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Abstract: One of the most significant challenges in cities concerns urban mobility. Urban mobility
involves the use of different modes of transport, which can be individual or collective, and different
organizations can produce their respective datasets that, usually, are used isolated from each other.
The lack of an integrated view of the entire multimodal urban transportation network (MUTN)
brings difficulties to citizens and urban planning. However, obtaining reliable and up-to-date
spatial data is not an easy task. To address this problem, we propose a framework for creating a
multimodal urban transportation network by integrating spatial data from heterogeneous sources.
The framework standardizes the representation of different datasets through a common conceptual
model for spatial data (schema matching), uses topological, geometric, and semantic information to
find matches among objects from different datasets (data matching), and consolidated them into a
single representation using data fusion techniques in a complementary, redundant and cooperative
way. Spatial data integration makes it possible to use reliable data from official sources (possibly
outdated and expensive to produce) and crowdsourced data (continuously updated and low cost
to use). To evaluate the framework, a MUTN for the Brazilian city of Belo Horizonte was built
integrating authoritative and crowdsourced data (OpenStreetMap, Foursquare, Facebook Places,
Google Places, and Yelp), and then it was used to compute routes among eighty locations using four
transportation possibilities: walk, drive, transit, and drive–walk. The time and distance of each route
were compared against their equivalent from Google Maps, and the results point to a great potential
for using the framework in urban computing applications that require an integrated view of the
entire multimodal urban transportation network.

Keywords: spatial data integration; schema matching; spatial data matching; data fusion; multimodal
urban transportation networks; urban computing

1. Introduction

People continuously move around the city going to work, school, sports facilities,
and other entertainment activities. Planning for urban mobility requires up-to-date spatial
and temporal data about individual and collective transportation modes. Individual trans-
portation modes include “any mode where mobility is the outcome of a personal choice
and means such as the automobile, walking, cycling, or the motorcycle” [1]. Collective
transportation (or public transit) modes involve shared vehicles and a pre-established route,
schedule, and a fee. Such modes include tramways, buses, trains, subways and ferryboats.

Urban mobility data are usually produced and maintained by a large number of
agencies, applications, and users. Each one has specific needs, and therefore maintains its
own policy regarding data dissemination, which can cause a high level of data inconsistency
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and heterogeneity [2]. The integration of data from several heterogeneous sources on
different transportation modes remains a challenge [3,4], which reflects on difficulties for
citizens that need to move across the city [5] and hampers the decision making of urban
planners by lacking an integrated view of the entire multimodal transportation network.

Another difficulty is in obtaining reliable and up-to-date urban data. There are two
primary sources for such data: authoritative or voluntary. Authoritative data are usually
produced by governmental agencies at a high production cost, therefore are highly reliable,
but difficult to keep up-to-date [6,7]. Voluntarily contributed data uses the population as
producers (or sensors), often for free. Reliability is often an issue, but updating frequency
can be high and coverage can be extensive if there are enough volunteers. Complementing
and updating official source data with volunteered data is increasingly necessary, especially
in places with little infrastructure for urban data maintenance [6].

In the case of urban mobility, the availability of such diverse data sources, most of
which rooted in daily operational needs and focused in parts of the system, contrasts with
the need for an integrated view of mobility. With an integrated view, we become able
to analyze mobility as a whole, considering the ongoing processes and their continuous
transformation, and plan for their evolution.

In this paper, we propose a framework for integrating spatial data from heterogeneous
sources to produce a multimodal urban transportation network dataset that can be used in
various urban computing applications. For schema matching, we propose transforming
each source schema to a standard spatial conceptual data model. For spatial data matching,
we present a method using topological, geometric and semantic information to identify
matches among objects from different datasets. Matched objects are then consolidated into
a single representation using data fusion techniques, but objects that are unique to a given
data source are included whenever necessary, since data sources are mostly complementary,
rather than thematically overlapping. We use the framework to build a multimodal urban
transportation dataset integrating authoritative and crowdsourced data.

