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Abstract: Despite the growing efficiency of the map-design process in general, tactile mapping
has remained peripheral to mainstream cartography. For a specific group of people with visual
impairment, however, tactile maps are the only effective way to obtain a complex idea about the
geospatial distribution of the surrounding world. As there are numerous specifics in creating these
3D maps and only a limited group of users, tactile products have usually been either very simple
creations or, on the other hand, difficult and expensive to produce. Modern trends and progress in
the availability of new technologies (e.g., 3D printing) bring new possibilities for keeping tactile map
production both effective and up to date. Therefore, this paper aims to present a methodology to
apply the TouchIt3D technology to link 3D-printed multi-material tactile maps with a mobile device.
Utilizing this solution resulted in a set of interactive tactile maps following current trends of inclusive
education. Using OpenStreetMap data together with a semi-automated workflow significantly
lowered expenses compared to antecedent maps with similar functionality. A semi-automated
workflow was designed, focusing on three use cases of independent movement: walking, using
public transport, and tourism.

Keywords: tactile maps; interactive maps; multimedia maps; visual impairment; user adaptation;
OpenStreetMap; 3D printing; TouchIt3D technology

1. Introduction

A huge diversity of modern people’s needs and aims is reflected in the field of map-
making. Cartographers create a huge range of maps targeted to masses of people, but
there is also a need to design maps narrowly focused on specific user groups. People
with severe visual impairment representing an important group of users use tactile maps
providing at least a simple scheme of how the world around is structured. Tactile maps
also play an important role in the educational process at schools [1]. The most important
of the education of people with visual impairment is the proper perception of the spatial
characteristics enabling them to learn independent movement [2]. Nevertheless, it is not
commercially attractive to design special maps for this target user group.

Tactile maps differ from other maps in several aspects. First, these maps need to be
greatly simplified so that the map complexity is at a low level and map symbols are easily
interpretable by touch [3]. This requires a high level of generalization applied to source
data to avoid a complexity present in many current maps [4]. Furthermore, tactile maps
intended for independent movement are usually of a large scale. This brings the need
for mapping very detailed guidance elements (such as obstacles on sidewalks, pedestrian
crossings etc.), which are usually not present in most geodata sources. Unlike with a 2D
map, when creating a tactile map, it is necessary to think about height levels and sufficient
differences between them so that they are decodable by user’s fingers. Therefore, some
tactile maps are designed directly in the form of a 3D model while others are drawn in 2D,
with a relief surface manufactured later during the production process [5].
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Due to difficulties related to the creation of tactile maps, both the design process and
the manufacturing process for each map are time-intensive for cartographers. Especially
in the case of 3D printing, several printing parameters need to be set, and the actual
fabrication may take several more hours. Those factors result in high costs of tactile maps,
both financial and time-wise. Even more expenses come with multimedia tactile maps.
Kohn [6] describes how electronics, multimedia content, and implementation of both
hardware and software into the tactile map body can easily double the costs.

TouchIt3D technology linking 3D-printed multi-material tactile maps with a mobile
device was developed in order to make tactile maps attractive, affordable and useful.
This solution, described in detail in Section 3, together with a semi-automated workflow
were applied to provide affordable maps which can help people with visual impairment
explore the world around them. With the use of modern technologies and the benefit of
significantly lower costs, new interactive tactile maps were designed and examined in
user testing.

Related Works. As described by Jesensky [7], real-world objects are represented by
tactile map symbols in tactile maps. Those relief forms of point, line and area symbols
may include parameters such as vertical dimension, roughness, and 3D texture [3]. Simple
tactile maps commonly occur in public locations and buildings in developed countries.
Additionally, places with dense pedestrian traffic and concentration of people with visual
impairment are often more likely to be equipped with audio systems and tactile maps.
These schemes of a limited area may illustrate crossroads, landmarks, or the floorplan of a
building. They are either created for people with a visual impairment only or combining
both visual and tactile elements (Figure 1).
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Figure 1. Information board containing a tactile map with a description in both Latin script and
Braille (source: authors).

Captions and descriptions are typically expressed in Braille [8]. This well-known
system, unfortunately, has several limitations related to tactile maps. Newman et al. [9]
describe the common size of each letter of 4 × 6 mm, but the standard size varies between
countries as well as for different uses [10]. In all cases, Braille symbols need to be larger
than non-relief fonts, and so the captions are abbreviated very often. Awareness of the
existence of Braille is relatively good, but Braille literacy, even among those with severe
visual impairment, is not unequivocal [11]. Still, a large number of visually impaired
people do not use Braille and rely on modern technologies, e.g., Text To Speech (TTS) in
mobile devices, providing simpler ways of obtaining information.
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Consequently, methods other than Braille are often used for the transmission of
information. The most common example is acoustic signaling at pedestrian crossings and
special audio beacons activated remotely when a person with visual impairment enters the
area. In some cases, the devices at the pedestrian crossings are supplemented by a simple
tactile map. Figure 2 illustrates one of the pedestrian push-button systems developed
by the Swedish company Prisma Teknik present in various models across a number of
European cities [12].

