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Abstract: Watering ponds represent an important part of the hydrological resources in some water-
limited environments. Knowledge about their storage capacity and geometrical characteristics is
crucial for a better understanding and management of water resources in the context of climate
change. In this study, the suitability of different geomatic approaches to model watering pond
geometry and estimate pond-specific and generalized volume–area–height (V–A–h) relationships
was tested. Terrestrial structure-from-motion and multi-view-stereo photogrammetry (SfM-MVS),
terrestrial laser scanner (TLS), laser-imaging detection and ranging (LIDAR), and aerial SfM-MVS
were tested for the emerged terrain, while the global navigation satellite system (GNSS) was used
to survey the submerged terrain and to test the resulting digital elevation models (DEMs). The
combined use of terrestrial SfM-MVS and GNSS produced accurate DEMs of the ponds that resulted
in an average error of 1.19% in the maximum volume estimation, comparable to that obtained by
the TLS+GNSS approach (3.27%). From these DEMs, power and quadratic functions were used to
express pond-specific and generalized V–A–h relationships and checked for accuracy. The results
revealed that quadratic functions fit the data particularly well (R2 ≥ 0.995 and NRMSE < 2.25%)
and can therefore be reliably used as simple geometric models of watering ponds in hydrological
simulation studies. Finally, a generalized V–A power relationship was obtained. This relationship
may be a valuable tool to estimate the storage capacity of other watering ponds in comparable areas
in a context of data scarcity.

Keywords: livestock watering pond; volume–area relationship; structure-from-motion photogram-
metry (SfM); LIDAR; terrestrial laser scanner (TLS); global navigation satellite system (GNSS)

1. Introduction

Watering ponds are the main source of drinking water for livestock in the rangelands
of the southwestern (SW) Iberian Peninsula [1]. Most of these ponds consist of small earth
dams that collect surface runoff from ephemeral streams, with pond sizes rarely exceeding
1 ha [2,3]. Understanding the hydrological functioning of this type of infrastructure is
crucial for efficient water management in extensive livestock farms, especially in semi-arid
areas, where water resources are often scarce.

Simulation of water-level fluctuation through water-balance models is a frequently
used approach to analyze the hydrological dynamics of small water bodies [4]. In these
models, the temporal variation of both the stored volume (V) and the flooded area (A)
in the water body are often required inputs. However, due to the difficulty of directly
monitoring V and A, these are usually calculated from the height of water surface above
the pond bottom (h), using predetermined V–h and A–h relationships [5]. It is usual to
define these relationships using simple geometric models. The most frequent models use
power or quadratic functions to express the V–h and A–h relationships, which has been
successfully tested in simulation studies of reservoirs [6], wetlands [7,8], and lakes [9].
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V–A relationships (usually defined by power functions) also can be used to model the
morphometry of individual water bodies in hydrological simulation studies [10–13]. In fact,
this is the method implemented in the widely used SWAT model [14] to morphologically
define reservoir-type elements.

V–A–h relationships can be developed for a particular pond if a detailed bathymetry
is available [4]. The most common methods traditionally used to survey the bathymetry of
small water bodies include total station, the global navigation satellite system (GNSS), and
meter stick [15]. However, the use of these methods may be too costly, labor intensive, and
time consuming, especially when a large number of water bodies have to be surveyed.

Laser-based survey techniques evolved quickly in the last decades, and they have
been widely used to provide topographic data for hydrological applications [16]. At this
point, we may differentiate between aerial and terrestrial systems, known as laser-imaging
detection and ranging (LIDAR) and terrestrial laser scanner (TLS), respectively. There are
freely available national LIDAR datasets (e.g., the National Geographic Information Center
in Spain [17]), but their use to produce reliable V–A–h relationships that can be used in
hydrological studies is limited [8,18]. Terrestrial systems (fixed or mobile) may capture
terrain characteristics with higher resolution and accuracy than aerial sensors [16,19], but
the cost and operation of these instruments are important limiting factors [15,19,20].

On the other hand, the characteristics of livestock watering ponds in the SW Iberian
Peninsula (size, water depth, and turbidity) make unsuitable the use of technologies com-
monly used to survey submerged areas, such as bathymetric green airborne LIDAR [21],
bathymetric sonar on manned boat [22], or through-water TLS [23]. Nonetheless, the rapid
development in recent years of low-cost mobile platforms such as unmanned aerial vehicles
(UAVs) and unmanned surface vehicles (USVs), with increasing use in surveying appli-
cations, is making it possible to solve many of the drawbacks associated with traditional
surveying techniques in the presence of shallow and turbid waters. For example, a small
unmanned vessel can be equipped with a bathymetric sonar to survey the submerged
terrain [24], while the emerged areas can be surveyed using UAV photogrammetry [25–29].

Low-cost and efficient methodological alternatives based on satellite data have been
proposed by several authors to estimate V–A–h relationships for lakes or reservoirs [30–32].
These methods use simultaneous measurements of the flooded area and the water level, the
latter being determined in situ [12,33,34] or by means of satellite altimetry [35–37]. How-
ever, although remote-sensing techniques have proved useful for detecting and mapping
small ponds [38], these approaches do not provide sufficient accuracy for topo-bathymetric
applications in water bodies with a surface area <1 ha [39–41].

Some recent developments in 3D photo-reconstruction techniques, such as the con-
current use of structure-from-motion (SfM; [42]) and multi-view-stereo (MVS; [43]), have
contributed to the rapid and cheap production of high-resolution point clouds with similar
accuracy to that provided by TLS and conventional photogrammetry [44–47]. Livestock
watering ponds in the SW Iberian Peninsula seem to be suitable for SfM-MVS techniques,
as they commonly lack vegetation, and the survey may be carried out at the end of the
summer, when they are shallow or completely dry. Additionally, these ponds are usu-
ally very small, facilitating the acquisition of images from the ground. Examples in the
literature on the use of SfM-MVS techniques to model the geometry of water bodies and
estimate the V–A–h relationships are scarce. To our knowledge, the only example is that of
Langhammer et al. [18], who applied SfM-MVS to images acquired using a UAV platform
to estimate the V–h and A–h relationships for an abandoned montane reservoir. Hence, the
suitability of terrestrial SfM-MVS photogrammetry to model water-pond terrain has not
been tested yet.

