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Abstract: Urban hotspot area detection is an important issue that needs to be explored for urban
planning and traffic management. It is of great significance to mine hotspots from taxi trajectory
data, which reflect residents’ travel characteristics and the operational status of urban traffic. The
existing clustering methods mainly concentrate on the number of objects contained in an area within
a specified size, neglecting the impact of the local density and the tightness between objects. Hence, a
novel algorithm is proposed for detecting urban hotspots from taxi trajectory data based on nearest
neighborhood-related quality clustering techniques. The proposed spatial clustering algorithm
not only considers the maximum clustering in a limited range but also considers the relationship
between each cluster center and its nearest neighborhood, effectively addressing the clustering issue
of unevenly distributed datasets. As a result, the proposed algorithm obtains high-quality clustering
results. The visual representation and simulated experimental results on a real-life cab trajectory
dataset show that the proposed algorithm is suitable for inferring urban hotspot areas, and that it
obtains better accuracy than traditional density-based methods.

Keywords: passenger travel trajectory; neighborhood association; urban hotspot area detection;
nearest neighborhood-related quality clustering

1. Introduction

Urban hotspots are the embodiment of the frequent activities of urban residents. The
locations and routes frequently traveled by residents can intuitively reflect the city’s traffic
conditions and user movement patterns. Urban hotspot area detection is an important issue
that needs to be explored in urban planning and traffic management. Detected hotspot areas
can be used as effective reference information for traffic guidance and the layout of urban
public facilities. For example, hotspot detection results at the same time on different days
can effectively guide where to place public service advertisements. The advertisements
placed in hotspot areas are more likely to be noticed. By publishing hotspots that occur at
certain times, drivers can be guided to avoid these hotspot areas, thereby alleviating traffic
congestion. As it is well known, urban traffic conditions are influenced by the density of
vehicles on the roads. Taxis are one of the most convenient means of public transportation
for city dwellers, providing personalized travel services. As such, taxi trajectory data are
spatio-temporal big data containing the travel behavior of residents. Information about
residents’ travel time, routes, and distance traveled is closely related to residents’ travel
activities. Hence, acquisition of the taxi location density can be used to analyze urban
traffic conditions. Consequently, it is important to mine hotspots from taxi trajectory data,
which reflect the travel characteristics of urban residents and the operational status of
urban traffic [1].
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Many scholars have used big data to conduct research on the detection of urban spatial
hotspot areas, achieving rich results. For example, Ashbrook et al. [2] proposed a two-
step method to infer hotspot locations and constructed a Markov model to predict future
locations. Zhou et al. [3] proposed a clustering algorithm (DJ-Cluster) based on density
and connection to infer hotspot access locations. Cao et al. [4] proposed a semantically
enhanced clustering algorithm (SEM-CLS) to extract semantically meaningful locations
and rank the locations through a unified probability model. Xia et al. [5] divided the
original trajectory into a series of sub-trajectories using stay points and road intersections
as feature points, clustered the sub-trajectories, and then analyzed the weights of the
sub-trajectories to obtain the hot paths. Gui et al. [6] proposed a distributed parallel
algorithm for extracting traffic hotspots from taxi trajectories. First, the information on
taxi stops was extracted, and then a representative density-based clustering (DBSCAN,
density-based spatial clustering of applications with noise) method was used to cluster the
block data to discover hotspot areas in different time periods. Different from partitioning
and hierarchical clustering methods, DBSCAN defines clusters as the largest sets of points
connected by density. It can divide regions with a sufficiently high density into clusters
and can find clusters of arbitrary shapes in a noisy spatial database. Ma et al. [7] applied an
agglomerated hierarchical clustering algorithm and GIS (geographical information system)
analysis method based on taxi trajectory data to mine the hotspot areas and spatio-temporal
characteristics of residents who travel using taxis. Savage et al. [8] proposed a grid-based
trajectory clustering algorithm to find hotspots, which can distinguish the direction of the
route and analyze the sub-parts of the route. However, the abnormal data points contained
in the dataset cannot be removed, which affects the clustering effect. Ferreira et al. [9]
proposed a probabilistic model-based hotspot identification method based on simulated
intersection data. This method is easy to apply, but it needs to consider risk factors to
determine hotspots and is only suitable for intersection data. Scholz [10] analyzed the
GPS trajectory data of 536 taxis in San Francisco over 22 days and proposed a method of
modeling collective activity patterns to determine the location and time of activity hotspots
in the metropolis of San Francisco. However, the time interval of the dataset used was one
hour, which is not universal.