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 3 of 18 
 

 

people do not use Braille and rely on modern technologies, e.g., Text To Speech (TTS) in 
mobile devices, providing simpler ways of obtaining information. 

Consequently, methods other than Braille are often used for the transmission of in-
formation. The most common example is acoustic signaling at pedestrian crossings and 
special audio beacons activated remotely when a person with visual impairment enters 
the area. In some cases, the devices at the pedestrian crossings are supplemented by a 
simple tactile map. Figure 2 illustrates one of the pedestrian push-button systems devel-
oped by the Swedish company Prisma Teknik present in various models across a number 
of European cities [12]. 

 
Figure 2. A simple tactile map by a pedestrian crossing in the city of Trondheim (source: authors). 

There are two basic methods of tactile map creation—either manual or machine-
made. One of the oldest and simplest ways of communicating spatial information to peo-
ple with serious visual impairment is the technique of palm-drawing. This technique is 
often used by teachers and relatives of the visually impaired, giving at least a temporary 
stimulus with information indicating spatial distribution. Similarly, hand-made tactile 
map aids made of various materials are common [13]. Quick-drying dense color gels are 
another possibility that is widely available in stores. 

Advanced methods can be performed using machine techniques, e.g., Braille print-
ers, which are usable for simple tactile maps. Cardboard embossing is also used especially 
to produce tactile postcards and greeting cards. The height of the raised layer can reach 
up to several centimeters. The more durable alternative, using the same principle, is form-
ing plastic or metal plates. The production of a mold realized using a laser former is the 
most expensive part of the entire production process. Thermal printing is a commonly 
used technology due to its effectiveness and accessibility for creating a relief surface. The 
dark-colored parts of a microcapsule paper in a fuser swell up and acquire volume to 
create a positive relief while the rest remains at the original height [14]. During the last 
decade, 3D printing has become another promising technology for creating terrain visu-
alizations and advanced tactile maps, e.g., [15,16]. 

Arditi et al. [17] describe the advantages of interactive tactile maps in orientation 
while moving through interior spaces. This study was an early attempt to design interac-
tive tactile maps linked with a mobile device using thermal printing. In the case study, 
authors halved the number of failures in finding the correct route with the help of multi-
media tactile maps, compared to interviewing passers-by instead. 

Figure 2. A simple tactile map by a pedestrian crossing in the city of Trondheim (source: authors).

There are two basic methods of tactile map creation—either manual or machine-made.
One of the oldest and simplest ways of communicating spatial information to people with
serious visual impairment is the technique of palm-drawing. This technique is often used
by teachers and relatives of the visually impaired, giving at least a temporary stimulus
with information indicating spatial distribution. Similarly, hand-made tactile map aids
made of various materials are common [13]. Quick-drying dense color gels are another
possibility that is widely available in stores.

Advanced methods can be performed using machine techniques, e.g., Braille printers,
which are usable for simple tactile maps. Cardboard embossing is also used especially to
produce tactile postcards and greeting cards. The height of the raised layer can reach up to
several centimeters. The more durable alternative, using the same principle, is forming
plastic or metal plates. The production of a mold realized using a laser former is the
most expensive part of the entire production process. Thermal printing is a commonly
used technology due to its effectiveness and accessibility for creating a relief surface. The
dark-colored parts of a microcapsule paper in a fuser swell up and acquire volume to create
a positive relief while the rest remains at the original height [14]. During the last decade,
3D printing has become another promising technology for creating terrain visualizations
and advanced tactile maps, e.g., [15,16].

Arditi et al. [17] describe the advantages of interactive tactile maps in orientation while
moving through interior spaces. This study was an early attempt to design interactive
tactile maps linked with a mobile device using thermal printing. In the case study, authors
halved the number of failures in finding the correct route with the help of multimedia
tactile maps, compared to interviewing passers-by instead.

In recent years, numerous studies have focused on the automatization of tactile map
creation. Wabinski et al. [15] reviewed the possibilities of automated preparation of tactile
maps and concluded that the most difficult part was the generalization of source data.
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Automated processing of image maps into the form of 3D relief using the Scalable Vector
Graphics (SVG) format was addressed by Wang et al. [18]. Public geodatabases such as
OpenStreetMap (OSM) are often used to automate map creation, even in the case of tactile
maps [19]. Götzelmann [20] also presents an application of 3D printing and a partially
automated approach for creating tactile maps from an OSM database. The author describes
a workflow using simple 3D printers to enhance the autonomy of individuals with visual
impairment. Possible customizations of tactile maps are later followed by Taylor et al. [21].

