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Abstract: Scanned historical maps are available from different sources in various scales and contents.
Automatic geographical feature extraction from these historical maps is an essential task to derive
valuable spatial information on the characteristics and distribution of transportation infrastructures
and settlements and to conduct quantitative and geometrical analysis. In this research, we used
the Deutsche Heereskarte 1:200,000 Türkei (DHK 200 Turkey) maps as the base geoinformation source
to construct the past transportation networks using the deep learning approach. Five different
road types were digitized and labeled to be used as inputs for the proposed deep learning-based
segmentation approach. We adapted U-Net++ and ResneXt50_32 × 4d architectures to produce
multi-class segmentation masks and perform feature extraction to determine various road types
accurately. We achieved remarkable results, with 98.73% overall accuracy, 41.99% intersection of
union, and 46.61% F1 score values. The proposed method can be implemented in DHK maps of
different countries to automatically extract different road types and used for transfer learning of
different historical maps.

Keywords: convolutional neural networks; road classification; segmentation; deep learning; fully
convolutional networks; historical maps

1. Introduction

Accurate information extraction from historical maps through vectorization is a chal-
lenging task due to the limited graphical quality of these maps, overlapping features,
and lack of metadata, despite occasionally available archival data [1]. Geoinformation
generated from historical maps provides very useful input for the reconstruction of past
landscape characteristics. This information offers unique geographical and political in-
sights for historians and archaeologists to analyze the past and present existence of the
social and economic interactions of communities and their historical legacies [2,3]. More-
over, by going back to the previous centuries with the aid of historical maps, land changes
in the long run could be modeled. This information could be integrated into geographic
information systems (GISs) to be used in various applications such as detailed historical
analysis, urban and city planning, and disaster management studies. Large collections of
historical map and plan archives could be used to create information on the changes which
occurred in many historic towns and cities across the world [4,5].

Most of the accessible historical maps are digitally available only as scanned images;
therefore, it is not possible to conduct quantitative and geometrical analysis from these
maps without further processing [6]. However, multi-date historical maps or integrated
usage of historical maps, aerial photographs, and satellite images can be used to extract
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geographic features such as the spatial distribution of settlements and transportation infras-
tructures. Logistic information, and more specifically roads, are of central importance for
long-term multimodal transport network reconstructions and traffic simulations. Historical
maps, especially military maps with their special focus on transport infrastructures, are
the best sources to extract valuable logistic data for past transport features, due to the fact
that these maps are produced to be used in troop movements in possible military conflicts
or planned invasions. During World War II, the German General Staff’s Department of
Wartime Map and Survey Service (Generalstab des Heeres, Abteilung für Kriegskarten und Ver-
messungswesen) had around 15,000 military and civil personnel. This unit produced in the
relatively short period of the war an astonishing number of maps, totaling approximately
1.3 billion maps [7]. The Deutsche Heereskarte 1:200,000 Türkei (DHK 200 Turkey) series was
a part of this massive military cartographical effort to be used during WWII. The DHK
200 Turkey was produced by the Main Survey Department (Hauptvermessungsabteilung)
XIV in Vienna in 1942–1943. It exists in six different versions with around 400 sheets,
covering almost the whole of Turkey. Several state and university libraries have copies
of the DHK 200 Turkey and made them available online. To our knowledge, the Mc-
Master University Library has the largest, albeit incomplete, available online collection
(http://digitalarchive.mcmaster.ca/islandora/object/macrepo%3A82339, accessed on
19 July 2021). We acquired the complete 3rd special issue, version 6612 from the Aus-
trian Federal Office of Metrology and Surveying’s Cartography Department/Historical
Map Archive in Vienna, which has the archives of the Main Survey Department XIV, the
producer of the DHK 200 Turkey, due to the institutional continuity (see Figure 1). The 3rd
special issue has a total of 115 sheets. Some of these are divided into two parts (east and
west), and there are a total of 138 images.
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Vectorization of historical maps and aerial photographs has been conducted mainly
through the on-screen digitization technique, which is time-consuming and labor-intensive [4,8,9].
Manual digitization has still been widely used for reliable labeled data preparation for use
in the learning process of artificial intelligence-based approaches. It took in total 1250 h
to digitize and label 300,000 km of roads, including more than 64,000 segments from the
Generalkarte, another military map [9]. For the digitization of DHK 200 Turkey, we spent
around 1500 h extracting roads for a total of 85 images out of 138. We used the original
projection system of the map, EPSG: 28405—Pulkovo 1942/Gauss–Kruger zones 5–8, and
coordinates written on the borders of individual sheets.