The spatial clustering method has mainly been adopted in hotspot mining based on
trajectory data [11–14]. From the perspective of clustering objects, the existing research is
mainly divided into three categories:

(1) Studies that directly perform density-based clustering on the locations of trajectory
data [15,16]. This method is suitable for clustering noisy spatial data. It can effectively
deal with abnormal data and can find clusters with arbitrary shapes by connecting ad-
jacent regions with sufficient density. However, when the density of spatial clustering
is uneven and the cluster spacing is very different, the clustering quality is poor.

(2) Studies that convert the sequence of locations into a sequence of trajectory segments
and find hot paths and regions by clustering the trajectory segments [17]. This method
can find the local similarities in complex spatio-temporal trajectories; the extracted
feature points are concise and effective, but the clustering results mainly depend on
the division quality of trajectory segments.

(3) Studies that convert the trajectory to a certain sequence of grids and then cluster on
the grid sequence to find hotspots [18,19]. The advantage of this method is that it
can accurately identify the complex coupling phenomenon of urban hotspots, but the
algorithm relies too much on experimental parameters.

In order to improve adaptability, some studies have also utilized the aforementioned
methods [20], the clustering results of which can be used in the analysis of hotspot areas.
During the specified time period, the top k areas detected with the highest density of
locations are hotspots where traffic congestion or parking dilemmas may occur. Therefore,
analyzing and detecting hotspots can serve the management of urban planning or traffic
control departments.
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Most existing research performed density-based clustering directly on the locations
in the trajectories. This type of method can find clusters with arbitrary shapes in a spatial
database containing noise and can connect adjacent regions with sufficient density to
effectively process abnormal data, but the cluster quality is poor when the density of
spatial clusters is uneven and the inter-cluster distances are large [15,16]. Zheng et al. [21]
proposed a grid density-based clustering algorithm to discover residents’ preferred travel
areas during different periods of the day. Liu et al. [22] identified highly congestion-prone
areas using the DBSCAN clustering method.

The aforementioned studies are primarily applicable to data spaces with a uniform
density; they ignore the effect of the local density and the tightness between objects.
However, in an actual traffic network, the locations in the taxi trajectories are not evenly
distributed. In order to solve this problem, this paper proposes an improved quality
threshold clustering algorithm based on neighborhood association—denoted as QTNA—
which is used to detect urban residents’ travel hotspots from taxi trajectory data. The
algorithm considers the relationship between each cluster center and its neighborhood to
obtain high-quality clustering results, which are significant for the analysis of hotspot areas.
The visual representation of and simulation experiments on a real taxi trajectory dataset in
Beijing show that the proposed algorithm is suitable for the detection of urban residents’
travel hotspots and has higher accuracy than traditional density-based methods.

The remainder of this paper is organized as follows. Section 2 introduces the pre-
liminary concepts and problem definition. The novel spatial clustering method for urban
hotspot area detection is also presented. The experimental results and analysis are dis-
cussed in Sections 3 and 4. Section 5 presents the conclusions, as well as the limitations
and implications of this research.

2. Methods
2.1. Nearest Neighborhood Model

Definition 1. (nearest neighborhood): Consider a dataset DS with n objects. For any object
Oi ∈ DS(i = 1, . . . , n), the nearest neighborhood of Oi refers to a set consisting of any object
(excluding Oi itself) with a distance from Oi that is less than θr , denoted by NN(Oi). It is defined
as follows:

NN(Oi) = {p|dist(p, Oi) ≤ θr, p ∈ DS\{Oi}}, (1)

where θr is a raduis threshold, each p in NN(Oi) is called a θr-neighbor of the object Oi, and
dist(x, y) represents the distance between objects x and y. That is, for any q ∈ DS− NN(Oi),
dist(q, Oi) > θr, q 6= Oi. Each object within the nearest neighborhood of Oi is called a θr-neighbor
of Oi.

Definition 2. (nearest neighborhood distance): For any object Oi ∈ DS(i = 1, . . . , n), the nearest
neighborhood distance of Oi refers to the average distance between Oi and all objects in NN(Oi),
denoted by NNdist(Oi). It is defined as

NNdist(Oi) =
∑p∈NN(Oi)

dist(p, Oi)

|NN(Oi)|
. (2)

In Equation (2), |NN(Oi)| is the size of NN(Oi), which needs to be compared with the size
threshold θn.

In the proposed nearest neighborhood-related quality clustering algorithm, the locations of taxi
trajectory data are the basic research objects.

2.2. Passenger Travel Trajectory Model

According to the description of empty and heavy vehicles in the original taxi trajectory
dataset (0 is empty, others are heavy), the positions of passengers in all taxi trajectories can
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be extracted. We used 0 and 1 to represent the empty and heavy states, respectively. The
trajectory data of a certain taxi on a certain day can be converted into a passenger-carrying
state sequence: 001111110001111 . . . 000. The state segment sequence corresponding to
the trajectory can then be obtained, as shown in Figure 1. The continuous “1” sequence
represents the passenger travel segment, and the continuous “0” sequence represents the
no-load travel segment.
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Figure 1. Sequence of a taxi’s one-day trajectory state segments. There are m passenger travel segments.