The use of a 3D-printed case with an interface made of conductive parts aimed to
operate a mobile device is presented by Zhang et al. [22]. Even though the presented
system does not aim to represent tangible map symbols that are not developing spatial
awareness, it enables mobile accessibility across multiple existing mobile applications.
A similar innovative attempt was performed by Bornschein et al. [23], developing a tool
to access 3D graphic software by people with severe visual impairment. The creation of
tactile maps using 3D printing was also researched by Rener [24]. The study focused the
use of automatically generated tactile maps for mobility using location-based services.
Taylor et al. [25] performed another promising research with automatically generated tac-
tile maps. The study presents a platform where the maps can be manufactured even by
the people with visual impairment themselves. Some of the maps also use the conductive
parts to be linkable with a capacitive touchscreen. Unfortunately, all the presented maps
are limited to use only positive relief structures (extruded up from the base plane). Addi-
tionally, the idea of multi-material tactile maps being created by blind people themselves
seems to be possible just partially, which is also supported by previous experiences.

Gual-Orti et al. [26] focused their attention more on the evaluation of tactile-map
symbols. Following the User-Centred Design approach, potential users with various visual
impairments performed the experiment to express differences in map symbol shapes of
3D-printed tactile maps. A study on automation of data processing for non-interactive
tactile maps made by thermal fusers was introduced by Stampach et al. [27]. This study
also stressed the importance of map symbol dimensions to fulfill the target users’ needs.
The technology applied for map creation, however, unlike 3D printing, uses only 2D input
data with no need of 3D modelling. Similar efforts with this technology were presented
by Touya et al. [28]. Among academic sources, there are also several websites providing
a tool to prepare simple tactile maps of any region of the World either for 3D printing
(touch-mapper.org) or for printing on a microcapsule paper (hapticke.mapy.cz/?lang=en).
Unfortunately, both the online sources have a very limited functionality and possibilities to
change visualization properties. Due to these limitations, it was not possible to apply them
in our study.

The process of 3D printing is also being used to create real 3D models of terrain
and other continuous surfaces. With accessible web applications, e.g., TouchTerrain
(touchterrain.geol.iastate.edu), The Terrainator (terrainator.com), Terrain2STL (jthatch.
com/Terrain2STL), downloading terrain model becomes easy even for amateurs. When 3D
printed, these models may help people in geospatial orientation and understanding the
landscape structure [29], not only to people with severe visual impairment.

2. Materials and Methods
2.1. TouchIt3D Technology

The TouchIt3D technology was developed in 2014 at Palacky University Olomouc,
Department of Geoinformatics, to increase the efficiency and extend the functionality of
tactile maps. Its principle consists of using a 3D printer with multiple extruders to manu-
facture plastic maps combining conductive (interactive map symbols) and nonconductive
(non-interactive topographic base) materials. The TouchIt3D tactile maps, when laid flat on
a capacitive touch display of a smart device (e.g., tablet), are connected via the display, and
so the electric touch signal can go from the fingers of map users through the interactive
map symbols made of conductive filament and interact with the display. A tablet using a
preinstalled Android application provides an audio description that can differ according to

touch-mapper.org
hapticke.mapy.cz/?lang=en
touchterrain.geol.iastate.edu
terrainator.com
jthatch.com/Terrain2STL
jthatch.com/Terrain2STL
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the location of the signal interaction across the display. This combination allows to avoid
the need of Braille in maps and to lower the complexity of each map while preserving the
information amount that each map symbol represents.

Within the TouchIt3D technology, a tablet or another mobile device with a capacitive
touch screen serves as a universal carrier of electronic equipment, enabling audio-visual and
tactile information to be transferred to the user as a reaction to a finger contact (Figure 3).
It can be used for an unlimited number of different tactile maps or other landscape models.
This approach advances the older-style interactive tactile maps, each of which contained
its own electronic installation. The mobile device is also equipped with an elementary
set of sensors (GPS, compass, accelerometer, etc.) and the possibility of connecting to
the Internet via WiFi or mobile data. The exploitation of these sources is expected to be
examined in further research. However, in this paper, no position sensors nor internet
connectivity were used for tactile maps aiming especially for offline use. Nevertheless, a
mobile application is a necessary component of TouchIt3D technology. It was developed
for the Android operating system defining a set of buttons positioned according to the
positions of each tactile map’s conductive elements. Predefined texts for individual buttons
have been converted via a Text To Speech (TTS) function into a voice describing properties
of POIs.
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Figure 3. TouchIt3D technology principle when touching an interactive map symbol.