The existence of water in the ponds, sometimes throughout the year, makes it difficult
to acquire complete and accurate terrain models, requiring combined approaches for the
exposed and submerged terrain [48]. In the wider context of hydrology and fluvial geo-
morphology, examples of the use of a single technique to register exposed and submerged
terrain are scarce and have shown significant limitations [49].
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Small water bodies like livestock watering ponds are not usually regarded as part of
the hydrological system by water agencies, but the accumulation of large numbers of these
water bodies can impact the hydrology, and can be the cause of water conflicts because
they take water from the available stream flow [50,51]. Therefore, information about the
storage capacity of these water bodies is essential for decision-making processes regarding
planning and management of water resources. In this regard, regional V–A relationships
are often used to estimate and monitor the volume of water stored in non-surveyed
water bodies based on data of flooded areas, which can be obtained from databases [52],
topographic maps [53], high-resolution aerial photographs [54], satellite imagery [50], or
LIDAR datasets [55].

For any of the above applications, a frequent approach in studies at the basin or
regional scale is to fit a common geometric model from the known bathymetry of a set of
reference water bodies and apply the function thus obtained to the rest of the water bodies
in a given region, assuming that the model parameters remain approximately constant if
the geomorphological context is uniform [10–13,50,52,55–60].

On the above considerations, the objectives of this paper are:

1. To apply and compare different geomatic approaches and techniques to model the
topography of small watering ponds (terrestrial or close-range SfM-MVS, aerial SfM-
MVS, GNSS, LIDAR, and TLS). Specifically, the suitability of terrestrial SfM-MVS
photogrammetry was tested, as it could be a low-cost, high-accuracy alternative to
laser technologies or more time-consuming GNSS surveys. Tips on the use of this
approach are also provided;

2. To assess the overall suitability of power and quadratic functions to describe watering-
pond geometry by means of pond-specific V–A–h relationships. These relationships
could be a valuable tool to be used as a geometric model of watering ponds in
hydrological simulation studies;

3. To obtain a generalized V–A relationship from the surveys carried out at eight small
watering ponds that may be used to estimate the storage capacity of other watering
ponds in similar rangeland areas.

The paper has been organized in five sections. The first section presents the motivation
and objectives of the study. In Section 2, the methodology is presented, including a
description of the study area, the field surveys, and the methods used to derive the V–A–h
relationships of the ponds. In Section 3, the results of the geomatic measurements are
presented, as well as the resulting V–A–h relationships. Finally, Sections 4 and 5 include
the discussion of the results and the main conclusions, respectively.

2. Materials and Methods
2.1. Study Area

For this work, two privately owned farms (Parapuños and La Brava) and a communal
farm (Dehesa Boyal Monroy) located in the SW Iberian Peninsula were selected as study
areas (Figure 1). They are representative of the dehesa land-use system, an agro-silvo-
pastoral system characterized by the presence of open wooded pasturelands of evergreen
oaks (Quercus ilex subsp. ballota and Q. suber). These rangelands dominate the landscape of
SW Iberia (Figure 1a) and are considered of high natural value in Europe, due to the wide
range of ecosystem services they provide [61].

The study farms share the dominant geomorphological characteristics of the range-
lands in the SW Iberian Peninsula: the landscape is characterized by gently undulating
erosion surfaces, incised by small channels with ephemeral flow, giving rise to increas-
ing slope gradients as approaching the main rivers; with slates and greywackes being
the predominant bedrocks. The soils are generally shallow, prevailing Cambisols and
Leptosols [62]. The climate is Mediterranean, with a humid season from October to May
and a pronounced dry and hot season (June–September), particularly in July and August.
Rainfall shows a high temporal variability, both annually and inter-annually [63]. Livestock
rearing is the main land use in the study farms.
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Figure 1. (a) Area where dehesas are widespread in the Iberian Peninsula (based on [64]); (b) location of the study farms,
and location of the surveyed ponds in the La Brava (c), Parapuños (d), and Dehesa Boyal Monroy (e) farms.

2.2. Surveying Watering-Pond Geometry

Throughout the study farms, several ponds were selected in which the water depth
was low enough to allow point collection by wading: P1, P2, P3, and P4 at Parapuños farm;
B1, B2, and B3 at La Brava farm; and DBM at Dehesa Boyal Monroy farm (Figure 1c–e).

Several geomatic techniques were applied and combined to model the geometry of
the selected watering ponds (Table 1). As stated before, watering ponds present areas that
usually remain submerged even at the end of the hydrological year, requiring the support of
GNSS or any other technique to survey the inundated areas. In most cases, the submerged
areas show an almost flat and horizontal surface that would be easily modeled by surveying
a few points. Specifically, terrestrial or close-range SfM-MVS photogrammetry (supported
on GNSS for the submerged terrain) was used for ponds B1 and B2; LIDAR and GNSS data
were used for ponds P1, P2, P3, and B3; and aerial SfM-MVS photogrammetry (supported
on GNSS for the submerged areas) was used for pond DBM. Finally, pond P4 was surveyed
by combining TLS and GNSS for the exposed and submerged terrain, respectively. These
techniques were used to survey the topography and produce a DEM of each watering pond.
Then, the DEMs were tested using independent check control points (CCPs) previously
surveyed with a GNSS RTK device. Well-known and state-of-the-art error metrics were
calculated comparing the CCPs and the DEMs: the root mean square error (RMSE), the
mean error (ME), and the standard deviation of error (STDE).
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Table 1. Surveying approach for the emerged and submerged terrain of the watering ponds. SfM-
MVS: structure-from-motion and multi-view-stereo photogrammetry; GNSS: global navigation
satellite system; LIDAR: laser-imaging detection and ranging; TLS: terrestrial laser scanner.

