located, and the other in
the main campus where most faculty buildings and another busy supermarket are located. Contains Ordnance Survey data
© Crown copyright and database right 2020.
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infections were produced. No major difference can be observed between Scenarios 1 and 2, as daily routines (and therefore
locations of major interactions between students) are not altered by the use of facemasks.
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Figure A7. Heat map for Scenario 3.4 (100% students in lockdown from Day 10) showing the areas (in light yellow) where
more infections were produced. A reduction in both main areas highlighted in Scenario 1 can be observed, as less infections
are produced due to the implementation of the lockdown. Accommodation buildings remain with a high level of infection
due to students’ schedule was cancelled, spending the whole day in the accommodation. © Crown copyright and database
right 2020.
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more infections were produced. Weak infection areas were found in the study area. As a consequence of self-isolation 
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Figure A8. Heat map for Scenario 4.4 (100% students self-isolated from Day 10) showing the areas (in light yellow) where
more infections were produced. Weak infection areas were found in the study area. As a consequence of self-isolation
measure, 86% of students remained susceptible and therefore case numbers (and densities) were much lower. © Crown
copyright and database right 2020.
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Figure A9. Heat map for Scenario 5.4 (100% students using facemask from Day 10; 60% of students in lockdown from
Day 10; and 80% of Students self-isolated from Day 10) showing the areas (in light yellow) where more infections were
produced. Very little and compacted areas of infection are observed (mainly in the two areas highlighted in Scenario 1). This
scenario showed that 95% of Students remained Susceptible at the end of the simulation. © Crown copyright and database
right 2020.

Appendix H

Figure A10 compares the results obtained from each simulated scenario in the project
(no measures, facemasks use, lockdown, self-isolation and realistic). Results show that the
most efficient measures are the ones where different measures are combined, obtaining the
best results in all factors considered.
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