Tactile maps were linked with the tablet using rubber bands encircling the tablet
from its bottom side and attached to hooks on both sides of the tactile map (Figure 4).
After launching the application, the user may choose the appropriate scheme (button
distribution), add a new one from a JSON file, and delete schemes already loaded. After
choosing a scheme and mounting the map, when an interactive map symbol is touched,
the signal passes through the conductive element to the touch screen of the device, and an
audio description is played (Figure 3).
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A low-cost 3D printer, the Poseidon Duo (priced around €500), was used for tactile
map manufacture. This printer utilizes Fused Filament Fabrication (FFF) technology with
two extruders. Using both nozzles allows the individual parts of the tactile map to be made
of two different materials. Map symbols representing points of interest (POI) intended to be
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interactive were printed of the electrically conductive Proto-Pasta PLA material. Ordinary
PLA (polylactic acid) filament was used for the fabrication of the topographic base and
the rest of the tactile map body. It was necessary to create a separate virtual 3D model
for each of the two tactile map parts, as described in detail in Section 2.3. Conductive
map symbols were stretched across the entire height of a tactile map from its lowest to the
highest edge. The calibration of the proper height of the nozzles above the printing bed
required the utmost attention during the preparation phase of the 3D printing process, as
this step influences the quality and functionality of TouchIt3D maps.

2.2. User Preferences Survey

In order to determine appropriate map content, the ideas of testers with visual impair-
ment were taken into account alongside our team’s previous experience with tactile map
design. All consultations with people with visual impairment realized during the research
were interview-based and focused on intensive and deep analyses of the issue rather than
collecting flat data from a large set of anonymous people. Therefore, initial user input was
collected to decide objects usable for people with visual impairment. Seven blind people
aged 23 to 58 years joined the preliminary evaluation one after another. Additionally, one
employee of an institution for the education of the visually impaired was interviewed,
describing his knowledge of simple tactile map design and user issues. Meetings with all
the users took place in familiar and calm locations in the city of Olomouc, Czechia.

Three sample tactile maps capturing a limited area of the Prague city center scaled
1:3000 to 1:5000 (one of them shown in Figure 4) were used to demonstrate the map
functionality and concept. Those maps were prepared manually using OSM data in the
geographic information system (GIS) and 3D modeling software Blender. Maps contained
streets at the lowest height level and blocks of buildings in the next one. The third layer
represented tram lines and the highest interactive layer grouped all POIs (public transport
stops and buildings important for the public, e.g., restaurants, shopping malls and banks).
Additionally, a special star-shaped interactive symbol was added in the top left corner with
a description of the map. The description contained what area the map covers, what the
scale is, what each layer represents (the map legend) and the date of the map’s creation.

During the interview, each respondent was first questioned regarding their previous
experiences with tactile maps. Subsequently, the sample maps and their functionality were
described and shown. Respondents then had time to explore all three maps differing in the
scale (1:3000; 1:4000; 1:5000) and were guided to experience all the different map symbols
when needed. Respondents were asked to choose which scale levels were readable for
them. In the next stage, each of them was asked to decide which real-world objects from
several categories would be important for them to be mapped on this kind of tactile maps.
Respondents were also asked which of those POIs would be helpful to be mapped using
interactive map symbols with auditory descriptions, and, on the other hand, which POIs
would be not. Finally, an unstructured discussion about their feelings regarding the maps,
potential uses, suggested improvements, and locations worth mapping was held.

Six respondents of seven stated they had already used some kind of tactile map, but
only one person claimed to use them regularly. All the respondents were used to handle
with mobile devices like mobile phones and tablets. They were familiar with using various
mobile applications and screen-readers using the TTS function, e.g., TalkBack (Android)
and VoiceOver (Apple).

All participants positively evaluated the interactivity of map symbols. Minor diffi-
culties with orientation occurred during the initial use of the maps. Respondents usually
used both hands to explore the extent of the map. This behavior often launched multiple
voice descriptions of the interactive map symbols and was confusing for the respondents
as they had no idea which objects were being described at the time. Therefore, it was
proposed to modify the audio description to launch only after a longer period holding a
map symbol (e.g., 1 s). Scales 1:3000 and 1:4000 were generally considered appropriate
and easily recognizable. As expected, the largest scale, 1:3000, was evaluated as the most
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easily readable one, but in the case of 1:4000, the larger scope was also appreciated. Except
for two respondents, the map scale 1:5000 was evaluated to be difficult to read, as many
mistakes related to skipping over (not noticing) some mapped streets occurred. A majority
of the respondents also suggested more significant height differentiation of the interactive
map symbols compared to the non-interactive background to be sure which objects launch
the audio description. All respondents agreed that the best solution for height ordering the
layers was according to how they were lined up in the real world.

While there was generally a consensus among the participants on the recommen-
dations mentioned above, answers related to the importance of POIs differed among
respondents. Some preferred rather simple maps containing only the elementary land-
marks necessary for orientation and movement (e.g., streets, inaccessible areas, and POIs).
Conversely, more experienced tactile map readers were interested in more landscape
features, e.g., water areas and railways. As described in Figure 5, all visually impaired
participants of the preliminary survey marked it as important to show the road network
and public transport stops in tactile maps. The majority of them also highlighted the
importance of marking medical facilities, banks, and post offices in tactile maps, while the
rest of the respondents stated that those POIs can help but were not fundamental. Hotels,
restaurants, and offices of state/regional/city authorities were found slightly less impor-
tant for respondents. Cultural institutions, tourist landmarks, and monuments were mostly
evaluated to be helpful but not necessary. None of the respondents marked educational
institutions as important POIs to be visualized in the maps.
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The highest demand for interactivity was noted in the case of medical facilities,
restaurants, and hotels (mostly evaluated as highly important). Additionally, the interactive
voice description of the street network, banks and post offices was found to be highly
important compared to other categories. Map interactivity of tourist landmarks and
monuments was mostly evaluated to have low importance, and the “not important at
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all to have the auditive description” was the most frequent response for the rest of POIs
(Figure 5).