Definition 3. (pick-up location): A location whose status transfers from zero to nonzero in the taxi
trajectory dataset is defined as a pick-up location. The set of all pick-up locations is denoted as PL.

Definition 4. (drop-off location): A location whose status transfers from nonzero to zero in the taxi
trajectory dataset is defined as a drop-off location. The set of all drop-off locations is denoted as DL.

All the locations in PL∪DL are the original and destination locations.

Definition 5. (passenger travel trajectory): A trajectory consisting of a set of time-ordered locations
with the pick-up location as the starting point and the drop-off location as the ending point is called
a passenger travel trajectory.

As shown in Figure 1, the double circle points indicate the starting and ending loca-
tions of the taxi on that day, the black solid circle points indicate the pick-up locations, and
the hollow circle points indicate the drop-off locations. The empty segment of the taxi is
represented by Ed (empty driving), and the passenger travel segment is represented by Cp
(carry passengers). The trajectory shown in Figure 1 contains m passenger travel segments.

2.3. Urban Hotspot Area Detection Algorithm

Based on spatio-temporal analysis methods, mining the movement patterns of taxi
trajectories and the regional distribution of pick-up and drop-off locations is helpful for
in-depth analysis of urban residents’ travel behavior characteristics and movements and
can provide a powerful data reference for urban transportation planning departments.

2.3.1. Algorithm Framework

Based on the quality threshold (QT) clustering method [23], in this paper, we propose
a nearest neighborhood-related quality clustering algorithm to detect urban hotspot areas
from taxi trajectory data. The QT algorithm was originally proposed for gene clustering
and later used in the clustering of time series. It ensures the clustering quality by finding
dense clusters whose diameters do not exceed a given user-defined diameter threshold [23].
Considering the neighborhood relationship and clustering quality, the proposed algorithm
can obtain more accurate clustering results and detect high-density hotspot areas.

Urban hotspots refer to areas where passengers are highly concentrated. Taking
the taxi trajectory data as the research object, the largest cluster of pick-up and drop-off
locations represents the densest area. The purpose of our algorithm is to find an optimal
cluster that considers the nearest neighborhood feature each time. The algorithm contains
two main phases. First, each location point and its nearest neighbors are grouped into
one cluster. Second, the largest cluster that satisfies the size requirement is selected as a
candidate cluster, and its neighborhood feature is analyzed to obtain the current optimal
cluster. The framework of the proposed algorithm is shown in Figure 2.
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2.3.2. Algorithm Description

Based on the PL and DL datasets, the nearest neighborhood-related quality clustering
method was used to mine the urban hotspots of residents in each period, including hot
pick-up and drop-off areas.

The input of the algorithm was the set of locations to be analyzed, which was extracted
from the raw trajectory dataset and represented by DS. Each iteration of the proposed
algorithm was designed to include three specific parts, as follows:

(i) Find the θr-neighbors for each location to form |DS| clusters;
(ii) Choose the maximal cluster that meets the size requirements;
(iii) Analyze the neighborhood feature of the candidate cluster to filter out the current

optimal cluster.

The steps of the proposed algorithm are as follows:
Step 1. For each location Oi ∈ DS, the distance distij between Oi and Oj (Oj ∈ DS\{Oi})

is calculated.
Step 2. For any location Oi and Oj, if distij ≤ θr, put Oj into the cluster centered on Oi.
Step 3. Sort the set of all |DS| clusters by their respective sizes in descending order

and find the maximal cluster Clus.
Step 4. Let C be the center of the candidate cluster, Clus. If the number of objects

in Clus is greater than or equal to the cluster size threshold θn, calculate the intra-cluster
distance NNdist(C) of Clus (i.e., the average distance between the center point C and all
other points in Clus) and calculate the intra-cluster distance NNdist(q) centered on all other
points except point C in Clus, where q ∈ NN(C); otherwise, update θr, reset DS, and go to
Step 2.

Step 5. Calculate the value of NNdist(C)- median({NNdist(q)|q∈NN(C)}). If it is less
than or equal to 0, select Clus as the maximal cluster and delete all objects in Clus from DS,
and go to Step 1; otherwise, select the next maximal cluster (if it exists) from the ordered
set as Clus, and go to Step 4.