http://digitalarchive.mcmaster.ca/islandora/object/macrepo%3A82339
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With the increased availability of aerial photographs and satellite images, deep learn-
ing methods have become an important research topic in remote sensing for the extrac-
tion of geographic information, specifically by applying object detection, classification,
and segmentation tasks [10–12]. Cheng et al. [13] provided a comprehensive review on the
image scene classification task and described the details of autoencoder-based, convolu-
tional neural network (CNN)-based, and generative adversarial network (GAN)-based
image scene classification methods. Yuan et al. [14] conducted a complete review for
the semantic segmentation of remotely sensed images. In particular, they explained the
CNN architectures used in semantic segmentation such as U-Net, SegNet, and DeepLab.
Moreover, deep learning-based methods have started to be implemented in historical
map-related tasks recently [2,6,9,15].

Andrade and Fernandes [2] proposed a conditional generative adversarial network-
based architecture to synthesize satellite images from historical maps that combined the
texture information from the input data and reproduced a better visual output of a synthe-
sized satellite image.

Saeedimoghaddam and Stepinski [15] used Inception-ResNet v2 architecture based
faster region-based deep convolutional neural network (RCNN) method pre-trained on the
Microsoft COCO dataset to determine the road intersections of single-line and double-line
road symbols from the United States Geological Survey (USGS) maps by considering this as
an object detection problem. They found better precision and recall values for double-line
road symbols compared with single-line road symbols. Their F1 scores were 0.8 and 0.86
for single- and double-line road symbols, respectively. Their outputs were bounding boxes,
and in some cases, the detected boxes were bigger than the ground truth boxes, based on
analysis of the figures in their article. However, there was no specific information on the
intersection of union (IoU) metrics to quantitatively analyze the match of the geometry
between the ground truth and the model’s output. It is essential to provide precision, recall,
and F1 scores as well as IoU metric values to better quantify the performance of a proposed
approach and conduct benchmark analysis among different research outcomes.

Uhl et al. [6] proposed a weakly supervised CNN-based framework for the extraction
of buildings and urban areas from the USGS historical topographic maps published be-
tween 1893 and 1954. They compared the results of the VGGNet-16, LeNet, and AlexNet
architectures, and the best classification accuracy results were obtained with VGGNet-16,
whereas the lowest accuracy was obtained with the shallow LeNet architecture. Afterward,
they implemented semantic segmentation in VGGNet-16.

Chiang et al. [3] applied deep learning-based approaches for the recognition of rail-
roads from 1:24,000 scale USGS historical topographic maps. They manually created the
one-pixel-wide ground truth data by digitizing railroad centerlines, applying buffers to
both sides, and finally making three-pixel-wide railroad representations. They imple-
mented three different fully convolutional networks (FCNs) with VGG16, GoogLeNet,
and a residual network (ResNet) with ImageNet pretrained weights. The best IoU value
obtained was 23.09% with the FCN-ResNet architecture due to the lack of training data
and the limited ability of the applied models to detect small objects. They also used a
pretrained pyramid scene parsing network (PSPNet) on PASCAL VOC 2012, and their best
IoU obtained was 29.04% with large-sized training data and a shallow layer. Their best
performance of 62.22% for the IoU value was obtained with the modified PSPNet with
skip connections in VGG16. There is no specific information on the recall, precision, or
F-measure values.

Can et al. [9] identified seven different road types from the Generalkarte historical
map series using CNN-based classifiers, with an IoU value of around 0.45 and a pixel-
wise accuracy of 0.93. In general, the precision values of different road types were lower
than the recall values. The highest F-measure values were obtained for Karrenweg and
Erhaltener Fahrweg road types with values of 0.5321 and 0.5336, respectively, using the
U-Net architecture. On the other hand, the F-measure values of other road types were
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between 0.1022 and 0.2234, and the authors emphasized the importance of having more
training data for the remaining five road types.

This study proposes a novel, end-to-end deep learning-based framework for the auto-
matic detection of different road types from the historical DHK 200 Turkey maps. The end
results achieving superior performance compared with similar studies that exist in the
literature show that the adopted approach is capable of providing rich information that can
be utilized by end users in many ways. The geoinformation injection into prediction maps
allows us to further analyze and conduct spatial analysis of the features extracted from the
historical maps and facilitates the integration of output predictions into a GIS environment.

