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Abstract: The simulation of future land use can provide decision support for urban planners and
decision makers, which is important for sustainable urban development. Using a cellular automata-
random forest model, we considered two scenarios to predict intra-land use changes in Kumamoto
City from 2018 to 2030: an unconstrained development scenario, and a planning-constrained devel-
opment scenario that considers disaster-related factors. The random forest was used to calculate
the transition probabilities and the importance of driving factors, and cellular automata were used
for future land use prediction. The results show that disaster-related factors greatly influence land
vacancy, while urban planning factors are more important for medium high-rise residential, com-
mercial, and public facilities. Under the unconstrained development scenario, urban land use tends
towards spatially disordered growth in the total amount of steady growth, with the largest increase
in low-rise residential areas. Under the planning-constrained development scenario that considers
disaster-related factors, the urban land area will continue to grow, albeit slowly and with a compact
growth trend. This study provides planners with information on the relevant trends in different
scenarios of land use change in Kumamoto City. Furthermore, it provides a reference for Kumamoto
City’s future post-disaster recovery and reconstruction planning.

Keywords: intra-urban land use change; cellular automata; random forest; multi-scenario; Kumamoto
Compact City; disaster-related factors

1. Introduction

In recent years, land use change has received considerable attention in the field of
urban planning research, becoming an important topic in current urban sustainable devel-
opment [1–3]. Accurate information on land use and its changes is crucial for planning as
it ensures effective planning and management [4–6]. Land change models are predictive
tools for analyzing urban land change, allowing planners or decision makers to visualize
future land use [7]. The simulation of urban land use change has been studied by many
researchers, and many models have been proposed. Most of them are based on statistics,
cellular automata, agent-based or hybrid approaches, etc. [8,9]. Among them, the cellular
automaton (CA) model is widely used for land use simulation due to its simplicity, flexi-
bility, and intuition of the temporal and spatial dependence in land use patterns [10,11],
which has proven to be an effective method for modeling land use change.

For the CA model, an accurate transition rule is a key determinant of the model’s
predictive ability [12]. The neighborhood interaction of the traditional CA model follows
the transition rule of discrete rules, which enables a bottom-up simulation of the land use
change process [10]. However, it ignores factors of land use change such as the driving
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forces (including population, transportation, and policy influence). Therefore, CA mod-
els need to be combined with other models using a range of spatial and local variables
to determine the transformation rules [13]. Recently, many scholars have experimented
with different types of models and have achieved diverse research results. The most
commonly used models include logistic regression [14,15], neural networks [16–20], and
support vector machines (SVMs) [21,22]. Logistic regression models have limitations in
obtaining relationships between land use and driver factors, as they require factor inde-
pendence [15], which makes it difficult for many spatially driven variables to satisfy such
relationships. Although neural network algorithms perform well in nonlinear simulations,
the training process of neural network algorithms is a black box mechanism and prone
to overfitting [11,23], which is not conducive to revealing the mechanisms of complex
multi-class land use change. SVMs are sensitive to outliers and usually take longer to
learn, particularly when the dataset consists of various features [23,24]. In addition, the
random forest algorithm is a frequently used model that has shown its effectiveness in
solving overfitting problems with high accuracy and moderate time complexity [23–25]. It
is suitable for classification or fitting problems with many coupled spatial variables and is
useful for measuring the contribution of each driving factor [11,26].

Multi-scenario modeling for urban land use change will become increasingly relevant
as uncertainty about the future increases [27]. Scenario modeling, based on different
assumptions, can predict the most likely future and describe alternative land use changes,
thereby enabling effective urban expansion management and planning development [28].

Current urban land change studies have mainly concentrated on modeling urban
expansion and urban sprawl [29–31]. These studies often focus on two types of land use,
urban land and non-urban land [32], or the dynamic conversion between urban land and
various types of non-urban land (farmland, forest, etc.) [33]. However, it is difficult to
reveal the dynamic processes and trends of interchange between multiple complex land
use types, especially between intra-urban land uses (such as open space, residential land,
vacant land).

Currently, the combination of RF and CA has been applied to the analysis of urban
growth in various scenarios. Gounaridis et al. [34] used the RF-CA model to explore
the potential future land use/cover (LUC) dynamics of Attica in Greece under three
divergent future scenarios of economic development. Zhou et al. [11] used RF-CA and
Markov models to simulate Shanghai’s urban expansion under two distinct scenarios:
unconstrained development, and development with planning intervention. Kamusoko
et al. [24] simulated urban growth, and the results showed that the RF-CA model is better
than the SVM-CA and LR-CA models. Based on the importance of intra-urban land use
simulation for decision and policy making, Zhang et al. [26] used the RF-CA model to
explain the factors driving intra-urban land use changes. However, to the best of our
knowledge, there have been no studies conducted on predicting intra-urban land use using
the cellular automata-random forest (CA-RF) model in multiple scenarios.