Step 6. Repeat steps 1 to 5 until DS is empty or the number of iterations reaches θc.
The trajectory location clustering algorithm was denoted as QTNA; it was used to

detect urban hotspot areas effectively. In this paper, the QTNA algorithm is also called
the nearest neighborhood-related quality clustering algorithm. The pseudocode of the
algorithm is given as follows:

The algorithm ends when the location dataset is empty, or the number of iterations
reaches the threshold θc. The updated method of θr is as follows:

θr = θr × (1+ ∝) (3)

where ∝ is an adjustment parameter for θr.
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The time complexity of each iteration of Algorithm 1 depends on the following: (a) the
time to compute the distance distij between any two locations Oi and Oj, whose time
complexity is O(n2) (Lines 5–16); (b) the time to sort the set of n clusters according to the
size of each cluster, whose time complexity is O(n2) (Line 17); (c) the time to scan each
cluster from large to small to determine whether the nearest neighborhood distance of each
center meets the requirements, whose time complexity is O(n) (Lines 19–33). The maximum
number of iterations is θc, where θc � n2. Therefore, the time complexity of Algorithm 1
is O(n2).

Algorithm 1: QTNA (Quality threshold clustering based on neighborhood association)

Input: DS(= {O1, . . . , On} , the set of pick-up/drop-off locations in taxi trajectory dataset), θr (the
radius threshold), θn (the cluster size threshold), θc (the iteration number threshold)
Output: CS (the clustering results)
1: itercnt← 0 ; k← 0 ; oldDS←DS;
2: CS← ∅; Centers← ∅ ;
3: repeat:
4: itercnt← itercnt + 1 ;
5: for i←1 to |DS| do
6: tempCSi ← {Oi} ;
7: for j←1 to |DS| do
8: if (j==i) then
9: continue;
10: end if
11: Compute the distance distij between Oi and Oj;
12: if distij ≤ θr then

13: tempCSi ← tempCSi ∪
{

Oj

}
;

14: end if
15: end for
16: end for
17: Sort tempCS by |tempCSi| in descend order;
18: Maxi←1;
19: while (Maxi ≤|tempCS|) do
20: if |tempCSMaxi|≥ θn then
21: C ← the center of tempCSMaxi ;
22: if NNdist(C) ≤ median({NNdist(q)|q ∈ NN(C)}) then
23: k← k + 1 ;
24: CSk ← tempCSMaxi ;
25: Centersk ← C ;
26: DS← DS− tempCSMaxi ;
27: break;
28: else
29: Maxi← Maxi +1;
30: end if
31: else break;
32: end if
33: end while
34: until isempty(DS) or itercnt == θc or isequal(oldDS, DS);
35: return CS;

3. Results

In this section, we present a case study based on the city of Beijing in China. Beijing
is a provincial-level administrative region, a municipality directly under the control of
the central government, and the political, economic, cultural, and transportation center of
China. As the capital of China, the construction and development of urban road networks
in Beijing are representative of its status. Beijing has a well-developed road network system,
abundant taxi routes, diversified user travel modes, and extensive sources of trajectory
data. Therefore, Beijing was the first choice for this study. The taxi trajectory data in Beijing
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have obvious characteristics of large sample data and typical representative significance.
They are suitable for the development of urban hotspot area detection based on trajectory
data mining. Hotspot detection results can provide data support for traffic management
departments, guide users to travel reasonably, save travel time, and alleviate traffic conges-
tion in big cities. We performed a set of experiments to evaluate the performance of the
proposed algorithm. We first present the experimental settings, including the introduction
of the experimental environment and several parameters selected in the experiments. Then,
the datasets and evaluation metrics used in the experiments are introduced. Finally, the
visualization results of the experiments are shown, and the accuracy of the proposed
approach is evaluated using the silhouette metric.

Our experimental process was specifically arranged as follows: (1) Preprocess the
experimental datasets based on the proposed passenger travel trajectory model. (2) Detect
the urban hotspot areas from the taxi trajectory data based on the QTNA algorithm.
(3) Obtain experimental results and related analysis.

3.1. Experimental Environment and Parameter Selection

The experiments were conducted with MATLAB 8.3 on a PC with an Intel Core 2 Duo
CPU 3.60 GHz and RAM of 32 GB. The operating system was Microsoft Windows 10.

In order to evaluate the effect and accuracy of hotspot area recognition, two sets of
experiments are conducted in this section (one set is based on the data of different time
periods on the same day, and the other is based on the data of the same time period
on different days). The proposed QTNA algorithm is compared with DBSCAN and QT
clustering methods in terms of its effect and accuracy. The reasons for choosing these two
algorithms for comparative experiments are as follows. First, QTNA is a density-based
clustering method. DBSCAN is the most classic density-based algorithm, and it is also the
most widely used density-based clustering algorithm for detecting hotspots. Second, the
idea of choosing the optimal cluster for each iteration contained in the QT algorithm is the
basis of our proposed algorithm. The parameters used in Algorithm 1 include the radius
threshold θr, the size threshold θn, and the iteration number threshold θc. Specifically,
based on realistic scale requirements and our preprocessing experimental results, θr is
assigned as 0.005, θn is set as 30, and θc is set as 100.