2. Data
2.1. Data Description

The historical DHK 200 Turkey map used in this study covers a large area of around
150,000 square km in northwest Turkey, including the regions of Ankara and Bursa
(Figure 2). These two regions are the core focus areas of our ongoing research project.
To our knowledge, the vectorized DHK 200 Turkey map has not been used in any other
study except that by [16]. The map contains approximately 65,000 × 18,000 pixels with a
dpi of 300, and it has a raster size of 17 × 17 m with a radiometric resolution of an 8-bit
depth in the RGB color space. An excerpt from the map legend with different road types
in the DHK 200 Turkey map is shown in Figure 3. The DHK 200 Turkey map legends are
organized bilingually in accordance with the rest of the World War II German military
maps: first in the language of the country of the map and secondly in German.
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Supervised classification approaches require reference data to be used in the training
stage, which is also called ground truth masking, for the corresponding input images.
In this study, the annotation and labeling step was conducted based on the manual digi-
tization of different roads from the DHK 200 Turkey map and by entering different road
types as attributes to each related road segment in the GIS environment. Among the road
types present in the legend, five road types that help to obtain substantial insights on the
transportation infrastructure are selected. These road types are as follows:

• Stabilized or macadam roads (Turkish: şose, German: Fahrstraße): partially expanded
and suitable for automobiles in the dry season;

• Railways (Turkish: demiryolu, German: Eisenbahn): normal gauge;
• Footpaths (Turkish: patika, German: Fußweg);
• Cart roads (Turkish: araba yolu, German: Fahrweg/Karawanenweg): not expanded,

automobile suitability depends on the season, natural road with few improvements;
• Inferior roads (Turkish: adi yol, German: Saumweg).

2.2. Dataset Preparation for Road Extraction

The first action that needs to be carried out when creating a dataset for the use of
supervised classification is to match the image and the ground truth mask, where the image
is a historical map and the ground truth information is a mask that contains the road types
present in the historical map. This process is called reprojection and assists in matching
the coordinate system of the image and the mask vector so that each pixel in the image
matches with its corresponding point in the mask or vice versa. The reprojection process
is achieved by projecting both the image and the mask to the same coordinate system,
which is EPSG:3857-WGS84/Pseudo-Mercator (we converted the georeferenced DHK 200
Turkey from EPSG: 28405—Pulkovo 1942). Mercator projection and WGS84 datum are
preferred to minimize the edge problems among the different map sheets (Figure 2) and to
be compatible with the other standard maps of the country in relevant scales. After having
both the map and the ground truth in the same projection, rasterization is performed to
convert the ground truth vector (.shp) into the raster (.tiff) by setting the raster size as 17.07,
which is the raster size of the map.

Since the main scope of this study is to perform a multi-class classification task, it is
necessary to construct a mapping function to encode the single-channel ground truth mask
with a numeric label into the three-channel ground truth map, where each road type is
denoted with a predefined color value. It is important to note that although the class legend
consists of 5 classes, the supervised classification task constructed in this study consists of
5 + 1 classes, with 1 being the background class (i.e., no road class).
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Due to memory limitations, it was necessary to tile the map and the ground truth
mask into smaller manageable patches, either during (i.e., on the fly) or before the training
phase. We preferred to perform the tiling operation before the training phase to obtain a
better understanding of the images that we were feeding to the deep neural network (DNN)
model. The tiling process resulted in 18,761 patches with the shape of 256 × 256 pixels.
After that, as a pruning step, ground truth patches with no label information (i.e., no
data) were eliminated from the dataset along with the corresponding maps. Further, the
non-square samples were also omitted in light of the observation that non-square samples
were extracted from the corners of the image, where no data information usually occurs.
As a result, 11,685 problematic dual patches were eliminated from the dataset. This way of
pre-processing further eased the training burden and helped the DNN model to focus on
more informative samples. Sample image patches and related manually-annotated ground
truth masks are shown in Figure 4, where each road type is encoded using the color code
in Figure 5.
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Figure 5. Color representation of road types used in the classification scheme.

After the tiling process, following the 70%, 20%, and 10% split ratios, the patches were
partitioned into 4953, 1415, and 708 patches for the training set, validation set, and test set,
respectively. The distribution of road types in the whole ground truth mask is illustrated
in Figure 6. From this distribution, it is evident that this dataset suffered from the class
imbalance phenomenon, a situation that severely affected both the performance and the
applicability of the DNN model. The dominant road type in the dataset was stabilized and
macadam roads (82.6%), followed by footpaths (9.8%).
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Furthermore, as can be easily seen from these class distributions (Figure 7), the road
types were unevenly distributed over the training, validation, and test sets. However,
training a DNN model with an imbalanced dataset may yield undesired scenarios, in which
the overrepresented classes dominate the underrepresented classes. Thus, it is essential to
ensure that the DNN model receives all class types, preferably with a similar occurrence
percentage, for all sets during the training phase. To cope with this drawback, a sampling
approach was adopted, which is explained in detail in the following section.
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3. Methodological Approach
3.1. Implementation Details