2.3. Map Design Workflow

Based on findings from the user survey described in Section 2.2, a workflow for
semi-automated creation of interactive tactile maps advancing the TouchIt3D technology
was designed. The workflow includes obtaining geodata, the processing of that data, 3D
modeling, the settings of printing parameters, the printing itself, and the preparation of a
template for the mobile application. As there are conceptually different steps included, it is
hardly imaginable to automate the entire workflow. In addition, some processes must be
done specifically for each map and for each different 3D printer. Despite these challenges,
several steps representing a consistent sequence of steps have been automated to make the
design process more effective. Whole the process was divided into three blocks according
to the primary environment of processing—the GIS block (Figure 6), the 3D modeling
block, and the 3D printing block (Figure 10). Automated parts are marked in red in the
subsequent schemes.
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The source data for further processing originated in the OSM database covering the
whole world, although the quality could differ across regions. Data were imported using
the ArcGIS Editor for OSM plugin in ArcGIS for Desktop software [30] and transformed
into a UTM Zone 33N projection as the sample areas of interest were located in Czechia (the
city of Ostrava and the town of Konice). In the following steps, all point and line features
were converted into polygons which could be later extruded into 3D. Therefore, the layers
were processed using geoprocessing tools into a topologically clean representation covering
the entire area of interest. All of the layers were also cropped for the area of interest defined
by a separate polygon layer.

As the preliminary survey (see Section 2.2) showed various aims of potential map
users, three different types of tactile maps were designed and visualized using 4 to 5 height
layers. The first map type was designed primarily to assist people traveling on foot, the
second one for those using public transport, and the third, most detailed map, being
designed for tourism purposes. The ArcGIS Model Builder tool (a graphical programming
interface of ArcGIS software used for automating processes) was used to automate the
processing of the layers differently for each map type. The simplest model is captured
in Figure 7 to illustrate the number of steps included in the models. The model mostly
used the Selection, Transform, Buffer, Dissolve, Clip, and Union tools to achieve geospatial
layers representing individual height levels of tactile maps.
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For further steps, the Qgis2threejs plugin along with QGIS [31] software was used as
the best solution for exporting GIS layers into a 3D model. This plugin provides, besides
other functionality, the conversion of 2D vector layers into an STL file format according
to parameters set in its user interface (Figure 8). Layers were extruded to the height
2 to 5 mm, differing among map types (Table 1). The lowest layer representing the street
network was identical for all three map types, reaching 2 mm height. Additionally, the
height of interactive map symbols was extruded identically, reaching 5 mm height to
adopt recommendations from the preliminary survey to be easily distinguishable from
the others (Figure 9). The interactive map symbols represented POIs, including public
transport stops, shops, hotels, restaurants, banks, and medical services. Other POIs, e.g.,
educational institutions, were not mapped in order not to overload the map and due to
their low attractivity for people with visual impairment.
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Table 1. Height ranges of individual layers for all three map types.

THEME 0–2 mm 2–2.5 mm 2.5–3 mm 2.5/3–3.5 mm 0–5 mm

Public
Transport streets

open spaces
and building

blocks
--- tram lines POIs

Walking streets open spaces --- buildings POIs
Tourism streets open spaces forests, parks buildings POIs
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Figure 9. Layer distribution on an example map of Tourism type (layer 1 = streets, layer 2 = open
spaces, layer 3 = forest and parks, layer 4 = buildings, theme = thematic layer of POIs).

The Public Transport map type was generally the simplest one, merging buildings
with other open spaces without streets or paths. On the other hand, the Tourism map was
expected to be the most complex and the most difficult to read, having five height layers
instead of four (Table 1). This map was intended for experienced tactile map readers. All
the maps were prepared uniformly in 1:4000 scale. The 3D modeling block (Figure 10)
begins with automatic repair of potential geometry errors in STL files. In this step, realized
in the 3D Builder [32] freeware software. This process is very straight-forward and involves
only to agree with the repair. Then, all non-interactive layers were merged, resulting in two
3D models instead of four to five separate models. One model represented the topographic
base layers for non-conductive material, while the other represented the thematic layer of
interactive POIs prepared for conductive material. Union Boolean operation was applied
in the process of merging.
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Another open-source software, Blender [33], was used for the rest of the processing
of the 3D models. This part consisted especially of generating primitive shapes (blocks,
cylinders) at predefined locations according to the model size. These primitives were then
either united or subtracted from the model. To automate the repetitive process, a Python
script was developed to import both 3D models (interactive and noninteractive map parts),
roughen the top surface of interactive map symbols, automatically place hooks on both
sides of the maps in the suitable position according to the imported model size, and add
the map symbol providing later basic information about the map and its content when
touching it. The script also provided additional functionality to alternatively import one
consistent model only, to generate interactive elements in a defined size and grid, and to
export their position into a JSON file to be used in a mobile application (see the low branch
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in Figure 10). This alternative functionality was not used in this case as it was implemented
into the script for other types of 3D models. Final 3D models were exported by the script
in a defined location in STL file format (both Binary and ASCII file may be used). Link to
the Python script is available in the Supplementary Materials.