We validate our approach using real-world data to build a multimodal urban trans-
portation network dataset for the city of Belo Horizonte, in Brazil. The result are evaluated
by generating multimodal routes among random points and comparing the results with
routes provided by Google Maps. The results enable us to analyze, simulate, and compute
analytical data considering the whole multimodal transportation urban network instead
of isolated views from each mode of transport. The integration of up-to-date voluntarily
contributed data with authoritative sources can also be used to identify areas where official
data are out of date and to optimize official mapping work in a targeted way.

The remainder of this paper is organized as follows. Section 2 presents concepts and
related work. Section 3 describes our multimodal urban transportation network data model.
Section 4 details the process to build the multimodal transportation network from multiple
sources using data integration techniques. A case study using the proposed approach for
Belo Horizonte is described in Section 5. Results are presented and discussed in Section 6.
Finally, Section 7 concludes the paper and presents future work directions.

2. Concepts and Related Work

We propose the creation of a multimodal urban transportation network dataset from
heterogeneous sources using spatial data integration techniques. Such a dataset can be
enriched with data from additional sources. For instance, aspects related to transit user
experience can be crowdsourced, and sensor data on traffic dynamics can be included.
Our framework includes a conceptual schema for a spatial database, used as a reference
for schema matching. Integration of data from various sources is then organized around
this conceptual schema, and therefore data might need to be transformed before inclusion
in the integrated dataset. Data matching between datasets, when required, is performed
considering mainly the geometric similarity among objects, and also topological and
semantic aspects. Once matching pairs of objects considered to be equivalent are found,
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they are consolidated in the integrated dataset (Data Fusion). Objects that have no match
in other datasets are also evaluated and transformed for integration.

The resulting dataset, following the proposed conceptual schema, can be used in ap-
plications that require an integrated view of urban mobility, both individual and collective.
The remainder of this section presents concepts and related work on multimodal urban
transportation networks and spatial data integration.

2.1. Multimodal Urban Transportation Networks

A Multimodal Urban Transportation Network (MUTN) is an essential component
when dealing with urban analysis. Nes [8] defines a multimodal transport as one in
which at least two different modes are used, and the traveler has to make a transfer from
one mode to another. Likewise, Mandloi and Thill [9] and Chen et al. [10] characterize
multimodal transport whenever the movement of people or goods involves at least two
modes of transport from origin to destination. Zuidgeest et al. [11] see MUTN as a set of
subsystems, where each one represents a transport mode. The connections among systems
are implemented as exchange points at nodes or terminals. People can only change to
a different mode using a terminal. However, when multiple modes are available, and
modes are managed by different organizations, there is often no integrated view of the
entire system.

A MUTN has to manage data about the street network, and also on the entire trans-
port infrastructure (streets, rail, bus stations), and transport services of each mode (car,
walking, cycling, bus, metro). It is also desirable to enrich the MUTN with data from
non-conventional data sources, including crowdsourcing, to better understand the patterns
and interactions of urban life. For example, Zheng and Geroliminis [12] built a multimodal
traffic model considering parking constraints using a macroscopic fundamental diagram
(MFD) to define parking pricing strategies to reduce congestion and overall travel costs to
drivers. The work focused on numerical modeling for the choice of modal to be used, and
was performed using a simulated urban transport network considering only cars and buses.
Gil [13] used OpenStreetMap (OSM) data to build a MUTN to enable accessibility analysis.
OSM data for collective transport was complemented with data from an official source
(OpenOV), but in a simplified form, without considering details such as the lines, services,
and their frequencies. Jetlund et al. [14] proposed a generic data model for transport data,
based on ISO and INSPIRE standards, focused on data interoperability.

The MUTNs resulting from these works were built for specific purposes, while our
approach proposes a broader model that can be used for various applications and can
incorporate additional data. We also use data from different and heterogeneous sources
using data integration methods, which are presented in the next Section.

2.2. Spatial Data Integration

Spatial data plays an essential role in the decision-making process. It is estimated that
about 80% of all information used on the decision-making process have spatial proper-
ties [15,16], and its correct use implies better decisions [17].