Name Farm Emerged Terrain Submerged Terrain

B1 La Brava Close-range SfM-MVS GNSS
B2 La Brava Close-range SfM-MVS GNSS
B3 La Brava LIDAR GNSS
P1 Parapuños LIDAR GNSS
P2 Parapuños LIDAR GNSS
P3 Parapuños LIDAR GNSS
P4 Parapuños TLS GNSS

DBM Dehesa Boyal Monroy Aerial SfM-MVS GNSS

Field surveys of ponds B1 and B2 were carried out in late summer 2019, when the
ponds were at their lowest water level (just a few centimeters; Figure 2a). At this time, a
GNSS antenna tied to a survey rod could be used to survey the topography of the sub-
merged surface (Figure 2). Two Emlid Reach RS antennas were operated as base and rover,
respectively. The fixed base station registered coordinates from satellites and sent correc-
tions through a long-range (LoRa) link to the rover antenna, which performed in real-time
kinematic (RTK) and fixed-solution status modes. Twenty artificially marked additional
points (Figure 2b) were recorded in the emerged area, also by using the rover GNSS in
the RTK mode. These points performed later as ground control points (GCPs, which were
used to scale and georeference the model and refine camera calibration parameters, n = 15)
and CCPs (i.e., check control points; these points were not used in the composition of
the model, but rather to check the geometrical accuracy of the 3D model, n = 5) for the
SfM-MVS processing.

Figure 2. (a) GNSS data acquisition in the submerged area of pond P1, and (b) marks of two CCPs at the bank and the
bottom of pond B1.

In order to survey the emerged surface in detail, photographs were acquired around
the pond with a Canon 550D digital single-lens reflex camera (DSLR), drawing a convergent
image network geometry (Figure 3). The Canon sensor had 5184 × 3456 pixels, and the
focal length was fixed to 35 mm. The Pix4Dmapper pro software (v. 4.5.6) was used for
the photogrammetric processing with parameters and specifications shown in Table 2. The
GCPs were marked after the initial alignment, then the model was reoptimized to support
the refinement of camera parameters. At this point, the layer of water was masked from the
point cloud. The resulting point cloud for the emerged terrain (Figure 4a–d) was merged
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with the GNSS data acquired over the submerged surface, and the resulting point cloud was
used to produce a DEM of each pond. This task was carried out with the CloudCompare
software package and the rasterize tool. This tool allows an estimation of the Z-value for a
pixel (i.e., a XY location) that contains several Z-values (which is typical in high-density
regions of a point cloud) and, at the same time, allows the interpolation of values in low
point-density regions. A pixel size of 0.2 m was defined for the resulting DEMs.

Figure 3. Convergent image network geometry (every camera pose is shown in green), sparse point cloud, and GCPs (in
red) for (a) pond B1 and (b) pond B2.

Table 2. Pix4Dmapper Pro parameters used for the photo-reconstruction of watering ponds.

Workflow Stage Parameter
Value

Terrestrial (B1, B2)/Aerial

Initial processing Image scale Complete

Dense point cloud

Image scale 1 (original size)

Point density High (slow)

Minimum number of matches 3

Watering ponds P1, P2, P3, and B3 were surveyed using the GNSS in RTK mode for the
submerged surface, while the emerged topography was obtained from the LIDAR dataset
provided by the Spanish National Geographic Information Centre [17] (e.g., Figure 5).
This dataset shows a point density of 0.5 pts·m−2 and was acquired using a Leica ALS50
sensor. Both point datasets were merged together and then the topographic surface was
modelled using the interpolation algorithm topo to raster [65] within the ArcGIS software
(10.5), producing a DEM for each pond with a pixel size of 0.5 m (Figure 4b). Additionally,
five points were recorded with the GNSS RTK system and performed as CCPs in order
to evaluate the accuracy of the resulting DEMs (i.e., these points were not used in the
production of the DEM). This quantification includes the error of the instrument techniques
(i.e., LIDAR and GNSS) and the interpolation technique (i.e., the topo to raster algorithm).

Watering pond DBM was surveyed using a fixed-wing UAV (Ebee classic by Sensefly)
with a Sony WX220 sensor on board (18 Mpx) in early summer. At this time, a water
layer of a couple of decimeters covered the bottom of the pond. The topography of DBM
was obtained using a dataset previously acquired by Alfonso-Torreño et al. [66] for the
exposed terrain and, again, the submerged terrain was surveyed by means of the GNSS
RTK system. A total of 84 points were collected by means of the GNSS, from which 79
were used in combination with the point cloud derived from SfM-MVS to generate a DEM,
with the remaining 5 points employed as CCPs. A pixel size of 0.2 m was selected for the
resulting DEM.
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Figure 4. Point clouds showing the RGB values and elevation for B1 (a,b), B2 (c,d), P4 (e,f), and
DBM (g,h). Note that B1 and B2 were surveyed using terrestrial SfM-MVS photogrammetry, P4 was
surveyed by means of TLS, and DBM was surveyed using aerial SfM-MVS photogrammetry. Scale
bars = 20 m for (a–f) and 40 m for (g,h).

Figure 5. (a) Datasets used to model the topography of pond P1 and (b) resulting DEM for pond P1.