Both the training and subsequent inference phases of the DNN were implemented
in the PyTorch (1.14.0) deep learning framework using the Python (3.8) programming
language on a GeForce RTX 2080 Ti graphical processing unit. The semantic segmentation
task was performed using segmentation-models-pytorch, a high-level library constructed
on top of the PyTorch framework. The Albumentations library was used to deploy different
augmentation techniques while feeding the data to the DNN model. As for geospatial
data processing, QGIS and GDAL open-source software packages were used for the re-
projection and rasterization steps and for the creation of smaller patches during the tiling
process, respectively.

The task of pixel-wise classification is one of the most studied topics of the computer
vision community, where the aim is to perform dense (pixel-wise) prediction on an input
image according to a predefined class legend [13]. Early work on deep learning-powered
semantic segmentation mainly concentrated on CNNs to generate a dense prediction
output. However, CNNs are not fully capable of producing high-quality dense predictions,
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as their last layer consists of a fully connected layer in which the final feature map is
flattened. As was noticed later, flattening the feature map damages the output semantic
understanding capacity considerably. To this end, nowadays, most semantic segmentation
architectures follow the idea first coined in fully convolutional networks (FCNs) [17].
To put it simply, the idea is to construct autoencoder-guided logic in which the input is
passed through consecutive encoder and decoder blocks. The encoder block performs
downsampling, resulting in latent space representation of the input data where the decoder
block conversely mimics the encoder block to upsample the feature map back to the size
of the input image. The other building block of the DNN-based semantic segmentation
pipeline is CNNs. CNNs are particularly used in the encoder block of the semantic
segmentation architecture to ease the feature extraction process. With the use of pretrained
CNNs in the semantic segmentation architecture, it is possible to benefit from ImageNet
pretrained weights, which is especially helpful for high-level feature extraction from the
input despite the domain gap that emerges as a consequence of the natural images used
to train the ImageNet. The overall workflow is illustrated in Figure 8. Here, georeference
injection denotes a post-training phase where the georeference information from the input
map is injected into each corresponding ground truth mask to further constitute the
georeferenced tile.
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creates predicted road types.

In light of the previous superior performance achieved, U-Net++ [18] and ResneXt50_32x4d [19]
architectures were adopted in this study to produce segmentation masks and perform feature
extraction. U-Net++ architecture is the successor of U-Net, where the skip connections
are revisited to alleviate the contextual gap between the features of the encoder and the



ISPRS Int. J. Geo-Inf. 2021, 10, 492 9 of 15

decoder subnetworks. The goal lay in the assumption that optimization of the DNN model
would be less challenging when the contextual similarity between the encoder and decoder
subnetworks was promoted.

In general, U-Net++ diverges from U-Net in the following ways. The first difference
is the use of convolution layers on skip connections, which tries to boost the contextual
similarity among the feature maps. The approach to skip connections within the context of
CNNs is coined in the ResNet architecture and helps to enhance the performance by easing
the flow of the gradient through the DNN model. The second distinction arises from the
introduced deep supervision method that allows for generating precise and fast pixel-wise
classification maps either by taking the middle branches or choosing only one pixel-wise
classification branch with the goal of DNN pruning [18,20].

As shown in Figure 8, the selected layer depth in the U-Net++ architecture was
five. The DNN model received an input with the shape of (256 × 256 × 3) and output
a segmentation map with the shape of (256 × 256 × 6), with 6 being the number of
classes. Pretrained ImageNet weights were adopted to ease the feature extraction process.
Augmentation techniques were adopted to increase the dataset size artificially on the
fly by performing basic image processing techniques such as flip, crop, Gaussian noise,
perspective, brightness, gamma, sharpen, blur, and motion blur. This is an especially
useful technique that enables the DNN model to generalize the test samples better. The
DNN model was trained for 15 epochs, and optimization was performed using the Adam
algorithm with a learning rate of 0.0001 and an epsilon of x. During the training phase, the
F1 score was monitored to assess the performance of the DNN model. The quantification
of the DNN model’s learnable parameters quality is represented by dice loss [21], which is
formulated as follows:

Dice Loss = 1 − 2 ∑N
i pi gi

∑N
i p2

i + ∑N
i g2

i
(1)

where pi and gi are either 0 or 1, denoting the pixel value of the prediction mask and
the ground truth mask, respectively. Multiplying the value in the numerator by 2 helps
to compensate for the double counts of the instances in the denominator. Furthermore,
subtraction from 1 is performed to construct a loss function that is suitable for minimization.
Dice loss turns the dice coefficient into a differentiable form, in which it can be used as a loss
function. This is especially useful in segmentation tasks where the overlapping of two seg-
ments needs to be considered in calculating the accuracy. In addition, considering the class
unbalance issue in our dataset, it facilitates the learning of the underrepresented classes.