In Japan, intra-urban land use changes and simulation are an essential part of the
future urban vision in the urban master plan, often referred to as the ‘future land use
framework’ [35,36]. In this framework, intra-urban land uses are predicted using the
current state of the population, industry, commerce, and urban planning policies. The
predicted intra-urban land use is a target value for future urban development, which is of
great significance in guiding the layout of urban residential, industrial, and commercial
urban development. Currently, many Japanese cities use compact urban development to
solve their urban problems, such as population reduction and natural disaster prevention.
The main contribution of this study is that, based on previous studies, the RF-CA model is
further validated for the analysis of intra-urban land use change under multiple scenarios,
taking into full consideration the specific development policies and disaster prevention
requirements of Japanese cities.

Therefore, the purpose of this study is to explore the driving factors’ importance in the
intra-urban land use transformation process, and to analyze how the spatial distribution of
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intra-urban land will be different under two scenarios in the future. For this purpose, a CA-
RF model was constructed and validated in two scenarios: an unconstrained development
scenario, and a compact development scenario accounting for disaster prevention and
mitigation, which was considered suitable for simulating multi-intra-urban land use.
Using the CA-RF model, we explored the driving factors’ importance in the transformation
process of urban land use in Kumamoto City, and how the spatial division of intra-urban
land will be different under two scenarios in the future. The simulation results and analysis
can help develop specific urban planning approaches for various intra-urban land uses, as
well as providing a scientific basis for future urban development planning and post-disaster
recovery and reconstruction planning for Kumamoto City.

2. Study Area and Data Processing
2.1. Study Area

Kumamoto City, the capital of Kumamoto Prefecture, is in the center of Kyushu Island,
at a latitude of 32◦48 N and longitude of 103◦42 E, covering an area of 390.32 km2 (Figure
1). From 1976 to 2008, urban construction land expanded 2.4 times [37]. Although the
Urbanization Control Area (UCA) (Figure 1) has basically remained the same in recent years,
the number of permitted developments has continued to increase, along with constant
urban expansion. In response to the upcoming population decline and aging problem,
the ‘Kumamoto City Master Plan-Regional Structure’, which was proposed in 2009 and
formulated in 2014, projected the necessity of developing a compact city in Kumamoto City.
After the 2016 Kumamoto earthquakes, the development of a disaster-resistant compact
city was also proposed.

Kumamoto Compact City is a multinucleated urban structure, with 15 local hubs
that are highly convenient and have well-developed functions, such as administration
and commerce. These hubs are connected to the city center by public transportation,
thus realizing a multinucleated interlocking city that is highly convenient and livable for
everyone. These 15 local hubs and the central city area constitute the Urban Function
Promotion Area (UFPA) (Figure 1). The Residential Promotion Area (RPA) (Figure 1)
is where the population density is maintained within a certain area and usually has
suitable facilities for daily life. Both the RPA and UFPA are in the Urbanization Promotion
Area (UPA) (Figure 1). After the 2016 Kumamoto earthquakes, it became more urgent to
use planning for inducing people to concentrate in safe and convenient residential and
functional areas. In the post-earthquake urban master plan, Kumamoto City incorporated
the concept of a disaster-proof multinuclear city, which will have a significant influence on
the future direction of urban development and land use change in Kumamoto City.

Therefore, the prediction of land use change in Kumamoto City was divided into
two scenarios. In Scenario I, the land use development model was assumed as an uncon-
strained development scenario without considering the impact of compact city policies and
disasters, and only accounting for the influence of natural and socioeconomic factors. On
the contrary, in Scenario II, the impact of compact development and disaster factors, such
as the 2016 Kumamoto earthquakes and other disasters, were considered. The purpose is
to contribute to urban disaster prevention planning and the management of Kumamoto
City by comparing land use simulations in the two scenarios.
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Figure 1. Location of Kumamoto City and planning areas of Kumamoto Compact City.

2.2. Land Use

The land use data were derived from the Kumamoto City Basic Survey and have
three time periods: 2006, 2012, and 2018. The original data were in vector data format
and converted to raster land use data with a resolution of 30 × 30 m using the polygon-
to-raster function of ArcGIS 10.6. The original land use in the Kumamoto City Basic
Survey was divided into 15 categories, and land classification was further organized into 10
categories according to this study’s requirements. Specific classifications and descriptions
are presented in Table 1.

Table 1. Land use classification and description.

No Land Use Description

1 Non-Urban Paddy, crop, vegetable fields, forest,
wasteland, riverbed, etc.

2 Water The surface of rivers, lakes, reservoirs,
irrigation channels, moats, etc.

3 Low-Rise Residential (LRR) Residential areas of 1–2 floors
4 Medium High-Rise Residential (MHRR) Residential areas with more than 3 floors
5 Industry Land for factory facilities
6 Commercial Commercial facilities land
7 Public Facility (PF) City hall, hospitals, schools, etc.