3.2. Dataset

As it was mentioned earlier, we used Beijing as the case study location. The experimen-
tal GPS trajectory data of approximately 20,000 taxis in Beijing in March 2017 came from
Datatang (Beijing, China) Intelligent Technology Co., Ltd. (Zhongguancun Street, Haidian
District, Beijing, China) which included the taxis’ original equipment manufacturer (OEM)
identification code, terminal phone number encryption, Universal Time Coordinated (UTC)
time, message length, latitude, longitude, driving angle, driving speed, mileage, position-
ing description, empty and loaded vehicle description, status, status description, and other
information. The daily data were stored in the txt file format—such as “20170301.txt”,
which recorded the GPS location data of all taxis in Beijing on 1 March 2017. The average
daily trajectory data contained approximately 25.05 million locations. Owing to equipment
or communication failures and other reasons, some sampling data will inevitably be wrong.
Therefore, the dataset had to be cleaned to remove records with missing or obviously
abnormal data. The taxi trajectory data used in the following were all preprocessed. This
dataset is denoted as TaxiDS.

In the following experiments, we extracted a total of 12 sub-datasets from TaxiDS,
which specifically included the data of the pick-up and drop-off locations of passenger
travel trajectories during three identical periods—8:00–9:00, 13:00–14:00, and 18:00–19:00—
on 1 March 2017 and 4 March 2017. In the three time periods on 1 March, the number of
pick-up points is 17,675, 18,835, and 15,403, respectively, and the number of drop-off points
is 16,517, 17,573, and 16,431, respectively. In the three time periods on 4 March, the number
of pick-up points is 11,466, 14,011, and 11,381, respectively, and the number of drop-off
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points is 10,490, 13,710, and 12,422, respectively. The total size of the 12 sub-datasets is
3.38 MB.

3.3. Evaluation Metrics

Let Tclusters be a set consisting of trajectory clusters and numc be the number of
trajectory clusters in Tclusters. The silhouette index [24] value of trajectory Tx can be used
to measure the degree of cohesion between Tx and the trajectory cluster Ci to which it
belongs, and the degree of separation between Tx and other trajectory clusters (Cj, j 6= i). It
is denoted as S(Tx), and its equation is as follows:

S(Tx) =
b(Tx)− a(Tx)

max{a(Tx), b(Tx)}
, (4)

where a(Tx) is the average distance of Tx to all Ty (Tx, Ty ∈ Ci, Ty 6= Tx), and b(Tx) is the
minimum distance over all clusters Cj (j 6= i), of the average distances to Ty ∈ Cj. a(Tx)
and b(Tx) can be calculated as follows:

a(Tx) =
1

|Ci|−1 ∑
Tx ,Ty∈Ci , Tx 6=Ty

dist
(
Tx, Ty

)
, (5)

b(Tx) = minCi ,Cj∈TClusers, j 6=i

 1∣∣Cj
∣∣ ∑

Ty∈Cj

dist
(
Tx, Ty

). (6)

The silhouette value S(Tx) ranges from −1 to 1, where a high value indicates that the
trajectory Tx is well matched to its own cluster and poorly matched to neighboring clusters.
If most trajectories have high values, then the trajectory clustering result is appropriate.

We can then quantify the validity of the trajectory clustering using the silhouette index
(SI), which is defined as follows:

SI =
1

numc

numc

∑
i=1
{ 1
|Ci| ∑

Tx∈Ci

S(Tx)}. (7)

The SI is suitable for evaluating the performance of the clustering algorithm, and its
result is representative in evaluating the clustering effect.

3.4. Case Study Results

In this section, both the experimental results and related analysis of this case study are
presented. A set of comparative experiments is first conducted to evaluate the performance
of the proposed approach. Then, the detected urban hotspot areas are visually displayed.

3.4.1. Different Time Periods on the Same Day

First, a set of experiments for inferring hotspot areas at different time periods on
the same day was conducted. The dataset contained the pick-up and drop-off locations
of passenger travel trajectories during three typical periods—8:00–9:00, 13:00–14:00, and
18:00–19:00—on 1 March 2017.