In the last part of the workflow (Figure 11), Slic3r [34] software was chosen to set
printing parameters of both models to be printed using a Poseidon Duo 3D printer equipped
with 0.4 mm nozzles. Precise calibration of the nozzles’ height above the printing bed had
to be done before launching the 3D printing process as it may influence the quality of the
outcomes [16]. Otherwise, model parts printed by one nozzle could have been damaged
by the second nozzle, and the adhesion of the model could be insufficient. Proto-pasta PLA
filament was used for printing the conductive map elements, while blue non-conductive
PLA was used for 3D printing of the non-interactive part of each tactile map. A layer height
of 0.2 mm was used to reduce printing time because no continuous changes of the surface
were present in case of the tactile maps. Using lower layer height would not, therefore,
result in smoother surface. Infill of 60% was applied to keep especially the conductive
parts durable enough. A temperature of 215 ◦C was set for both extruders and 50 ◦C for
the printing bed. This, however, differs a lot according to the 3D printer and filament used.
Therefore, no strict recommendations related to the printing temperature could be given.
The printing time varied between two and three hours.
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Finally, button schemes containing text captions to be paraphrased by TTS were coded
in the form of a JSON file importable into the TactileMapTalk [35] Android application
developed especially for the TouchIt3D maps. It represents a simple application where
software buttons are defined via a JSON file, and after touching these buttons, text of the
caption associated with the button is read using the TTS function. This mobile application
was used for testing in this case study. However, any other application or a simple website
where software buttons can be defined may be used for TouchIt3D tactile maps. Proper
functionality of each map (Figure 12) was tested to avoid some interactive map symbols not
working due to incorrect button placement or 3D printing errors. The content of predefined
texts and their adaptation by TTS was examined similarly. Reflecting the preliminary user
survey, the mobile application was upgraded to launch the auditory description only when
pressing an interactive map symbol for at least 1 s.
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2.4. User Evaluation

User testing of final tactile maps was realized similarly to how the preliminary survey
was done. This testing aimed to obtain feedback from people with visual impairment on the
readability and usability of these interactive tactile maps made using semi-automated pro-
cesses. Most respondents were the same participating in the preliminary survey, although
some were new for the final testing and some respondents from the preliminary survey
declined to join the final one. A total number of 10 respondents joined the evaluation, from
which five identified themselves as female and the other five as male. All the respondents
had used some kind of tactile maps before. The same sets of tasks were given to all re-
spondents, while the interview part was kept unstructured and developed various topics
varying between respondents. The results of the experiments were later confirmed on a
larger user group in follow-up research testing a similar type of new-generation TouchIt3D
tactile maps [36].

The meeting with each individual respondent was always introduced by presenting
all three themes of the final tactile maps set in the uniform order from the simplest to the
most complex one: Public Transport, Walking and Tourism maps. After explaining the
content and functionality of each map, respondents were asked to finish a task related to
that kind of map. In the case of the Public transport map, the given task (marked PT1) was
to detect which tram line can be used to travel between two tram stops defined by their
name and to which other means of transport they can transfer on one of these stops (PT2).
For the Walking map, the tasks were to find the closest restaurant from a defined tram
stop (W1) and to show the shortest path from the restaurant to a grocery shop (W2). In the
Tourism map, respondents were asked to show and describe the path from a castle across
the main town square to a specific hotel (T1). Additionally, they were asked to show where
the areas covered by trees are situated on the map (T2).

Answers were marked as “correct” when respondents fully completed the task; as
“partly correct” if they, for example, found a POI of the same type but not exactly the
correct one, found the path but not the shortest one, and also if they showed forest but also
showed another height layer in the task T2. Answers were deemed incorrect and marked
“wrong” when the respondent indicated an incorrect map symbol or failed to finish the
task at all. The final part of the testing utilized an interview format, in which respondents
were asked to evaluate the distinctiveness of map symbols, the usability of presented maps
and asked for suggestions they have for further development.

3. Results

The correctness of the answers from the user evaluation is captured in Table 2. Correct
answers occurred almost in all cases for the simplest map of the Public Transport type.
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With increasing map complexity, the success rate decreased. The majority of respondents
answered the complex task T1 only partly correctly. It was expected that due to the
presence of five different layers in the Tourism map type, there were also several mistakes
in distinguishing the forested area in task T2.