8 Public Open Space (POS) Parks, green spaces, squares, sports
grounds, cemeteries, etc.

9 Transportation Facility (TF) Roads, stations, etc.
10 Vacant Land (VL) Parking lots, vacant lots, etc.
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2.3. Driving Factors

Land use change is the result of a combination of drivers, such as natural, socioe-
conomic, and policy factors [38,39]. Experts in land use change modeling have shown
that some variables, such as elevation, slope, population, economic proxies, and distance
from roads, are the main spatial indicators affecting land use changes [27]. The 18 driving
factors in this study were divided into four categories: natural environmental factors
(evaluation, slope, and aspect), socioeconomic factors (population density, distance to main
roads, distance to railroad stations, land price, etc.), policy factors (distance to the UPA,
distance to the RPA, distance to the UFPA), and disaster-related factors (floods, sediment,
earthquakes) (Table 2). In addition, constrained factors were collected according to the
needs of different scenario analyses. The simulation and prediction in the two scenarios
used the corresponding driving factors.

Table 2. Summary of dataset table, including land use, natural driving factors, socioeconomic driving factors, policy factors,
and disaster-related factors.

Category Data Year Sources

Land use Land use
2006

Kumamoto City Basic Survey2012
2018

Natural environmental factors
Elevation 2018 Geospatial Information Authority of Japan [40]

(https://www.gsi.go.jp/kiban/ (accessed on 12 May 2021))Slope 2018

Socioeconomic factors

Population density 2018

Basic Resident Register population of Kumamoto City [41]
(http:

//tokei.city.kumamoto.jp/content/ASP/Jinkou/default.asp
(accessed on 12 May 2021))

Distance to main roads 2018 Kumamoto City Basic Survey
Distance to rail stations 2018 Kumamoto City Basic Survey
Distance to bus stops 2018 Kumamoto City Basic Survey

Distance to commercial
and financial facilities 2019

National Land Numerical Information [42]
(https://nlftp.mlit.go.jp (accessed on 12 May 2021))

Distance to parks 2011
Distance to city hall 2014
Distance to schools 2013

Distance to hospitals 2015
Land price 2018 Kumamoto City Basic Survey

Policy factors
Distance to the UPA 2018 Kumamoto City Basic Survey
Distance to the RPA - Location Normalization Plan of Kumamoto City

Distance to the UFPA -

Disaster-related factors
Flood 2012 National Land Numerical Information [42]

(https://nlftp.mlit.go.jp (accessed on 12 May 2021))Sediment 2019

Earthquake 2016 Japan Seismic Hazard Information Station [43]
(https://www.j-shis.bosai.go.jp/ (accessed on 12 May 2021))

Constrained factor UCA 2018 Kumamoto City Basic Survey

DEM elevation data of natural environmental factors were obtained from the Geospa-
tial Information Authority of Japan. Using the surface analysis tool, the slope was extracted
from the DEM elevation data. As the original DEM data were 10 × 10 m, the data needed
to be resampled and processed to 30 × 30 m to maintain consistency with the land use
type data and lay the foundation for the subsequent simulation process. Resampling used
the nearest neighbor method in the Resample tool of ArcGIS 10.6. Population data were
obtained from the Basic Resident Register population of Kumamoto City, and the data
included the total population in each basic unit block, which was converted to 30 × 30 m
raster data after density calculation in ArcGIS 10.6. Main roads, rail stations, bus stops,
and UPA were obtained from the Kumamoto City Basic Survey. Commercial and financial

https://www.gsi.go.jp/kiban/
http://tokei.city.kumamoto.jp/content/ASP/Jinkou/default.asp
http://tokei.city.kumamoto.jp/content/ASP/Jinkou/default.asp
https://nlftp.mlit.go.jp
https://nlftp.mlit.go.jp
https://www.j-shis.bosai.go.jp/
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facilities, parks, schools, and disaster-related factors were collected from the National Land
Numerical Information and Japan Seismic Hazard Information Station. Additionally, the
RPA and UFPA were mapped using the criteria proposed in the Kumamoto City Master
Plan. All distance variables in this study were calculated using the Euclidean Distance
function in ArcGIS 10.6. The processing results are shown in Figure 2.
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Figure 2. Map of driving factors: (a) evaluation; (b) slope; (c) population density in 2018; (d) distance to main roads; (e)
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the RPA; (o) distance to the UFPA; (p) flood hazard map; (q) sediment hazard map; (r) seismic intensity distribution map of
the main shock in the 2016 Kumamoto earthquakes.