As it is shown in Figure 3, the top 10 hot pick-up areas detected by the QTNA and
DBSCAN algorithms in the three time periods of the day are marked with three different
symbols. Figure 3a shows the detection results of QTNA, and Figure 3b shows the detection
results of DBSCAN. The hotspot area detected by DBSCAN covers almost half of the city
center, which is meaningless for traffic management or urban planning. The detected
results indicate that the proposed QTNA algorithm is more suitable for hotspot detection.
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Figure 3. Top 10 hot pick-up areas during different periods on the same day. Some overlapping
areas marked by different symbols are hot pick-up areas at different periods. (a) shows the detection
results of the QTNA algorithm. (b) shows the detection results of the DBSCAN algorithm.

It can be seen from Figure 3a that the detected hot pick-up areas were mainly dis-
tributed in Chaoyang, Dongcheng, Xicheng, Fengtai, Shunyi, Haidian, and Tongzhou
Districts, and some areas are hot pick-up areas at different periods. In other words, there
are overlapping areas marked by different symbols, such as the area near the intersection
of Guanghua Road and Jinghua South Street in Chaoyang District, which happens to be
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the exit of the Jintaixizhao Subway Station with a large passenger flow. Some areas are only
hot pick-up areas during a specific time period. For example, the area near the exit of the
Taoranting Subway Station on Baizhifang East Street in Xicheng District is a hot pick-up
area between 8:00 and 9:00. The area near the intersection of the Jingtong Expressway and
Xidawang Road in Chaoyang District is a hot pick-up area between 13:00 and 14:00, and
the area near the intersection of Binhe Middle Road and Yudaihe East Street in Tongzhou
District is a hot pick-up area between 18:00 and 19:00. Such hotspot discovery is valuable
for many applications. It can provide guidance for traffic management decisions during
specific time periods.

As it is shown in Figure 4, the top 10 hot drop-off areas detected by the QTNA and
DBSCAN algorithms in the three time periods of the day are marked with three different
symbols. Figure 4a shows the detection results of the QTNA algorithm, and Figure 4b
shows the detection results of the DBSCAN algorithm. Similar to the result in Figure 3b,
the hotspot area detected in Figure 4b also covers almost half of the city center, which
indicates the DBSCAN algorithm is not appropriate for inferring hotspots. The detected
hot drop-off areas were mainly distributed in Chaoyang, Dongcheng, Haidian, Xicheng,
Fengtai, and Shunyi Districts. It can also be seen that some areas are hot drop-off areas at
different time periods, such as the T1, T2, and T3 terminals of Beijing Capital International
Airport located in Shunyi District and its inner Chaoyang District enclave. Some areas
are only hot drop-off areas within a specific time period; for example, the area near the
intersection of Xiaoyun Road and Dongsanhuan North Road in Chaoyang District is a
hot drop-off area in the time period 8:00–9:00. The area near Zhongguancun East Road,
Chengfu Road, and Heqing Road in Haidian District is a hot drop-off area during the time
period 18:00–19:00.

The DBSCAN algorithm is essentially a process of finding core samples of high density
and expanding clusters from them. For any point p, if it is the core point, a cluster C can
be formed, with p as the center and r as the radius. The expansion process is conducted
to traverse the points in the cluster. If the point q belonging to the r-neighborhood of p is
the core point, the points in the r-neighborhood of q are also classified into cluster C. The
process is executed recursively until C can no longer be expanded. DBSCAN is good for
data which contain clusters of similar density. However, in an actual traffic network, the
locations in the taxi trajectories are not evenly distributed. In contrast, the QTNA algorithm
can detect high-density areas centered on each point, and it considers the relationship
between each cluster center and its neighborhood to obtain high-quality clustering results,
which are significant for the analysis of urban hotspots.

Based on the detection results of the top 10 hot pick-up and drop-off areas during
three different time periods on the same day, it was found that (i) the hot pick-up and
drop-off areas were unevenly distributed, concentrated in the capital functional core area
and urban functional expansion area; (ii) some hot pick-up areas were also hot drop-off
areas, generally concentrated in road sections with high passenger flows, such as subway
entrances and bus stops; and (iii) compared with hot pick-up areas, the distribution of
hot drop-off areas at different time periods on the same day was more focused. The
hotspots within a certain time period reflect the travel aggregation characteristics of urban
residents, and the discovery of hotspots is helpful for scientific traffic management and
urban planning.
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Figure 4. Top 10 hot drop-off areas during different time periods on the same day. Some areas are
hot drop-off areas at different time periods. (a) shows the detection results of the QTNA algorithm.
(b) shows the detection results of the DBSCAN algorithm.