As was previously mentioned, the dataset used in this study suffered from the class
imbalance problem. This is a challenging problem in DNN model training, and it should
be eliminated as much as possible. In this study, to cope with this phenomenon, a sampling
method was performed simply by oversampling the underrepresented road types and un-
dersampling the overrepresented road types. More specifically, this method was performed
as follows. First, all ground truth masks in the training and validation sets were quantified
with an integer value by considering the number of distinct road types contained within.
Second, the sample weights were calculated, and each sample was assigned with a weight
value that indicated the importance of the sample by considering the number of road types
it contained. Lastly, the number of samples was multiplied by the offset to expand the
samples, and the sample weights were used as an input for the sampler function, which
was responsible for forming image batches to feed to the DNN model. From the practical
implementation point of view, sklearn’s compute_sample_weight function was used for the
weight calculation. The calculated weights were given to the PyTorch DataLoader class
as a sampler instance, which oversampled or under sampled each sample in the training
set. The weights were calculated by taking the class-type occurrences in each training set
sample into account. Simply, the samples (ground truth mask) consisting of high numbers
of classes were given higher weights, indicating the sample’s importance.

As can be easily drawn from Figure 4, in some cases where the road was occluded by
map markers, the ground truth mask did not provide a full and precise expression of the
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road types in the map. Although the road interfered with the map markers, it is indisputable
that there were road networks that existed on the occluded part of the map. The evaluation
metrics performed statistical analysis by taking the difference between the ground truth
mask and the produced inference result into consideration. Thus, this phenomenon would
severely mislead the end user by yielding incoherent inference results. It is crucial to
cope with this aliasing effect to have a viable understanding of the performance of the
DNN model. To this end, as a side experiment, we hand-picked the road networks
relatively less occluded by map markers out of the test set samples and performed an
inference on the DNN model that was trained on the original dataset with a high number
of occluded samples.

3.2. Evaluation Metrics

Both for the sake of comparability with similar studies and to adequately assess the
performance of the classifier, it was vital to employ descriptive evaluation metrics that
were capable of identifying and capturing the ability of the classifier. Apart from providing
visual test results, the performance of all experimental set-ups conducted in this study
were assessed with widely used evaluation criteria: the F1 score, precision, recall, IoU, and
confusion matrix. This subsection aims to describe these criteria briefly.

3.2.1. Precision, Recall, and F1 Scores

Precision and recall scores are the building blocks of several popular evaluation
metrics, as they help to describe the classifier’s performance in a broad perspective in
terms of exactness and sensitivity, respectively. The F1 score, on the other hand, is a widely
adopted evaluation metric for classification tasks, as it provides a descriptive identification
of the classifier by combining both the precision and recall scores by computing their
harmonic mean; that is to say, the F1 score expresses harmony, whereas unbalanced
precision and recall scores are penalized. All scores described here take a value between 0
and 1, with 0 being the lowest and 1 being the highest. The precision, recall, F1 score, and
accuracy are calculated as follows:

Precision =
True Positive (TP)

True Positive + False Positive (FP)
(2)

Recall =
True Positive

True Positive + False Negative (FN)
(3)

F1 = 2 × Precision x Recall
Precision + Recall

(4)

Accuracy =
TP + TN

TP + TN + FN + FP
(5)

3.2.2. IoU Score

The intersection over union score, also called the Jaccard Index, is especially beneficial
in the cases where one needs to numerically describe the overlapping level of the bounding
boxes or segments in the case of pixel-wise classification or object detection in general.
The IoU score ranges from 0 to 1, where 0 indicates no overlap and 1 indicates complete
overlap in the instances. The higher the IoU score, the better the DNN model classifies the
road types. The IoU score is described as

Intersection over Union =
Area o f Overlap
Area o f Union

(6)

3.2.3. Confusion Matrix

Accuracy assessment is an integrated part of most mapping projects and calculation
of the confusion matrix, and related metrics such as the overall, producer’s, and user’s
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accuracy and the kappa statistic are required to present quantitative value regarding the
performance of the proposed approach [22,23]. The confusion matrix assists in expressing
the classifiers’ ability to discriminate the classes. This indicator is especially useful for
diagnosing the classifier in a class-wise fashion, not only for the inference phase but also
for the pretraining phase.