Finally, watering pond P4 was surveyed combining a TLS (Faro Focus 3D X330) and
the GNSS in RTK mode for the emerged and submerged areas, respectively. A total of
15 stations were registered together using a set of artificial spheres (diameter of 14.5 cm). In
order to georeference the TLS data, 8 artificial points were marked and surveyed with the
GNSS. Finally, 706 points were surveyed in the submerged area by means of the GNSS. Ten
additional locations were surveyed in the study area to be used as CCPs to evaluate the
quality of the resulting DEM. This DEM was produced by merging together the TLS cloud
and the GNSS data, using the rasterize tool within CloudCompare software and defining
an output pixel size of 0.2 m.



ISPRS Int. J. Geo-Inf. 2021, 10, 502 8 of 21

Maximum uncertainties in the estimation of the water-storage capacity of the ponds
were calculated from the maximum area of each pond and the vertical error estimated for
each approach, using the following equation:

VE = RMSEz · Amax, (1)

where VE is the error associated to the estimation of the water storage capacity of a pond,
RMSEz is the root mean square error of the Z coordinate calculated for the method used
to model the topography, and Amax is the maximum area of the pond. Specifically, the
RMSEz was calculated using the CCPs surveyed by the GNSS RTK system, while Amax was
estimated using the DEM and the altitude of the spillway (overflow channel).

2.3. Obtaining Volume–Area–Height Relationships

For each of the study ponds, V and A values were calculated at intervals of 10 cm in
height (over the entire depth range) from the DEM of each pond using the geoprocessing
tools of the ArcGIS v10.5 (ESRI) software. In each case, the values of V and A calculated at
the maximum water height (i.e., at the elevation of the pond spillway) were assigned the
maximum volume (Vmax) and the maximum surface area (Amax) of the pond, respectively.
Then, Microsoft Excel software was used to derive pond-specific V–h, A–h and V–A
relationships by fitting (by least squares) power and quadratic functions of the forms:

y = α xβ, (2)

y = ax2 + bx + c, (3)

with α, β, a, b, and c being the adjustment parameters. The goodness of fit of the resulting
relationships was determined with the coefficient of determination (R2) and the normalized
root mean square error (NRMSE). The latter was calculated for volume (NRMSEV) or area
(NRMSEA) as follows:

NRMSEV =
100

Vmax

√
1
k ∑k

i=1(VDEM −VF)i
2, (4)

NRMSEA =
100

Amax

√
1
k ∑k

i=1(ADEM − AF)i
2, (5)

where i is the index number for the pond water level, k is the total number of pond water
levels, VDEM is the pond volume derived from the DEM at water level i, VF is the pond
volume derived from the fitted function (either the power or the quadratic) at water level
i, ADEM is the pond area derived from the DEM at water level i, and AF is the pond area
derived from the fitted function at water level i.

In order to obtain generalized V–h, A–h, and V–A relationships that may be used at the
regional scale, the values of V, A, and h (obtained every 10 cm depth) from all study ponds
were represented together and fitted equally by means of power and quadratic functions.

Finally, a generalized V–A relationship was also derived by fitting a power function
to the Vmax and Amax values of the study ponds, to test whether sufficiently reliable Vmax
values could be obtained based solely on the Amax values of the study ponds.

3. Results
3.1. Suitability of Terrestrial and Aerial SfM-MVS Photogrammetry to Model the Topography of
Small Watering Ponds

The point clouds produced for the emerged parts of ponds B1 and B2 showed huge
amounts of points and resulted in point densities of 19,143 and 24,515 pts·m−3 for B1
and B2, respectively. These volumetric point densities allowed the identification of micro-
topographic features and very fine details (Figure 4a–d and Table 3). The point density
was uniform in the area of interest as the result of a well-planned and executed convergent
image network geometry (Figure 3). The error statistics estimated for B1 and B2 showed
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an outstanding performance of the technique, with RMSEs always below 0.03 m (Table 3).
On the other hand, the aerial SfM-MVS produced a lower density (39 pts·m−3) and a
less-accurate (RMSECCP = 0.092 m) point cloud (Figure 4g,h).

Table 3. Characteristics of 3D point clouds produced by means of SfM-MVS photogrammetry (ponds
B1, B2, and DBM) and the TLS instrument (pond P4). GSD: ground-sampling distance; GCP: ground
control point; CCP: check control point; RMSE: root mean square error; ME: mean error; STD:
standard deviation of error for CCP; UAV: unmanned aerial vehicle. * Note that data for DBM refer
to a larger study area and dataset used in Alfonso-Torreño et al. [66].

B1 B2 DBM * P4

Acquisition Terrestrial Terrestrial Aerial (UAV) Terrestrial
Images (n) 273 149 1257 -
GSD (cm) 0.93 1.52 4.00 -
Points (n) 59,884,444 95,499,578 171,757,830 158,918,500

Volumetric point
density (pts·m−3) 19,143 24,515 39 58,366

GCP (n) 15 15 10 7
CCP (n) 5 5 5 1

RMSEGCP (m) 0.020 0.014 0.005 0.006
RMSECCP (m) 0.016 0.016 0.092 0.009

RMSECCP-x (m) 0.017 0.015 0.027 0.0138
RMSECCP-y (m) 0.020 0.012 0.145 0.0164
RMSECCP-z (m) 0.012 0.022 0.128 0.005

MECCP (m) 0.008 0.007 −0.029 0.007
STDCCP (m) 0.004 0.015 0.094 0.007

The concurrent use of SfM-MVS and GNSS (for the submerged terrain) produced
very accurate DEMs for the terrestrial datasets. The estimated RMSECCP-z for these DEMs
resulted in an average error of 1.19% in the maximum volume estimation, varying from
0.72 to 1.65%. The RMSECCP-z for the DEM elaborated using the aerial SfM-MVS dataset
and the GNSS was an order of magnitude larger (RMSECCP-z = 0.128 m) than the terrestrial
approach, and resulted in an error of 12.15% in the estimation of the pond capacity. Note
that the RMSECCP shown in Table 3 are a final independent validation of the resulting
DEM surfaces. Therefore, this parameter included the interpolation error and the error
associated to any technique used to produce the DEM (i.e., SfM-MVS photogrammetry
and GNSS).