In order to verify the detection accuracy of the proposed algorithm, the SI introduced
in Section 3.3 was selected for quantitative evaluation. The pick-up and drop-off locations
during the three time periods were clustered to find the hot pick-up and drop-off areas.
Figure 5 shows the comparison of silhouette values of the QTNA, DBSCAN, and QT
algorithms on the three datasets with different time periods. Figure 5a shows the clustering
results based on the pick-up location dataset for different time periods, and Figure 5b shows
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the clustering results based on the drop-off location dataset for different time periods. As it
can be seen from Figure 5, the accuracy of the proposed QTNA algorithm was superior to
that of the other two algorithms. Judging from the results of visualization and accuracy
evaluation, the proposed algorithm is more suitable for hotspot detection.
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Figure 5. Performance comparison of clustering algorithms. (a) shows the clustering results based on the pick-up locations
during different time periods on the same day. (b) shows the clustering results based on the drop-off locations during
different time periods on the same day.

3.4.2. Same Time Period on Different Days

Second, a set of experiments for hotspot area inference during the same time period
on different days was conducted. The dataset contained the pick-up and drop-off locations
of passenger travel trajectories during three identical periods—8:00–9:00, 13:00–14:00, and
18:00–19:00—on 1 March 2017 and 4 March 2017. Figure 6 shows the top 10 hot pick-up
and drop-off areas detected by the QTNA algorithm on the two days between 8:00 and 9:00,
marked with symbols of four different colors and shapes. Figure 6a shows the distribution
of hotspots on a global map of Beijing, and Figure 6b is an enlarged view of the area framed
by the red box in Figure 6a. It can be seen that some high-density hotspot areas are marked
with different symbols, indicating that these areas are hotspots during this time period on
the two days.

From the detection results of the top 10 hot pick-up and drop-off areas during the same
time period on different dates, we found the following: (i) In the time period between 8:00
and 9:00 on the working day (1 March) and the rest day (4 March), the hot pick-up areas
were mainly distributed in Chaoyang, Dongcheng, Xicheng, Fengtai, and Huairou Districts.
The hot drop-off areas were mainly distributed in Chaoyang, Dongcheng, Xicheng, Haidian,
Fengtai, and Shunyi Districts. (ii) There were certain differences between the hot pick-up
areas on rest days and those on weekdays. For example, Huairou District is an ecological
conservation development zone, with a permanent population density of only 185 persons
per km2. The top 10 hot pick-up and drop-off areas detected during multiple time periods
on working days were not distributed in Huairou District, and hot pick-up areas near
Nanhua Street on the west side of the Yingbin Roundabout in the southern part of Huairou
District were detected during rest days. Due to the diversification of travel purposes and
travel distances on rest days, there were certain changes in hot pick-up areas. (iii) Among
the top 10 hot drop-off areas detected in the 8:00–9:00 time period of the two days, there
was a hot drop-off area located in the enclave of Shunyi District in Chaoyang District, as
shown in Figure 6—the specific location was at the Beijing Capital International Airport
(terminals T1 and T2). Another hot drop-off area was the T3 terminal located in Shunyi
District, indicating that hot drop-off areas for passenger travel trajectories are often popular
travel destinations for urban residents. (iv) In the 8:00–9:00 period of the two days, there
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were areas that were both hot pick-up locations and hot drop-off locations, such as the areas
located at the exits of the Beijing Railway Station subway station, as shown in Figure 7.
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Figure 7. Example of a hot pick-up and drop-off area during the same time period on different days.

To verify the detection accuracy of the proposed algorithm, in addition to the data in
the 8:00–9:00 time period, the data in the 13:00–14:00 and 18:00–19:00 time periods were
also selected for comparison experiments. Table 1 shows the silhouette value comparison
of the clustering results of the QTNA, DBSCAN, and QT algorithms based on pick-up
locations during the same time period on different dates. Table 2 shows the silhouette value
comparison of the clustering results of these three algorithms based on drop-off locations
during the same time period on different dates.

Table 1. Performance comparison of clustering algorithms based on pick-up locations during the
same time period on different dates.

Algorithm

Date and Time 8:00–9:00 13:00–14:00 18:00–19:00

1 Mar 4 Mar 1 Mar 4 Mar 1 Mar 4 Mar

QT 0.5993 0.6505 0.5977 0.6493 0.6157 0.7125

DBSCAN 0.6035 0.5656 0.5898 0.5985 0.6159 0.6189

QTNA 0.6162 0.7118 0.6440 0.6673 0.6515 0.7204

Table 2. Performance comparison of clustering algorithms based on drop-off locations during the
same time period on different dates.