3. Methods
3.1. CA-RF Model

The CA-RF model is a coupled model of random forests and cellular automata that is
used in land use change simulations. Each cell in the CA model, in general, has a transition
rule that composes a function of how the cell decides its next state based on its previous
state and its neighbors at a given moment [15,44]. The conceptual formula is expressed by
the following Equation (1):

Si,t+1 = f (Si,t, P, Ωi,m, CON, R) (1)

Si,t+1 is the state of cell i at time t + 1. Si,t is the state of cell i at time t, and f is the
transition function. P is the overall transition probability. Ωi,m is the domain evaluation
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function, and m denotes the neighborhood window size. A 3 × 3 size Moore neighborhood
was used in this study. CON is the constraint of cell change, used to specify which cells
can be changed, and is assigned to 1 if cell i is available for development or change [15],
and 0 otherwise. R is the unknown random disturbance in the simulation that can produce
more reliable results [45], where the parameter α controls the size of the random variable,
and γ is a random number falling in the range [0,1]. Ωi,m, R can be calculated as follows:

Ωi,m =
∑m×m (Si,t=k)

m × m − 1
(2)

R = 1 + (− ln γ)α (3)

In this study, the RF model was used to determine the transition probability of each
cell, and the contribution of each driving factor could be obtained. We set up 100 decision
trees to implement the random forest algorithm; additionally, the RF model was built
with Scikit-learn [46]. The CA model was then used for land use change simulation and
prediction. In addition, each land use demand, calculated by the Markov chain [47],
was used to control the simulation iterations. Once the land demand was reached, the
simulation process would stop. The simulation process of CA-RF was performed in Python
in Anaconda Software. Figure 3 shows the workflow of the CA-RF model.
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3.2. Validation

The kappa coefficient is usually used in the assessment of the accuracy of land use
simulation models [48]. Its value can be used to determine the reliability between the
observed consistency and chance consistency [49,50]. In this study, the 2012 and 2018 land
use results simulated by the two scenarios were compared with the observed 2012 and
2018 land use to validate the prediction consistency. The kappa coefficient was calculated as
follows:

Kappa =
po − pe

1 − pe
=

na
ns

− 1
N

1 − 1
N

(4)
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where po is the proportion of actual and simulated land use cells that are identical (correct
simulated proportion); pe is the proportion of land use simulated cells to the actual raster
in the random case (simulated proportion under the expectation of random conditions);
na, ns, and N denote the total number of current land use cells, the number of simulated
correct land use cells, and the number of land use classifications, respectively. Kappa takes
values in the range of 0–1.

4. Results
4.1. Simulation and Validation

This study simulated the urban space of Kumamoto City in 2012 and 2018 according
to the constructed model in two scenarios. The spatial simulation results show that the
simulation results (Figures 4b and 5b) and observed land use (Figures 4a and 5a) generally
have a high consistency. The overall accuracy of Scenario I was 96.40%, and the kappa
coefficient was 0.944, while the accuracy of Scenario II was 96.35%, with a kappa coefficient
of 0.943. Therefore, we believe that this model is suitable for predicting future urban land
use changes in Kumamoto City.
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Figure 5. Observed and simulated results of land use in Scenario II: (a) observed land use of 2018; (b)
simulated land use of 2018.

According to the random forest algorithm, the driving factors’ contribution for each
land use can be assessed. The driving factors’ importance in Scenario I is illustrated in
Figure 6a. In low-rise residential (LRR), each factor is of approximately equal importance,
with population density and distance to rail stations being the most significant factors.
For medium high-rise residential (MHRR), the essential factors are population density
and distance to commercial and financial facilities. For commercial land, the distance to
commercial and financial facilities and the distance to main roads are vital. The distance to
commercial and financial facilities and the distance to main roads and railway stations are
the key factors affecting the formation of vacant land (VL).

Figure 6b shows that, in Scenario II, the distances from medical, commercial, and
financial facilities related to urban life and the distances from certain transportation location
factors (bus and railway stations) are of approximately equal importance for LRR changes,
with population density remaining the most important factor. In addition to population
density, distances to health, commercial, and financial facilities associated with urban life
are attractive, and urban planning factors, such as distance to the UPA and distance to
the RPA, also play an important role. The distance to the UFPA is the most significant
factor affecting commercial and public facilities. In addition, seismic intensity was the most
significant factor for VL.
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4.2. Scenario I

Table 3 shows the observed land use area changes from 2006 to 2012 and the simulated
changes in Scenario I from 2018 to 2030. In this scenario, we assume that urban development
is basically unrestricted, predict urban land development in 2018, 2024, and 2030, and
calculate the area changes of each land use. The results show that the rate of urban land is
steadily increasing, and the overall decrease in non-urban land remains stable. In terms
of urban land, the area of LRR has the largest increase, growing to 266.49 ha, 261.54 ha,
and 256.32 ha by 2018, 2024, and 2030, respectively. VL and MHRR also show high growth
rates. It is worth noting that these growth rates are declining each year, similar to industrial
land and public open space (POS). However, commercial and transportation facility (TF)
land shows an increasing trend each year. The area of water bodies remains unchanged.

Table 3. Observed land use area changes from 2006 to 2012 and the simulated changes in Scenario I
from 2018 to 2030.