3.2. GNSS, TLS, and LIDAR

The RMSE of the locations surveyed by the GNSS at the submerged surface of the
watering ponds varied from 0.007 m to 0.017 m (Table 4). These were expected figures for
a widely used and tested surveying technique, and differences between ponds were not
statistically significant. No spatial pattern was observed in the RMSE of the GNSS-surveyed
locations, suggesting a uniform spatial distribution of errors. Note that the RMSE figures
shown in Table 4 refer exclusively to the accuracy of the GNSS locations registered, while
the interpolation errors of each DEM are shown as RMSEz in Table 5. This parameter was
calculated using independent CCPs (acquired also by means of the GNSS) and the DEMs
that were used later to estimate Vmax and Amax (Table 5).

The TLS produced by far the densest and most accurate data among the techniques
and instruments used (Table 3). The average point density of the TLS-derived point cloud
was 58,366 pts·m−3; i.e., more than twice the estimated density of point clouds produced
by the terrestrial SfM-MVS techniques. However, point densities were highly variable
spatially, with larger values close to the TLS stations (Figure 4e,f). The average registration
error of the different point clouds–stations of the TLS instrument was 0.002 m, varying from
0.0003 m to 0.008 m. However, the need to merge (and georeference) the TLS-acquired point
cloud with the GNSS data recorded for the submerged terrain produced a degradation of
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this accuracy to the GNSS range of errors (0.01–0.03 m). The DEM produced for pond P4
with the combination of TLS and GNSS showed a RMSEz of 0.036 m that resulted in an
error of 3.27% in the estimation of the maximum volume.

Table 4. Global navigation satellite system (GNSS) locations surveyed at each watering pond and the
root mean square error (RMSE) estimated for the dataset.

Pond Points (n) RMSE (m)

B1 42 0.012
B2 28 0.015
B3 20 0.012
P1 55 0.017
P2 53 0.010
P3 33 0.007
P4 716 0.011

DBM 84 0.012

Table 5. Pond geometric characteristics estimated using the DEMs produced by the different geomatic
approaches and propagated errors. Amax: maximum pond area; Vmax: pond capacity; RMSEz: vertical
root mean square error; VE: uncertainty of volume estimation. Note that the RMSEz was calculated
using check control points; i.e., points that were not used during the production of the DEM.

Pond Vmax (m3) Amax (m2) RMSEz VE (m3) VE (%)

B1 2282 1711 0.022 37.65 1.65
B2 5151 2848 0.109 310.40 6.03
B3 3351 2006 0.012 24.07 0.72
P1 1680 1764 0.210 370.60 22.06
P2 4978 4916 0.110 540.80 10.86
P3 3635 3393 0.333 1129.80 31.08
P4 2158 1958 0.036 70.47 3.27

DBM 7575 6437 0.143 920.56 12.15

The watering ponds modelled using LIDAR and GNSS techniques showed a DEM
with an RMSEz that varied from 0.109 m to 0.333 m. These figures represented and average
error of 17.51% in the estimation of the Vmax, varying from 10.86% for pond P2 to 31.08%
for pond P3.

3.3. Pond-Specific and Generalized V–A–h Models

Table 6 and Figure 6 show the pond-specific V–h, A–h, and V–A relationships that
resulted for the study ponds when power and quadratic functions were fitted. In general,
good fits could be obtained with both power and quadratic functions (R2 > 0.9), indicating
that watering pond morphometry was adequately described by these types of functions.
However, a significantly better performance of the quadratic functions was evidenced,
especially for the V–h and A–h relationships. Thus, while a NRMSE greater than 10%
was obtained in some ponds when the potential functions were used, this statistic rarely
exceeded 2% with the quadratic functions (Table 6). These low errors were accompanied in
all cases by excellent coefficients of determination (R2 > 0.995). Power functions gave rise
to fits with such levels of goodness only in the case of V–A relationships, with R2 values
higher than 0.99 and NRMSE around 5% (except for pond B3: R2 = 0.985, NRMSE = 8.54%).
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Table 6. Pond-specific V–h, A–h, and V–A relationships; coefficients of determination (R2); and normalized root mean
square errors (NRMSE) that resulted from fitting power and quadratic functions to the V and A values derived from the
DEM of each pond.

Pond
Power Functions Quadratic Functions

Equation R2 NRMSE (%) Equation R2 NRMSE (%)

V–h relationships
B1 V = 292.42 h2.035 0.998 2.14 V = 274.18 h2 + 51.05 h − 11.40 1.000 0.20
B2 V = 347.21 h2.239 0.995 6.23 V = 327.07 h2 + 118.45 h − 42.69 1.000 0.54
B3 V = 461.67 h2.256 0.990 7.82 V = 432.72 h2 + 282.88 h − 119.12 0.999 0.80
P1 V = 114.34 h3.363 0.956 15.98 V = 386.61 h2 − 339.83 h + 76.63 0.998 1.26
P2 V = 260.96 h2.491 0.998 3.55 V = 742.72 h2 − 841.35 h + 243.84 0.997 1.56
P3 V = 222.93 h2.611 0.992 4.18 V = 672.19 h2 − 651.76 h + 145.52 0.999 0.78
P4 V = 185.67 h3.081 0.983 14.37 V = 415.24 h2 − 172.99 h + 8.91 0.997 1.59