The Open Geospatial Consortium (OGC) defines spatial data integration as “the pro-
cess of unifying two or more separate datasets, which share certain characteristics, into
one integrated all-encompassing result” [18]. The outcome of spatial data integration
is not just data overlayed and displayed together. It must have connections among fea-
tures in different datasets and merge them into a single representation hoping to find
new knowledge that cannot be derived from the individual datasets alone [19–22]. Data
sources used in the referenced works concerning spatial data integration can be classified
into two categories: official (or authoritative) and volunteered geographic information
(VGI). Official data are generally produced by government agencies, while VGI data is
produced collaboratively by citizens and contributors. Among the primary VGI services are
OpenStreetMap (https://www.openstreetmap.org accessed on 21 June 2021)) (OSM) and
Waze (https://www.waze.com (accessed on 21 June 2021)). The high cost of production

https://www.openstreetmap.org
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to create and maintain official spatial data and the increasing availability of VGI initiatives
have encouraged researchers and governments to seek ways to integrate these data sources
to obtain a more up-to-date dataset with a lower production cost [6,23–28].

Spatial data integration can be organized into three main tasks [29]. The first task
is schema matching , which seeks to establish the semantic correspondence between
object classes from different datasets [30]. Once the semantics are resolved, the second
task, data matching, takes place to identify corresponding dataset objects. The third
and last task, called data fusion, involves the resolution of schematic and representation
differences among matched objects to produce a single and consistent representation. Some
works do not consider schema matching and data matching as independent tasks, and
suggest viewing them as components of a more general task within the data integration
process [31–34].

2.2.1. Schema Matching

Schema matching involves finding semantic correspondences between elements from
different schemas [30,35]. Schema matching techniques rely on schema information (data
types, element names, and structural properties) [36] attributes of object instances, or
external information, such as ontologies and dictionaries [2,36–39].

Since matching schemas is primarily an exercise on modeling semantics, ontologies are
frequently used in the literature. Al-Bakri and Fairbairn [36] worked on Ordnance Survey
and OpenStreetMap integration at schema level (based on XML) using three metrics: name
similarity between classes, structural similarity between schemas and data type similarity.
The metrics were combined in a weighted similarity measure to resolve possible matches,
but did not obtain excellent results, therefore suggesting the use of more directed ontologies
to improve the spatial data integration process. Du [39] used ontologies to integrate
authoritative (Ordnance Survey) and crowdsourced (OpenStreetMap) data on roads [40]
and other real data. Their method converts the input datasets to ontologies, and then merge
them into a new ontology. Guan et al. [37] used ontologies to match Geographic Markup
Language (GML) schemas, and tested the proposal over data on highways and roads
(among other kinds of data, such as states, cities, rivers, and lakes) from Canada and the
USA. Prudhomme et al. [2] applied a semantic interpretation process to infer an ontology
from a dataset schema without prior knowledge. The produced ontology is then used for
schema matching through the use of ontology matching techniques. Their approach for
semantic interpretation is based on geocoding and natural language processing.

For this work, although semantic or ontology-based schema matching would be possi-
ble, we decided to perform schema matching manually, by comparing documentation on
the schema of each source to the proposed conceptual schema. For the case of transporta-
tion data, schema matching is facilitated by the use of similar spatial representations for
the most important object classes.

2.2.2. Spatial Data Matching

Spatial data matching can be defined as the correct correspondence between differ-
ent dataset objects [26] and is a requirement for integration, management, and quality
evaluation of spatial datasets [34]. It can also be called linking [40], alignment [41] or
reconciliation [42,43].

There are many taxonomies for spatial data matching techniques on literature [34,44–48].
Xavier et al. [34] proposed a broad classification based on two criteria: level and case of corre-
spondence. The level refers to where, in the data modeling hierarchy, the matching will occur.
Three alternatives are possible: schema, feature and internal. The schema level is equivalent
to the schema matching concepts presented in Section 2.2.1. Feature level matching methods
consider that schema matching is already complete, and work to find correspondences among
features using one or more similarity measures. Internal level matching regards the compari-
son of parts of geometric features, which is essential for quality assessment [49–51]. The case
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of correspondence regards the cardinality of the matching, and can be defined as one-to-one
(1:1), one-to-many (1:N) and many-to-many (M:N).