Observed Land Use Simulated Land Use in Scenario I

2006 2012 2006–2012 2012–2018 2018–2024 2024–2030

Non-urban 23,159.25 22,609.08 −550.2 −537.03 −522.4 −502.38
Water 1257.93 1257.93 0 0 0 0
LRR 5048.37 5318.64 270.27 266.49 261.54 256.32

MHRR 1704.06 1774.71 70.65 74.25 76.14 71.37
Industry 655.47 660.06 4.59 4.5 4.32 4.14

Commercial 947.7 959.49 11.79 15.75 18.72 20.88
PF 1538.1 1556.82 18.72 19.71 20.52 21.15

POS 964.53 978.57 14.04 13.86 13.59 13.41
TF 2264.31 2299.05 34.74 35.73 36.63 37.26
VL 1494 1619.37 125.37 106.74 90.99 77.85
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From the perspective of spatial change, the distribution of urban land change is shown
in Figure 7. A large amount of future LRR growth is mainly distributed in the periphery of
the UPA, as shown in Figure 7(a–1), but also in the UFPA area, which is further away from
the central area (as shown in Figure 7(a–4)). This trend of LRR growth will continue from
2018–2024 (as shown in Figure 7(a–1,a–4)) to 2024–2030 (as shown in Figure 7(b–1,b–4)). The
MHRR, on the other hand, is mainly distributed in the outer area near the UPA boundary,
with small areas of concentration appearing in 2018–2024, as shown in Figure 7(a–2,a–3),
and more areas of concentration in 2024–2030, as shown in Figure 7(b–2,b–3). The growth
of VL is mainly distributed inside the UPA.
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4.3. Scenario II

The growth of land use changes was also calculated for the observed changes in land
use area from 2012 to 2018 and the simulated changes in Scenario II from 2024 to 2030
(Table 4). In this scenario, we assume that urban development is influenced and constrained
by urban planning policies while considering the impact of disaster factors. The results
show that the rate of urban expansion decreases significantly. Non-urban land will reduce
from 440.82 ha in 2018 to 189.99 ha in 2030. In terms of urban land, the VL area increased
the most in 2018 and 2024, with 175.41 ha and 170.46 ha, respectively. However, by 2024,
the area of VL is basically the same as that in 2024, with an increase of only 2.34 ha. On the
contrary, LRR and MHRR maintain a relatively stable growth. Furthermore, industrial land,
PF, and POS show a trend of slow growth (from 2018 to 2024) or even negative growth
(from 2024 to 2030).

Table 4. Observed land use area changes from 2012 to 2018 and the simulated changes in Scenario II
from 2024 to 2030.

Observed Land Use Simulated Land Use in
Scenario II

2012 2018 2012–2018 2018–2024 2024–2030

Non-urban 22,609.08 22,168.26 −440.82 −388.98 −189.99
Water 1257.93 1257.93 0 0 0
LRR 5318.64 5449.77 131.13 125.82 120.42

MHRR 1774.71 1855.17 80.46 57.06 74.52
Industry 660.06 664.56 4.5 0.09 −6.84

Commercial 959.49 975.6 16.11 15.21 6.21
PF 1556.82 1566.09 9.27 8.91 −8.82

POS 978.57 995.13 16.56 4.05 −1.89
TF 2299.05 2306.43 7.38 7.38 4.05
VL 1619.37 1794.78 175.41 170.46 2.34

The spatial distribution of urban land use changes is shown in Figure 8. With con-
straints, urban land use growth is widely distributed within the UPA. From 2018 to 2030,
future LRR growth mainly appears within the borderline areas of the UPA and some
UFPA areas far from the central area, as shown in Figure 8(a–4,b–4). MHRR is also widely
distributed, with more growth in the central area, but more dispersed. From 2018 to 2024,
concentrations appear in some UFPA areas (e.g., Figure 8(a–1)), but in this region, there is
no significant growth from 2024 to 2030 (e.g., Figure 8(b–1)). More growth concentrations
occur between UPA and FPA in 2018–2024, as shown in Figure 8(a–2). In 2024–2030, urban
land use for growth concentration in this area is commercial, as shown in Figure 8(b–2).
Growth in VL is widely distributed within the UPA in 2018–2024, as shown in Figure 8(a–3),
while in 2024–2030, the growth decreases (Figure 8(b–3)). To gain a better understanding of
land use change inside urban planning areas, we calculated the UPA, RPA, and UFPA.
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Figure 9 shows the gains and losses in the UPA between 2006 and 2030. In the first
period (2006–2012), LRR had the highest (235.08 ha) gains, followed by VL (192.42 ha).
Non-urban areas had the highest losses (209.43 ha), followed by VL (185.43 ha). In the
second period (2012–2018), VL gained the most (227.25 ha), while LRR was the land use
type with the greatest losses (220.41 ha). In the third period (2018–2024), the result of the
prediction shows that VL will gain the most (326.16 ha). Meanwhile, the gains of LRR and
MHRR also indicate post-disaster recovery. In the fourth period (2024–2030), the transition
between different types of land use decreases. LRR will have the highest gains (170 ha),
followed by VL (111.69 ha) and MHRR (74.52 ha). However, the losses and gains of VL
will reach a balanced state. Non-urban land maintains high losses over the four periods.