Table 2. Evaluation of the tasks from user testing.

Resp. Task PT1 Task PT2 Task W1 Task W2 Task T1 Task T2

1 correct correct correct correct partly
correct correct

2 correct correct correct wrong partly
correct wrong

3 correct correct partly
correct correct partly

correct wrong

4 correct correct correct correct correct correct

5 correct correct correct correct partly
correct correct

6 correct wrong correct correct correct correct
7 correct correct correct correct correct wrong

8 correct correct correct wrong partly
correct correct

9 correct correct partly
correct correct wrong correct

10 correct correct correct partly
correct

partly
correct

partly
correct

Similar to the preliminary survey, all respondents were very satisfied with the in-
teractivity of the maps, which was the most distinguishing feature compared to other
tactile maps they had worked with before. Half of the respondents stated the edges of map
symbols were appropriately rough, while two said the edges were a bit sharp. The others
did not mention this aspect. A few participants asked for an interactive symbol for muting
and unmuting the auditory descriptions. This feature is currently being implemented
in the new generation of TouchIt3D maps to avoid interruption during the introductory
map exploration. Only one respondent suggested the auditory content be launched by
double-click, whereas the rest described the current solution to be good or did not mention
this being problematic. Abbreviated responses are shown in Table 3.

Additionally, the first respondent would appreciate having the map legend available
separately. This participant experienced some problems with the unintentional launching
of auditory descriptions. The second participant proposed having a more detailed scale
for maps distinguishing individual buildings as he experienced difficulties touching the
street surface when surrounded by buildings. In contrast, the fourth respondent joining the
evaluation appreciated the large area covered by each map. She even stated that these maps
were the most sophisticated tactile maps she had ever encountered (before, she experienced
hand-made tactile maps, plastic foils, maps based on microcapsule paper, and few 3D
printed tactile maps). The fourth and eighth respondents described themselves as “not
map-based people” but were pleasantly surprised by the functionality and interactivity
of the presented maps. While the sixth respondent suggested using these kinds of maps
for orientating at exhibitions, concert halls, and railway stations, the seventh respondent,
conversely, did not deem it useful to use these at train stations, which are generally
equipped with navigation audio-beacons. Instead, she suggested that these maps could
be very useful in hospitals. The last participant in the user testing suggested the idea of
moving the interactive map symbols slightly so that they would be completely inside the
buildings in order not to block a clear interpretation of street connectivity.
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Table 3. Results of the final part (interview) of the user evaluation.

Resp. Advantages Disadvantages Suggested Use

1 interactivity, rough edges,
map readability separate legend missing walk planning, buildings

2 interactivity, map
readability larger scale preferred inside and in front of

offices

3 interactivity, map
readability “mute” missing walk planning

4 interactivity, rough edges,
small scale, functionality – independent movement

practicing, education
5 interactivity, rough edges – when lost in a city

6 interactivity, rough edges,
map readability “mute” missing exhibitions, concert halls,

railway stations

7 interactivity, rough edges,
map readability – Hospitals

8 interactivity, functionality double-click better walk planning, education

9 interactivity sharp edges, “mute”
missing education, state offices

10 interactivity, symbol
distinguishability

sharp edges, interactive
symbols blocking streets

walk planning, education,
busy places

Despite the lower initial costs, the maps were very positively evaluated by our respon-
dent group of people with severe visual impairment. All participants of the map evaluation
enjoyed the interactivity of the presented maps and achieved a geospatial awareness of
the mapped areas. The tactile map of the Public Transport type with inaccessible areas
merged into a single map layer was usually evaluated to be easily readable. Other map
types, even when they suffered from occasional misreading, were appreciated for their
detailed shapes. The scale of 1:4000 was suggested as optimal for this kind of plastic tactile
maps due to its balance of both good readability and sufficient extent. Considering map
symbology, four height layers appeared to be optimal for less-experienced readers, while
for the more experienced users, five layers were comprehensible as well providing a more
detailed image of the mapped area.

As a result of the final user verification, interactive TouchIt3D tactile maps linkable
with a tablet were considered innovative and new for all respondents in the user evaluation.
The people with visual impairment, joining the map presentation and testing, introduced
many interesting ideas regarding how those maps could be used and upgraded. The ideas
included using these maps for indoor navigation, for capturing hospitals, large railway
stations, shopping malls, exhibition grounds, and similar spots. Some suggested using the
TouchIt3D maps for independent movement education directly in the field, while others
would prefer to use them prior to their movement in order to memorize the area. All
the examples suggest the need for specific upgrades, and several will be examined in
follow-up research.