DBM V = 1563.02 h2.036 0.979 4.97 V = 1266.45 h2 + 379.14 h − 26.50 1.000 0.18

A–h relationships
B1 A = 594.03 h0.973 0.997 1.46 A = 11.40 h2 + 524.76 h + 50.89 0.998 1.26
B2 A = 719.37 h1.088 0.974 6.66 A = −103.13 h2 + 938.76 h − 44.85 0.998 1.31
B3 A = 974.90 h1.091 0.953 9.32 A = −165.4 h2 + 1427.5 h − 108.92 0.997 1.65
P1 A = 346.07 h2.037 0.943 9.27 A = 203.09 h2 + 231.00 h − 41.21 0.999 1.02
P2 A = 677.41 h1.554 0.990 5.42 A = 470.60 h2 + 18.28 h + 76.35 0.996 1.70
P3 A = 593.41 h1.687 0.980 2.94 A = 235.14 h2 + 620.48 h − 187.0 0.995 2.24
P4 A = 449.91 h1.906 0.976 11.75 A = 89.97 h2 + 613.87 h − 135.79 0.998 1.51

DBM A = 2996.23 h0.870 0.972 2.12 A = 88.29 h2 + 2374.58 h + 418.02 0.997 1.57

V–A relationships
B1 V = 0.00047 A2.090 0.999 3.33 V = 0.00073 A2 + 0.30 A − 94.02 0.998 1.51
B2 V = 0.00056 A2.027 0.992 5.72 V = 0.00100 A2 − 0.36 A + 42.32 0.999 1.20
B3 V = 0.00045 A2.015 0.985 8.54 V = 0.00094 A2 − 0.95 A + 264.34 0.996 1.89
P1 V = 0.00801 A1.636 0.996 0.78 V = 0.00040 A2 + 0.24 A − 7.45 1.000 0.38
P2 V = 0.00811 A1.593 0.996 5.67 V = 0.00009 A2 + 0.66 A − 145.41 0.995 2.20
P3 V = 0.01261 A1.532 0.992 4.60 V = 0.00028 A2 + 0.16 A − 11.42 0.998 1.37
P4 V = 0.01001 A1.609 0.998 4.15 V = 0.00047 A2 + 0.23 A − 20.49 0.996 1.98

DBM V = 0.00001 A2.321 0.990 5.75 V = 0.00016 A2 + 0.19 A − 243.58 0.999 0.94

Of the eight watering ponds analyzed, six (75%) had power V–h relationships in
which the parameter β was less than 3 (Table 6), indicating that watering ponds tend to
have concave bathymetries [67]. Also noteworthy, in the case of power functions, was the
similarity of the adjustment parameters between ponds of the same farm (Table 6).

Regarding the generalized V–h, A–h, and V–A relationships (Table 7 and Figure 7), the
resulting coefficients of determination and the NRMSE values were of similar magnitude
for power and quadratic functions. In general, the fits were quite poor in the case of the
generalized V–h and A–h relationships. However, relatively good fits could be obtained
for the generalized V–A relationships, especially when the quadratic function was used
(R2 = 0.863 and NRMSE values ranging between 5% and 18%; Table 7).
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Figure 6. Pond-specific V–h, A–h, and V–A relationships that resulted from fitting power functions (red lines) and quadratic
functions (blue lines) to the V and A values (black dots) derived from the DEM of each pond. The corresponding generalized
V–h, A–h, and V–A relationships are also shown (gray lines).
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Table 7. Generalized V–h, A–h, and V–A relationships and coefficients of determination (R2) that resulted from fitting
power and quadratic functions to the DEM-derived V and A values of all ponds. The normalized root mean square errors
(NRMSE) when the generalized relationships were used to estimate the V and A values of each pond are also indicated.

Pond
Power Functions Quadratic Functions

Equation R2 NRMSE (%) Equation R2 NRMSE (%)

Generalized V–h V = 302.16 h2.463 0.577 V = 267.64 h2 + 488.40 h − 192.85 0.602
B1 32.72 20.60
B2 8.83 11.16
B3 6.77 9.13
P1 32.67 39.47
P2 2.60 8.02
P3 3.66 8.57
P4 13.12 18.21

DBM 34.67 32.66

Generalized A–h A = 707.32 h1.357 0.411 A = −124.95 h2 + 1342.53 h − 178.97 0.431
B1 42.18 37.04
B2 18.66 24.83
B3 12.40 3.42
P1 24.30 35.72
P2 10.42 14.05
P3 6.74 10.27
P4 13.57 23.41

DBM 41.56 38.27

Generalized V–A V = 0.0071 A1.629 0.811 V = 10−5 A2 + 1.04 A − 234.20 0.863
B1 22.21 17.18
B2 18.36 12.45
B3 16.93 17.92
P1 6.72 7.92
P2 13.29 5.28
P3 5.04 8.62
P4 11.02 7.14

DBM 27.52 11.74

Figure 7. Generalized V–h, A–h, and V–A relationships that resulted from fitting power functions (red lines) and quadratic
functions (blue lines) to the DEM-derived V and A values (black dots) of all ponds.

3.4. Generalized V–A Relationships for Estimating Water-Storage Capacity

Figure 8a presents the generalized Vmax–Amax relationship derived from the Vmax and
Amax values of the study ponds, expressed by the following equation:

Vmax = 2.453 × Amax
0.913, (6)
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where Vmax and Amax are expressed in m3 and m2, respectively. This function fitted the
data reasonably well (R2 = 0.83), although the volumetric errors, when used to estimate
the maximum capacity of the ponds, were highly variable (Table 8), ranging from −2.4%
(pond DBM) to 34.9% (pond P1), and being the average of the absolute values of 17.7%. In
any case, these estimates were more accurate than those obtained using the generalized
V–A relationships derived from the complete geometry of the ponds, whose equations
are shown in Table 7. With the latter, whether adjusted by using power functions or
quadratic functions, the errors associated with estimating the maximum capacity of the
ponds reached values above 40% in many cases (Table 8).