ISPRS Int. J. Geo-Inf. 2021, 10, 503 14 of 22ISPRS Int. J. Geo-Inf. 2021, 10, x  14 of 22 
 

 

 

 

Figure 9. Gains and losses in the UPA between 2006 and 2030 in Scenario II: (a) gains and losses between 2006 and 2012; 

(b) gains and losses between 2012 and 2018; (c) gains and losses between 2018 and 2024; (d) gains and losses between 2024 

and 2030. 

Figure 10 shows the gains and losses in the RPA between 2006 and 2030. The overall 

gains and losses were similar to those in the UPA. In the first period (2006–2012), VL had 

the highest gains (122.85 ha), followed by LRR (111.15 ha). During this period, the highest 

loss was also that of VL (98.01 ha), but the overall gains were greater than the losses. In 

the second period (2012–2018), VL continued to gain the most (122.58 ha), and LRR was 

the land use type with the greatest loss (120.96 ha). In the third period (2018–2024), the 

prediction result shows that VL will have the greatest gain (167.31 ha), followed by MHRR 

(110.33 ha) and LRR (104.76 ha). In the fourth period (2024–2030), VL will have the highest 

gains (106.29 ha), followed by LRR (72.81 ha) and MHRR (48.24 ha). During the four peri-

ods, the losses of non-urban land in the RPA are maintained at a relatively high level. VL, 

LRR, and MHRR always maintain high gains and losses, and the underlying gains are 

greater than the losses (except for LRR between 2012 and 2018). 

-400 -300 -200 -100 0 100 200 300 400

Non-urban

Water

LRR

MHRR

Industry

Commercial

PF

POS

TF

VL

Land use gains and losses in UPA ( unit: ha)

2006–2012

loss gain

-400 -300 -200 -100 0 100 200 300 400

Non-urban

Water

LRR

MHRR

Industry

Commercial

PF

POS

TF

VL

Land use gains and losses in UPA ( unit: ha)

2012–2018

loss gain

-400 -300 -200 -100 0 100 200 300 400

Non-urban

Water

LRR

MHRR

Industry

Commercial

PF

POS

TF

VL

Land use gains and losses in UPA ( unit: ha)

2018–2024

loss gain

-400 -300 -200 -100 0 100 200 300 400

Non-urban

Water

LRR

MHRR

Industry

Commercial

PF

POS

TF

VL

Land use gains and losses in UPA ( unit: ha)

2024–2030

loss gain

(a) (b)

(c) (d)

Figure 9. Gains and losses in the UPA between 2006 and 2030 in Scenario II: (a) gains and losses between 2006 and 2012;
(b) gains and losses between 2012 and 2018; (c) gains and losses between 2018 and 2024; (d) gains and losses between 2024
and 2030.

Figure 10 shows the gains and losses in the RPA between 2006 and 2030. The overall
gains and losses were similar to those in the UPA. In the first period (2006–2012), VL had
the highest gains (122.85 ha), followed by LRR (111.15 ha). During this period, the highest
loss was also that of VL (98.01 ha), but the overall gains were greater than the losses. In
the second period (2012–2018), VL continued to gain the most (122.58 ha), and LRR was
the land use type with the greatest loss (120.96 ha). In the third period (2018–2024), the
prediction result shows that VL will have the greatest gain (167.31 ha), followed by MHRR
(110.33 ha) and LRR (104.76 ha). In the fourth period (2024–2030), VL will have the highest
gains (106.29 ha), followed by LRR (72.81 ha) and MHRR (48.24 ha). During the four
periods, the losses of non-urban land in the RPA are maintained at a relatively high level.
VL, LRR, and MHRR always maintain high gains and losses, and the underlying gains are
greater than the losses (except for LRR between 2012 and 2018).
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Figure 10. Gains and losses in the RPA between 2006 and 2030 in Scenario II: (a) gains and losses between 2006 and 2012;
(b) gains and losses between 2012 and 2018; (c) gains and losses between 2018 and 2024; (d) gains and losses between 2024
and 2030.