4. Results and Discussions

After the training phase, the test set instances were used to assess the model’s perfor-
mance in both qualitative and quantitative ways by using the aforementioned evaluation
metrics. As for the qualitative assessment, an end-to-end workflow was constructed where
the input map patches were fed to the trained DNN to output georeferenced road-type
masks. The test images and their prediction outputs generated by the DNN model are
given in Figure 9.
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The quantitative results, on the other hand, were created by making use of the afore-
mentioned and widely adopted evaluation metrics: the F1 score, precision, recall, IoU, and
accuracy, where each metric exhibits a specific type of assessment criteria. The results are
tabulated in Table 1.

Table 1. Overall F1, precision, recall, IoU, and accuracy scores.

Evaluation Metrics (Overall) Score

Accuracy 98.73
IoU 41.99

F1 Score 46.61
Precision Score 37.94

Recall Score 58.78
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In light of the experimental results stated above, it is possible to conclude that the
accuracy score provided optimistic value in capturing the performance of the classifier
compared with the other evaluation metrics. Visual analysis of the results also verified this
situation. As can be seen in Figure 9, there were discrepancies between the ground truth
and predicted road segments. More specially, the accuracy score seemed to be less capable
of capturing the performance of the classifier. On the other hand, the remaining scores
tended to be overly critical of the classifier’s performance. These discrepancies might be
the result of the annotation strategy and precision in the annotations i.e., (1) the thickness
of each road, (2) not having perfect overlap between the ground truth annotations and
the road segments in the map, and (3) discontinuities of the road segments due to the
annotations on the input historical maps.

The class-wise F1, precision, recall, and IoU scores were calculated to have a better
understanding of the performance of the DNN model in a class-wise manner.

From Figure 10, it is evident that the DNN model had trouble classifying and discrim-
inating less-frequent and thus underrepresented classes. Further diagnosing the capability
of the DNN model was realized by calculating the confusion matrix, shown in Figure 11.
From this figure, it is possible to conclude that railways and inferior roads were the most
confused among all classes.
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In the normalized confusion matrix, each cell in the confusion matrix denotes how
good the classifier is at classifying that class pair. Ideally, each cell in the left-to-right
diagonal is expected to be one, which indicates “zero confusion”.

From the confusion matrix, it is possible to infer that the classifier constructed in this
study seemed to be capable of classifying all of the classes in the dataset with approximately
similar performance. The less-frequent road type, inferior roads, achieved a 96.4% score,
while the most frequent one, stabilized roads, achieved a 99.7% score. This achievement
was mainly due to the sampling method adopted in this study, which took the class
occurrences into account.
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A side experiment was conducted which was motivated by the observation that
some road segments were not continuous and were occluded in the original map by some
annotations or other symbols. These road instances were digitized as continuous segments
in the ground truth data with the contribution of analyst experience. However, since the
original input images did not include road-type features in these cases, the performance
of the DNN model was severely affected. To analyze this effect, we created a subset from
our test set in which we referred to a non-occluded test set. We argue that the curated
non-occluded test set is representative of the original test, as it consisted of 300 test samples.
The experimental results after hand-picking the problematic samples are tabulated in
Table 2. The results show that there was an interesting type of image–ground truth pair
inconsistency case, where the human annotator annotated the occluded and thus unseen
roads on the map.

Table 2. Effect of occlusion in the ground truth masks.

Evaluation Metrics (Overall) Score Non-Occluded Dataset

Accuracy 98.73 49.61
IoU 41.99 40.76

F1 Score 46.61 65.19
Precision Score 37.94 46.42

Recall Score 58.78 49.61

The DNN model performed as expected, since it output the prediction map solely
from the input map. However, this scenario led to a vast deformation in the quantitative
assessment, since the evaluation metrics calculated the difference between the ground
truth and the output. The results tabulated in Table 2 point out that the DNN model’s
performance heavily relied on the quality of the ground truth masks that the DNN model
was trained on.

Automatizing the task of road extraction from historical maps still poses several
challenges, with occlusion-caused challenges being one of them, which was also examined
in this study. According to the results tabulated in Tables 1 and 2, it is possible to conclude
that curating a dataset for the supervised classification task requires extra attention.
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Since there is no common benchmark dataset for the task of road classification from
historical maps, comparing the evaluation results of similar studies, especially from the
quantitative analysis perspective, would yield incoherent results. By open-sourcing the
dataset curated in this study, we aim to propose a benchmark for researchers to further
investigate. This, we believe, is the most effective way of pushing the boundaries of the
task at hand, as happened with the ImageNet challenges, which have been acting as a
testbed for deep learning approaches.