Figure 8. (a) Generalized Vmax–Amax relationship derived from the Vmax and Amax values of the study ponds; and resulting
farm-specific Vmax–Amax relationships for (b) Parapuños and (c) La Brava. Note that we only had data from a single pond in
Dehesa Boyal Monroy, so it was not possible to obtain a specific Vmax–Amax relationship for this farm.

Table 8. Maximum pond capacities (Vmax) estimated using the generalized V–A (power and quadratic) relationships, the
generalized Vmax–Amax relationship, and the farm-specific Vmax–Amax relationships; and associated volumetric errors (VE)
in relation to the Vmax values obtained from the DEMs.

Pond
DEM Generalized V–A

(Power)
Generalized V–A

(Quadratic)
Generalized
Vmax–Amax

Farm-Specific
Vmax–Amax

Vmax (m3) Vmax (m3) VE (%) Vmax (m3) VE (%) Vmax (m3) VE (%) Vmax (m3) VE (%)

B1 3351 1704 −49.15 1896 −43.43 2547 −23.97 3084 −7.97
B2 2282 1316 −42.34 1578 −30.84 2204 −3.43 2416 5.88
B3 5151 3016 −41.45 2814 −45.37 3509 −31.88 5286 2.62
P1 1680 1383 −17.66 1636 −2.64 2267 34.91 1811 7.79
P2 4978 7342 47.48 5130 3.05 5779 16.08 5122 2.89
P3 3635 4012 10.37 3416 −6.03 4118 13.28 3515 −3.30
P4 2158 1638 −24.08 1844 −14.54 2492 15.49 2012 −6.75

DBM 7574 11387 50.35 6887 −9.07 7391 −2.41 - -

Interestingly, very good fits were found at the farm level (R2 > 0.96 and |VE| < 8%;
Figure 8b,c and Table 8), which suggested that some factors acting at that scale were
relevant in determining the morphometry of the ponds.

4. Discussion

The combination of terrestrial SfM-MVS photogrammetry (for the emerged terrain)
and GNSS (for the submerged terrain) probed to produce accurate topographic models of
small watering ponds, with errors in the range of 1–3 cm. These findings were in agree-
ment with other specific previous applications of the SfM-MVS technique to reconstruct
similar features (topographic depressions), such as channels or gully headcuts, also using
convergent image network geometries [68,69].
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The use of the GNSS to support and to complement the SfM-MVS technique was
necessary in our study areas due to several reasons. The first was that, even at the end
of the summer, watering ponds usually show a thick layer of water at the bottom, which
is usually turbid [70] and makes unsuitable underwater photo-reconstructions such as
those carried out successfully in other environments [71]. The second reason was that
the photogrammetric model needed to be (at least) scaled using GCPs (or GNSS RTK
systems connected to the camera instead of GCPs; e.g., [72]), while the GNSS allowed
the survey of additional CCPs to independently quantify the accuracy of the model. In
recent years, affordable (or low-cost) GNSS survey-grade devices have been available in the
market [73] to carry out this task. For example, the two antennas (rover and base station)
used here (Emlid Reach RS, Figure 3a) have a price of ≈ EUR 800 (each), and they may be
controlled with any smartphone or tablet device. The last reason was that, even without
water, the incidence angle that resulted from the hand-held-camera acquisition approach
and the almost flat topography of the bottom of watering ponds (Figure 2a) may have been
glancing, reducing the number and density of tie points [74] and influencing the accuracy
of marking GCPs and CCPs [75]. The use of the GNSS to cover the submerged terrain is
well known in the literature and produces accurate bathymetric models [76]. However,
GNSS surveys are time-consuming, and point densities are usually lower than those of
laser-based or photogrammetric technologies, as evidenced in our study.

The development of SfM-MVS photogrammetry in the last decade has democratized
the use and production of high-resolution DEMs [77]. The present application shows that
models produced by this technique may provide accurate estimations of pond topogra-
phy and storage capacity. Once the DEM is produced and the V–A–h relationships are
determined for a specific pond, a permanent surveying rod would be sufficient to know
the volume of water stored in almost real time. The availability of this data may lead to a
better farm management, particularly in water-limited environments such us dehesas [3].
The use of terrestrial SfM-MVS and GNSS, instead of LIDAR and GNSS, represents an im-
portant improvement, as it reduces errors in an order of magnitude, allowing the accurate
estimation of water stored in the ponds even in periods with low levels.

Our results indicated that the use of existing LIDAR datasets in combination with
GNSS only provided rough estimations of water-storage capacity and were particularly
unsuitable in periods of water scarcity, when errors were larger than the amount of wa-
ter stored.

In the complete absence of water in the pond, the use of UAV platforms in combination
with SfM-MVS photogrammetry may become an effective alternative that overcomes the
glancing perspective of the hand-held camera in the terrestrial approach [74]. In this
sense, UAVs that integrate RTK or post-processing kinematic (PPK) systems on board are
a promising technology that may reduce the time-consuming and labor-intensive task of
GCP–CCP acquisition [78]. Any approach supported on GNSS data acquisition should
balance number, spatial extent, and point density. For instance, GNSS devices are suitable
to model the flat and horizontal bottom of the ponds, but unsuitable to survey steep and
rough banks.

The TLS is the instrument that produces the most accurate and densest point clouds;
however, the need to register the submerged terrain or to georeference the resulting models
will degrade the accuracy to that of the georeferencing technique or instruments [79]; for
example, GNSS systems. Experiences of shallow-water bathymetry in conjunction with
emerged ground surveying by means of TLS instruments are scarce and limited to specific
hydraulic and water-quality conditions [49], which is not the case for watering ponds in
the SW Iberian Peninsula.