Figure 11 shows the changes in each land use type in 15 local hubs between 2006 and
2030. In the first period (2006–2012) (Figure 11a), LRR increased more in Jonan, Ueki, KM,
and KK, while it decreased in SK and Kokai. MHRR increased significantly in local hubs,
such as SK, Nagamine, Kokai, HM, and Kengun. VL in Jonan, SK, KM, and HS showed
a relatively large increase. Among the 15 local hubs, Jonan had the largest change, with
non-urban areas decreasing by 13.32 ha, VL and LRR increasing by 7.38 ha and 4.95 ha,
respectively. Local hubs, such as Hokubu, showed the least change. In general, during
this period, there were three types of development patterns. The first is the local hubs far
away from the city center represented by Jonan, Ueki, and KM, showing a rapid change
pattern, which can be evidenced by the rapid growth of LRR and the decrease in non-urban
areas. The second is the rapid growth of MHRR near the city center represented by SK,
Nagamine, and Kokai. The third is the low-speed change pattern far away from the city
center represented by Tomiai and Hokubu.
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In the second period (2012–2018) (Figure 11b), land use changes in the KM were
the most significant. Non-urban land use decreased by 9.54 ha, while LRR and MHRR
increased by 3.15 ha and 6.21 ha, respectively. There are two types of development. One
is the continuous increase in LRR represented by Jonan, Tomiai, and Ueki. The other is
the decrease in LRR and the increase in MHRR and VL, such as in the case of HM and
Nagamine.

In the third period (2018–2024) (Figure 11c), the predicted results indicate significant
changes in local hubs, such as KM, Ueki, HS, and Jonan, with an increase in MHRR in KM
and HS, and an increase in LRR in Ueki and Jonan. In contrast, local hubs such as Kengun
and Nagamine, which are located near the epicenter, show a continuous growth in VL.

In the fourth period (2024–2030) (Figure 11d), two main patterns are evident. The local
hubs outside the city center are predicted to maintain a relatively rapid growth pattern of
LRR, such as Jonan and Ueki. The growth in MHRR near the city center, such as in HM
and SK, is significant. In these areas, in contrast, vacant land is declining.

5. Discussion

Scenario II added driving factors related to urban planning and natural disasters
compared to Scenario I. The random forest provided a good indication of the importance of
the driving factors. Comparing the results of the two scenarios shows that the importance of
the driving factors that affect each land use could change. For example, the most important
driving factor for commercial land is the distance to commercial and financial facilities in



ISPRS Int. J. Geo-Inf. 2021, 10, 503 17 of 22

Scenario l, shifting to the distance to the UFPA in Scenario II. The UFPA is an area where
various types of facilities (e.g., commercial, financial, medical) are promoted to develop
in Kumamoto City, and it contains the city center and the local hubs. The city center has
the attraction of commercial investment, and many studies [13,51–53] have taken it as an
important factor influencing land use change; a previous study by Zhang et al. [26] could
draw a similar conclusion that the distance to the city center has the greatest impact on
commercial land. The driving factor with the highest contribution to VL is the distance to
commercial and financial facilities in Scenario I, changing to an earthquake-related factor in
Scenario II. This indicates that the 2016 Kumamoto earthquakes had an important impact
on land vacancy. In both scenarios, in addition to the population density factor, facilities
related to residential life and transportation factors are important factors in residential land
use change [26]. Therefore, in order to accurately reflect the change in urban land use, the
selection of driving factors is important.

Urban policies were often used as limiting factors (urban development restriction
areas, farmland protection areas, etc.) in the previous studies [11,27,54]. In this study,
combining the characteristics of urban planning policies in Japan, the planning promotion
development area was used as a driving factor, and the restriction area was used as a
restriction factor. The UPA, RFA, and UFPA, as development promotion areas, show a
significant influence on residential, commercial, etc. RFA is a residential-induced area,
attracting people to live in this area for the convenience of living. In addition, the UFPA is
an urban function-induced area, where various facilities are concentrated. Due to these
characteristics, the urban planning areas are an important factor that should be introduced
in this study to enhance the simulation of intra-urban land use. In addition, for Japan, as a
disaster-prone country, disasters are a factor to be taken into account.

The scenario-based results show that urban planning policies incorporated into land
use simulation models play an essential role in guiding the sustainable development of
Kumamoto City. The changes of each land use type in the city vary remarkably between the
two scenarios, the spatial distribution of which is also different. In Scenario I, each land use
type in Kumamoto City shows a spatially disordered development. However, there is also
some concentration growth in 2024–2030. It can be seen that the concentration-generating
zones are basically MHRR, but they are found in the outside boundary areas of the UPA.
For the overall urban development, it remains a continuous urban expansion, which
contradicts Kumamoto’s policy of compact urban development. These areas are close to the
UPA, relatively more convenient than the outer urban areas, and have good development
conditions and high development attractiveness. In Scenario II, we considered the impact
of various disasters in Kumamoto City and urban planning factors, and the results indicate
that the development is more compact than Scenario I. The growth shows continuity and
correlation. For example, in Figure 8(a–2), from 2018 to 2024, a large number of MHRR
areas appear, and by 2024–2030(Figure 8(b–2)), a significant concentration of commercial
areas appears around these MHRR lands. We found that the growth in this area may be
attributed to the development of Kumamoto Station, whose renewal development after
the opening of the Shinkansen in 2012 has led to the development of the surrounding area.
Compact city development in Japan also relies on transportation stations; therefore, we
believe that this predicted result is somewhat realistic. In addition, we found that the
residential development within some UFPA areas that are far from the city center may be
different from that of the central area. Its residential land induction in these areas could
mainly focus on promoting LRR due to the low population density (Figure 8(a–4,b–4)).