4. Discussion

Although the proposed workflow has made the creation of multimedia tactile maps
significantly more effective, it still involves a number of steps that must be performed
manually. The reasons for this include the fact that some operations are necessary to be
done manually considering the individual characteristics of tactile maps (e.g., appropriate
descriptions for mapped objects). Difficulties in automation were also caused by poor
interoperability between GIS and 3D modeling software. Additionally, the final phase
of so-called slicing (converting a 3D model into simple instructions for a 3D printer) is
highly dependent on the type of 3D printer used. It also cannot be automated while
preserving the possibility to use different 3D printers. Therefore, it is assumed that a fully
automated workflow would not be widely usable and with current specifics of 3D printers
not even possible.
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The developed workflow is also limited in the diversity of map symbols representing
POIs. All the conversions of point data into polygons were made using the Buffer tool
(a processing tool creating buffer polygons around input features to a specified distance).
Therefore, all the symbols are round, varying only in diameter (public transport stops
different than other POIs). However, which object is represented by each map symbol is
clarified by the auditory description. Besides the other similar approaches, the presented
workflow for TouchIt3D maps preserve the possibility to use both positive and negative
3D relief surface and advance the connection with a mobile device to provide additional
information. At the same time, the map’s simplicity is preserved.

Mostly, open-source software and open data like OSM were used in the workflow.
Originally, open-source tools were intended to be also used for GIS geoprocessing analyses
instead of commercial software. However, when the same operations were applied in
the QGIS Graphic Modeler tool, the workflow consisting of multiple subsequent overlay
analyses (Clip, Union, etc.) resulted in some invalid topology very often. Mostly, zero-
width switchbacks/knots occurred along the boundaries of polygon layers. Unfortunately,
these switchbacks/knots occurred even when implementing alternative open-source tools
available in the QGIS list, and the result faulty layers were irreparable by common tools
for repairing incorrect geometry. These errors either interrupted the automated workflow
or would cause difficulties in the process of 3D modeling. Therefore, even though the
workflow of subsequent operations in QGIS was correct and vocationally even resulted in
usable output, the ArcGIS geoprocessing tools were used instead, providing correct results
in all cases with clean topology without any switchbacks nor knots.

Even though it is difficult to calculate the final cost of each map, including the cartog-
rapher‘s time necessary for its preparation (which also differs worldwide), just a simple
comparison of material costs shows the savings brought by the use of TouchIt3D technology
in the financial aspects, while still keeping the map qualities.

While older-generation interactive maps [4,37] required costs reaching €350–400 (about
€150–200 for the map and €200 for the electronics), one TouchIt3D map can be printed for
€15; adding in a tablet costing €120 does not reach even half of this sum. Moreover, when
using one tablet for ten tactile maps, the average price per map falls under €30. These
savings were mostly achieved by: (1) using cheaper technology of 3D printing (low-cost 3D
printers and cheaper filament instead of powder-based technologies), (2) using a tablet for
multiple maps instead of mounting electronics into every single map, (3) using open-source
data and sources. The costs of commercial software were not counted in costs before nor
after the optimization as a university license was used in both cases. More savings could
also be expected to be achieved due to a less time-consuming design process, but the impact
of this aspect cannot be fully calculated due to diversity in labor costs.

Production of TouchIt3D interactive maps remains, of course, more expensive com-
pared to simple non-interactive 3D tactile maps [19,20,27]. Furthermore, it involves a
multi-extruder 3D printer that is not necessary for maps made of one material or maps
with colors variable only in the height direction. However, the interactivity of tactile
maps was found to be very important for people with severe visual impairment when
exploring the exterior in this study, similarly to the importance when orienting indoors [17].
Among older studies [17,18], our approach presents interactive maps which are easily
portable and usable both in the interior (for studying the landscape in advance) and in
the exterior (e.g., when moving in a city). Henceforward, automatic generalization of
input data (e.g., simplifying shape of polygon features), delineated by some studies [28],
has remained an unresolved issue and has been implemented neither in our study. Yet,
some basic cartographic generalization was secured by overlay analyses in the process of
data processing.

5. Conclusions

The study introduced interactive TouchIt3D tactile maps designed using a semi-
automated workflow. The principle based on linking a plastic tactile map with a tablet
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brought significant time and financial savings valuable in the field of tactile cartography.
A workflow automating some parts of the map design process reaching from data collection
through the preparation of a mobile application template up to the 3D printing enabled the
creation of an interactive tactile map in less than one day. This workflow is several times
faster than previous multimedia tactile maps.

Many new suggestions and a large amount of feedback were noted during both user
experiments. There was no consensus between respondents on some issues, illustrating the
diversity of people with visual impairment and their aims. However, several clear messages
indicated the direction for further development and use of the TouchIt3D technology. The
responses from the final user evaluation were implemented in the new generation of the
TouchIt3D tactile maps in the follow-up studies. Ongoing research has focused on the use
of interactive tactile maps for independent movement education and the perception of
geospatial features via interactive 3D models.

Supplementary Materials: The three ArcGIS Model Builder models used for processing the GIS
data are available online at www.radiat.cz/research/TactileMap.tbx and the Blender extension for
finalizing the model is available in the form of Python script online at www.radiat.cz/research/
blenderScript.py.
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