5. Conclusions

In this research, we proposed a CNN-based solution for the fast and automatic extrac-
tion of different road types from historical maps. Our proposed method can be directly
applied to other geographical regions of the same maps. As was explained above, the vast
series of the WWII German military maps use the same or very similar legends. Therefore,
a cross-examination only within this map series would be a worthwhile exercise on its own.

Moreover, our results can be used as a base for the transfer learning used for his-
torical maps from different data sources. Our results showed that the main challenge
for the automatic vectorization of roads was those segments having annotations, causing
discontinuities in the road paths.

The proposed approach could be implemented into different raster maps for the
extraction of roads, specifically for those regions in which road vector data are not
readily available.

Given that the inconsistency in the image–ground truth pair yielded lower accura-
cies, it is possible to conclude that relying on a pixel-wise and dense annotation strategy
may not be the future of the classification models. Supervised classifiers might perform
weakly in scenarios which are not explicitly and adequately covered and represented
in the training set. To this end, it would be interesting to investigate semi-supervised
or unsupervised classification schemes more to cope with the extreme and challenging
scenarios that might occur.

Author Contributions: Conceptualization, Burak Ekim, Elif Sertel and M. Erdem Kabadayı; method-
ology, Burak Ekim and Elif Sertel; software, Burak Ekim; validation, Burak Ekim, Elif Sertel and M.
Erdem Kabadayı; formal analysis, Burak Ekim and Elif Sertel; investigation, Burak Ekim; resources,
M. Erdem Kabadayı; data curation, Burak Ekim; writing—original draft preparation, Burak Ekim
and Elif Sertel; writing—review and editing, Burak Ekim, Elif Sertel and M. Erdem Kabadayı; visu-
alization, Burak Ekim; supervision, Elif Sertel and M. Erdem Kabadayı; project administration, M.
Erdem Kabadayı; funding acquisition, M. Erdem Kabadayı. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the European Research Council (ERC) project “Industrialisa-
tion and Urban Growth from the mid-nineteenth century Ottoman Empire to Contemporary Turkey
in a Comparative Perspective, 1850–2000” under the European Union’s Horizon 2020 research and
innovation program Grant Agreement No. 679097, acronym UrbanOccupationsOETR. M. Erdem
Kabadayı is the principal investigator of UrbanOccupationsOETR.

Data Availability Statement: The data that support the findings of this study are openly available at
https://urbanoccupations.ku.edu.tr/historical-road-types-for-turkey-1940s (accessed on 19 July 2021).

Acknowledgments: We sincerely thank Piet Gerrits, a member of UrbanOccupationsOETR, for
constructing and maintaining our geospatial database and graphical user interface, with which other
members of the project vectorized sheets of the DHK 200 Turkey. We are also grateful to Thomas
Knoll, the Head Archivist of the Cartography Department/Historical Map Archive of the Austrian
Federal Office of Metrology and Surveying, for his assistance in obtaining the digital copies of the
DHK 200 Turkey.

Conflicts of Interest: We have no conflict of interest to disclose.

https://urbanoccupations.ku.edu.tr/historical-road-types-for-turkey-1940s
https://urbanoccupations.ku.edu.tr/historical-road-types-for-turkey-1940s


ISPRS Int. J. Geo-Inf. 2021, 10, 492 15 of 15

References
1. Chiang, Y.Y.; Knoblock, C.A. A General Approach for Extracting Road Vector Data from Raster Maps. Int. J. Doc. Anal. Recognit.

2013, 16, 55–81. [CrossRef]
2. Andrade, H.J.A.; Fernandes, B.J.T. Synthesis of Satellite-Like Urban Images from Historical Maps Using Conditional GAN. IEEE

Geosci. Remote Sens. Lett. 2020. [CrossRef]
3. Chiang, Y.-Y.; Duan, W.; Leyk, S.; Uhl, J.H.; Knoblock, C.A. Using Historical Maps in Scientific Studies; Springer Briefs in Geography;

Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-319-66907-6.
4. Laycock, S.D.; Brown, P.G.; Laycock, R.G.; Day, A.M. Aligning Archive Maps and Extracting Footprints for Analysis of Historic

Urban Environments. Comput. Graph. 2011, 35, 242–249. [CrossRef]
5. Chiang, Y.-Y.; Leyk, S.; Knoblock, C.A. A Survey of Digital Map Processing Techniques. ACM Comput. Surv. 2014, 47, 1–44.