In addition, overall, land use changes in land use within each urban planning area for
Scenario I are less than those in Scenario II. Within the UPA, the losses of non-urban land
use in Scenario I from 2018 to 2024 (Figure A1a in Appendix A) are significantly less than
those in Scenario II (Figure 9d), indicating that Scenario II still requires a certain amount
of new land to promote development during this period. In 2018–2024, the gains of LRR
are basically the same for both scenarios (Figures A1b and 9d). However, Scenario I will
have more losses, which may be due to more out-migration to the suburbs in the case of
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unrestricted development. At the same time, it is noticed that there is a very significant
increase in VL change for Scenario II during this period, which may be attributed to the
2016 Kumamoto earthquakes, which caused numerous buildings to collapse and rendered
the land vacant. In 2024–2030, there is no significant difference in the development of the
two scenarios. Moreover, each land use shows fewer changes than the previous period,
with a slower development speed. The comparison of Scenario I (Figure A2) and Scenario
II (Figure 10c,d) in the RPA shows that similar results to the UPA can be obtained. In the
local hub of the UFPA, the VL of Nagamine and Kengun shows a continuous growth trend
from 2012 to 2024 (Figure 11b,c) in Scenario II. These local hubs are close to the epicenter
of the 2016 Kumamoto earthquakes with high seismic intensity. The local hubs such as
Ueki, which are farther away from the city center, are also distant from the epicenter, and
they have faster residential growth from 2012 until 2024. Since Scenario I does not consider
the effects of disasters, there is no significant growth in VL from 2018 to 2024 (Figure A3a).
From 2024 to 2030, the growth trend slows down in both scenarios. However, it can be seen
that the local hubs in Scenario I (Figure A3b) are mainly the growth of LRR, while Scenario
II (Figure 11d) mainly shows the growth of MHRR, especially in local hubs closer to the
city center, such as HM and SK. The results of the UPA, RPA, and UFCA show that the
development of urban land use is guided by urban planning, and MHRR has significant
growth and a trend of compact development. Meanwhile, the earthquake factor has a great
impact on the formation of VL in these areas, especially in the areas near the epicenter,
which should be re-evaluated in terms of post-disaster reconstruction and whether it is
reasonable for these areas to be used for residential promotion.

This study also has some limitations, such as a certain amount of established develop-
ment settlements within the UCA. Within these development settlements, a certain level of
development is allowed, and this study restricted all development within the UCA, which
may affect the accuracy of the model to some extent. In addition, Japan is already an aging
society [55], and population decline has become a problem for many cities. To solve the
decreasing population in the future, Japanese cities have proposed compact city policies
to control urban growth [56]. In the future land use simulation within Japanese cities, the
context of a declining population needs to be considered. This study only integrated the
compact city policy into the model and has not yet included the expected future population
decline data. Future studies can use the cohort population projection data provided by the
Japanese government to carry out predictions of intra-urban land use changes, especially
changes in residential areas, and the development of empty houses. Whether urban de-
velopment will show a corresponding shrinking in the face of population decline is also a
direction for future research.

6. Conclusions

In this study, we predicted future urban land use changes in Kumamoto City by
combining random forest and cellular automata models. The validation of the simulation
results under two scenarios in 2012 and 2018 showed that the RF-CA model is suitable
for predicting future intra-urban land use change. The specific development policies
and disaster prevention requirements of Japanese cities were fully considered, further
validating the effectiveness of the RF-CA model for intra-urban land use changes under
multiple scenarios. Moreover, this study also enriched the application scenarios of the
RF-CA model.

In Scenario I with unconstrained development conditions, future land use (other than
water and non-urban land) in Kumamoto City will show a steady growth trend. With
this growth trend, Kumamoto urban development will continue to expand outside the
UPA. Under the intervention of urban planning and considering the impact of disasters,
although the area of urban land will continue to grow in general, it will show a trend
of slow and compact growth, and there will be some relatively distinct growth centers.
Moreover, some urban land uses, such PF and industry, show negative growth in the future.
Future development of Kumamoto City may move towards shrinking. This is worthy of
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reference to provide urban planners and decision makers with the direction of future urban
development.
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Figure A1. Gains and losses in the UPA between 2018 and 2030 in Scenario I: (a) gains and losses between 2018 and 2024;
(b) gains and losses between 2024 and 2030.
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Figure A2. Gains and losses in the RPA between 2018 and 2030 in Scenario I: (a) gains and losses between 2018 and 2024;
(b) gains and losses between 2024 and 2030.
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