On the other hand, the resulting TLS point clouds commonly show heterogeneous
point densities (larger close to stations) and occlusions due to the line-of-sight effect [69].
The TLS coverage may be improved by increasing the number of TLS locations [69], which
is not always efficient, as the setup of the equipment and data acquisition may take
approximately 30 min for each station, and the resulting cloud may show unnecessarily
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high point densities in other regions. Additionally, the cost of the equipment is still an
important limitation for most users [79]. The camera-based SfM-MVS method provides
better coverage in very complex topography or rough surfaces [69,80]. On the other
hand, there are some experiences that open the door to the use of a single TLS to survey
submerged and emerged terrain, but only under specific hydraulic and physical water-
quality conditions [49], and this is not the case for watering ponds in the study area.

4.1. Suitability of V–A–h Models to Describe Watering Pond Morphometry

This study demonstrated that simple analytical models based on quadratic or power
functions can suitably describe watering-pond morphometry. The low associated errors
allow these models to be used in hydrological simulation studies. Nonetheless, for simu-
lation models using V–h and A–h relationships, we recommend the fits to be carried out
preferably with quadratic functions, for which the NRMSE was less than 2% in almost
all watering ponds in our study (Table 6). If V–A relationships are used, both power and
quadratic functions would be appropriate (NRMSE rarely exceeded 6% in either case). The
high coefficients of determination (R2) obtained for the pond-specific V–A–h models were
in line with those reported for small reservoirs in other regions [81,82].

In an attempt to develop a V–A–h model that could be applied to non-surveyed
watering ponds in the region, generalized V–h, A–h, and V–A relationships were derived
from the bathymetries of the studied ponds. In general, the high NRMSE values obtained
for these relationships (up to 42%; Table 7) evidenced the inconvenience of using regional
V–A–h relationships as geometric models in hydrological simulation studies of individual
watering ponds. However, relatively high R2 values were obtained for the generalized V–A
relationships (R2 > 0.8; Table 7), which offers the possibility of using such relationships
as geometric models of non-surveyed ponds in basin-wide studies, where the individual
errors in the regionalization tend to cancel out at the basin scale [83].

In a previous study carried out in the SW Iberian Peninsula, Marín-Comitre et al. [3] ob-
tained a generalized V–A relationship for livestock watering ponds in the region, expressed
by the following power function:

V = 0.0031 × A1.793, (7)

where V and A are expressed in m3 and m2, respectively. The coefficients of this equation
are similar to those obtained in this study for the generalized (power) V–A relationship
(Table 7). However, it should be noted that Equation (7) was derived using only three
watering ponds from two different farms. Therefore, the new V–A relationships obtained
here, based on eight watering ponds from three different farms, represent a significant
improvement compared to that expressed by Equation (7).

4.2. Performance of V–A Relationships for Estimating Water Storage Capacity in Watering Ponds

It is known that the V–A relationships of small reservoirs are region-specific and
that they vary with the geomorphology and geology of the area [13,50,51]. The local
nature of these relationships was confirmed by our results, since similar pond-specific
V–A relationships were found between ponds of the same farm (Table 6), while signifi-
cant differences were found between the equations obtained for each of the farm-specific
Vmax–Amax relationships (Figure 8b,c). However, these last differences were greater than
expected considering the similarity of the geomorphological and geological conditions
between the different study areas, which suggested that other factors acting at the farm
level were relevant in determining the morphometry of the ponds. For example, the pond
construction methodology could play a decisive role.

Nonetheless, we investigated whether a generalized V–A relationship obtained using
several reference watering ponds from various locations could be reliably used to estimate
the storage capacity of non-surveyed ponds at the regional scale. For this purpose, V–A re-
lationships can be constructed either using only the values of maximum volume (Vmax) and
maximum flooded area (Amax) from the reference water bodies [10,50,56,67,84,85] or using
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the volume and area values over the entire depth range of the water bodies [3,12,13,81].
After testing both methods, it was found that the relationship derived from the Vmax and
Amax data (Equation (6)) led to lower errors in the estimation of the pond capacities (Table 8)
than the generalized V–A relationships (shown in Table 7), even though similar coefficients
of determination were obtained in all cases (around 0.8).

Therefore, we propose the Vmax–Amax relationship expressed by Equation (6) to be
used to estimate the storage capacity of watering ponds at the regional level. The R2

value of 0.83 was comparable to those reported by previous studies for generalized V–A
relationships in other regions [11,50,56] and gave, to some extent, confidence in its use,
especially for watering ponds lacking other available information. The average volumetric
error associated with these estimates amounted to 17.7%, with maximum values above
30% for some ponds (Table 8). This means that the pond capacities estimated from the
flooded areas might be inaccurate when those are considered individually. However, it is
expected that the individual errors tend to cancel out when the relationships are used for
broad-based applications carried out at the basin or regional scale [83], in which a large
number of ponds are involved. Ultimately, the proposed relationship can be a useful tool
for decision-making procedures when managing water resources in rangeland farms of the
SW Iberian Peninsula.

5. Conclusions

The combination of terrestrial SfM-MVS photogrammetry and GNSS produced accu-
rate topographic models of small watering ponds that were useful to improve existing V–A
relationships. These models were suitable to accurately estimate Vmax, comparable to those
produced using TLS+GNSS. The errors of the DEMs and Vmax estimations produced by the
rest of the techniques were, at least, an order of magnitude larger.

Pond-specific V–A–h relationships based on quadratic or power functions can ad-
equately describe watering pond morphometry and may be used reliably as geometric
models of ponds in hydrological simulation studies.

A generalized V–A relationship was obtained from the surveys carried out at eight
small watering ponds from three representative rangeland farms in the SW Iberian Penin-
sula that may be used to estimate the storage capacity of other watering ponds in this region.
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