[CrossRef]
6. Uhl, J.H.; Leyk, S.; Chiang, Y.Y.; Duan, W.; Knoblock, C.A. Automated Extraction of Human Settlement Patterns from Historical

Topographic Map Series Using Weakly Supervised Convolutional Neural Networks. IEEE Access 2020, 8, 6978–6996. [CrossRef]
7. Scharfe, W. German Army Map of Spain 1:50.000: 1940–1944. In Proceedings of the 21st International Cartographic Conference,

Durban, South Africa, 10–16 August 2003; pp. 2475–2495.
8. Sertel, E.; Akay, S.S. High Resolution Mapping of Urban Areas Using SPOT-5 Images and Ancillary Data. Int. J. Environ. Geoinform.

2015, 2, 63–76. [CrossRef]
9. Can, Y.S.; Gerrits, P.J.; Kabadayi, M.E. Automatic Detection of Road Types from the Third Military Mapping Survey of Austria-

Hungary Historical Map Series with Deep Convolutional Neural Networks. IEEE Access 2021, 9, 62847–62856. [CrossRef]
10. Alganci, U.; Soydas, M.; Sertel, E. Comparative Research on Deep Learning Approaches for Airplane Detection from Very

High-Resolution Satellite Images. Remote Sens. 2020, 12, 458. [CrossRef]
11. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Review. IEEE Geosci.

Remote Sens. Mag. 2017. [CrossRef]
12. Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci.

Remote Sens. Mag. 2016, 4, 22–40. [CrossRef]
13. Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.-S. Remote Sensing Image Scene Classification Meets Deep Learning: Challenges,

Methods, Benchmarks, and Opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [CrossRef]
14. Yuan, X.; Shi, J.; Gu, L. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery. Expert Syst.

Appl. 2021, 169, 114417. [CrossRef]
15. Saeedimoghaddam, M.; Stepinski, T.F. Automatic Extraction of Road Intersection Points from USGS Historical Map Series Using

Deep Convolutional Neural Networks. Int. J. Geogr. Inf. Sci. 2020, 34, 947–968. [CrossRef]
16. Ustaoglu, E.; Kabadayı, M.E.; Gerrits, P.J. The Estimation of Non-Irrigated Crop Area and Production Using the Regression

Analysis Approach: A Case Study of Bursa Region (Turkey) in the Mid-Nineteenth Century. PLoS ONE 2021, 16, e0251091.
[CrossRef]

17. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 39, 640–651. [CrossRef]

18. Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A Nested u-Net Architecture for Medical Image Segmenta-
tion. Lect. Notes Comput. Sci. 2018, 11045, 3–11. [CrossRef]

19. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 5987–5995. [CrossRef]

20. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

21. Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Cardoso, M.J. Generalised Dice Overlap as a Deep Learning Loss Function for
Highly Unbalanced Segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support;
Springer: Cham, Switzerland, 2017.

22. Foody, G.M. Harshness in image classification accuracy assessment. Int. J. Remote Sens. 2008, 29, 3137–3158. [CrossRef]
23. Congalton, R.G. Accuracy assessment and validation of remotely sensed and other spatial information. Int. J. Wildland Fire 2001,

10, 321. [CrossRef]

http://doi.org/10.1007/s10032-011-0177-1
http://doi.org/10.1109/LGRS.2020.3023170
http://doi.org/10.1016/j.cag.2011.01.002
http://doi.org/10.1145/2557423
http://doi.org/10.1109/ACCESS.2019.2963213
http://doi.org/10.30897/ijegeo.303545
http://doi.org/10.1109/ACCESS.2021.3074897
http://doi.org/10.3390/rs12030458
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.1109/MGRS.2016.2540798
http://doi.org/10.1109/JSTARS.2020.3005403
http://doi.org/10.1016/j.eswa.2020.114417
http://doi.org/10.1080/13658816.2019.1696968
http://doi.org/10.1371/journal.pone.0251091
http://doi.org/10.1109/TPAMI.2016.2572683
http://doi.org/10.1007/978-3-030-00889-5_1
http://doi.org/10.1109/CVPR.2017.634
http://doi.org/10.1080/01431160701442120
http://doi.org/10.1071/WF01031

	Introduction 
	Data 
	Data Description 
	Dataset Preparation for Road Extraction 

	Methodological Approach 
	Implementation Details 
	Evaluation Metrics 
	Precision, Recall, and F1 Scores 
	IoU Score 
	Confusion Matrix 


	Results and Discussions 
	Conclusions 
	References