Algorithm

Date and Time 8:00–9:00 13:00–14:00 18:00–19:00

1 Mar 4 Mar 1 Mar 4 Mar 1 Mar 4 Mar

QT 0.6075 0.7033 0.5696 0.6592 0.5892 0.6711

DBSCAN 0.6052 0.6301 0.5681 0.5987 0.5656 0.6078

QTNA 0.6189 0.7574 0.6002 0.6910 0.6011 0.7072

In summary, as shown in Figure 5, based on the taxi pick-up location and drop-off
location datasets during different time periods of the same day, the silhouette values of the
clustering results obtained based on the QTNA algorithm were greater than those of the
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DBSCAN and QT algorithms. As it is shown in Tables 1 and 2, based on the data during the
same time period on different dates, the same results were obtained. Therefore, according to
the clustering results on the taxi pick-up and drop-off location datasets, the density of taxi
pick-up and drop-off locations can be clearly distinguished, and the corresponding hotspot
areas can be inferred. The relative density based on the neighborhood association ensures
the accuracy of the clustering results. In addition, the radius and size thresholds can be
assigned different values to adapt to various actual situations. Experimental comparison
results indicate that the proposed algorithm outperforms the traditional DBSCAN and QT
clustering algorithms in terms of applicability and accuracy.

4. Discussion

Exploring hotspots of interest from taxi trajectory data is beneficial to urban traffic
management, road planning, and location-based services. The hotspot areas hidden
in trajectory data are the information that must be mastered when studying the travel
characteristics of multiple users and which can be used to establish a predictive model of
future user behavior. Hotspot area detection is an important scientific issue in trajectory
data analysis. The locations and routes by which residents frequently travel can intuitively
reflect urban traffic conditions and user movement patterns. Hot pick-up and drop-off
locations detected during different periods of the day can effectively guide user travel
and avoid traffic congestion. Hotspots detected during the same time period on different
days can provide reasonable data support for the layout of urban public facilities [25].
As the capital of China, Beijing has a well-developed road network system, abundant
taxi routes, and extensive sources of trajectory data. This paper studied GPS trajectory
data of about 20,000 taxis in Beijing in March 2017 and analyzed the distribution of urban
hotspot areas with respect to time. First, the pick-up and drop-off locations were extracted
from taxi trajectory data based on the constructed passenger travel trajectory model. A
nearest neighborhood-related quality clustering algorithm was then proposed to cluster
the pick-up and drop-off locations. On the one hand, we detected and analyzed hotspot
areas during different time periods on the same day; on the other hand, we focused on the
detection results during the same time period on different days.

In summary, compared with previous research, the differences and advantages of this
study are as follows:

(1) Nearest neighborhood model construction. By learning from our previous work [26],
we proposed a nearest neighborhood model, which was adopted in location clustering
and could help detect optimal clusters.

(2) Urban hotspot area detection using an improved quality threshold clustering algo-
rithm based on neighborhood association. An improved quality threshold clustering
algorithm was proposed that considers the neighborhood association in order to im-
prove the accuracy of spatial clustering. The proposed algorithm was used to detect
urban hotspot areas based on taxi trajectory data. Analysis of the relative density is
important for spatial clustering of taxi locations.

(3) Case study. The proposed algorithm was tested on a real-life trajectory dataset of taxis
in Beijing. The visual presentation and experimental results show that our algorithm
detected urban hotspot areas with high accuracy, effectively providing data support
for traffic guidance.

The results of this study are helpful for traffic guidance and urban facility planning,
with the following practical implications:

(1) The publication of the detected hotspots during a certain time period can help alleviate
traffic congestion and improve the quality of residents’ travel experience.

(2) Hotspot detection results during the same time period on different days can effectively
guide the location of urban public facilities and reduce wastage of resources.

(3) Hotspot areas detected from the taxi trajectory dataset can provide urban planning
departments with guidance for setting up taxi parking spots.
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5. Conclusions

In-depth mining results of taxi trajectory data are helpful for the analysis of the spa-
tial characteristics of urban residents’ travel. This paper addressed the issue of urban
hotspot area detection using an improved quality threshold clustering algorithm based
on neighborhood association. Each iteration of the proposed algorithm has three specific
steps. First, the θr-neighbors for each location are found to form several clusters. Then,
the maximal cluster that meets the size requirement is chosen. Finally, the neighborhood
features of the candidate cluster are analyzed to filter out the current optimal cluster. The
proposed method not only considers the maximum clustering in a limited range but also
considers the local density of clusters and the tightness between objects through neighbor-
hood analysis, effectively addressing the clustering issue of unevenly distributed datasets.
The visual representation and simulated experimental results show that the proposed
algorithm could obtain effective and reasonable urban hotspots from taxi trajectory data
and provide valuable information for traffic management systems. This achievement is
practical enough to be applied in travel recommendation and road planning and may also
be used in urban hotspot area analysis based on other moving objects in the city. This paper
studied clustering based on the pick-up and drop-off locations, without clustering the
trajectory segments. In the future, we plan to further infer popular routes during different
time periods and conduct personalized route recommendations.
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