Feature matching methods involve looking for candidate features for matching in
dataset B that are close to a feature in dataset A and then checking the similarity of each
candidate feature to characterize a match. Among the common techniques for finding
candidate features are the use of buffers [2,28,52–55] and algorithms for finding nearest
neighbors [47,56]. Similarity metrics can be classified into geometric, topological, attribute-
based, context-based, and semantic [34].

Geometric metrics use geometric characteristics of features such as position, length,
perimeter, area, shape, or angle [57]. Among the most used metrics in this category
are Euclidean [20,58–62], Hausdorff [2,45,47,63–66] and Fréchet [2,67,68] distances, shape
similarity measures [2,49,51], and the degree of overlapping between features [2,27,69,70].

Topological metrics analyze the spatial relationships among features and are most
used to match network (node-arc) structures. Many graph characterization metrics are used,
such as, node degree [71,72], centrality [27,73], betweenness [73–75] and closeness [73,75].

Attribute-based metrics are used to compare features based on non-spatial associated
data. This category of similarity measures relies on operators for comparing attribute data
types. The most commonly used metrics involve string comparisons, such as Levenshtein
distance [76,77] and Hamming distance [64].

Context-based metrics use the geographic context of the features to help determine
their similarity. Geographic context refers to the relationships between a feature and other
reference features. It works by using a list of known points (landmarks) that can be used
to build a proximity graph [76], a Delaunay triangulation or a Voronoi diagram [54,60] to
compute the similarity between candidate features.

Semantic metrics determine the distance between concepts of the features, where the
concepts can be classes, methods or attributes [34]. The difficulty in applying such methods
is that some formal representation of knowledge, like an ontology or taxonomic tree, is
usually required. Hastings [78] used the least common superconcept (LCS) in a taxonomic
tree to evaluate the similarity between gazetteer terms by counting the number of (possibly
weighted) steps on the tree necessary to navigate from one concept to another.

Much research on using techniques and methods for spatial data matching can be
found in the literature. We focus our attention on those involving the integration between
authoritative and crowdsourced data of urban and transportation data.

Mustière and Devogele [58] proposed NetMatcher, a feature matching process that
uses geometrical, attribute-based and topological similarity metrics to find and evaluate
potential candidates for matching, even with different levels of details, so it can deal with
one-to-many and many-to-many correspondence cases.

Ludwig et al. [79] compare OSM road data with a Navteq dataset. They segment road
segments data from OSM to level the number of features on both datasets and then use
buffer operations to ease finding one-to-one correspondences. Then, the length, category,
and name of features are used as similarity metrics to find the best candidates to match.

Koukoletsos et al. [80] use a multi-stage approach for feature matching, combining
geometric (distance, direction, length of roads) and attribute-based (road names, road types)
metrics to assess the completeness of OSM data concerning the ordnance survey dataset.
They use a 1 km2 grid to clip the datasets and then each cell is analyzed to find matchings.
Characteristics of VGI data, such as topological inconsistencies and abbreviations used on
feature names, may affect the results.

Yang et al. [81] developed a heuristic probabilistic relaxation method to match road
networks from OSM and authoritative data at the feature level. The method starts with a
probabilistic matrix built from similarity measures on feature shapes and then incorporates
compatibility coefficients of neighboring candidates until the probabilistic matrix gets
globally consistent. Then, it finds one-to-one matching pairs and then expands to find many-
to-many matchings. It also considers null matches (a one-to-null or 1:0 correspondence
level) to include data that are unique to one of the sources, possibly in places the other
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source is outdated or incomplete. The matching results showed high precision using only
geometric similarity metrics, but the method is computationally costly.

Fan et al. [24] used a polygon-based approach to match road networks at feature
level. The first step matches urban block polygons verifying overlapping areas. Then, road
segments are assigned to the edges of the urban blocks. Those road segments assigned to
the same edge of a matched urban block pair are considered a match. The results showed
high matching rates, but it does not match roads that cannot be assigned to a nearby urban
block, or no-through roads that do not form a closed polygon.

Abdolmajidi et al. [66] compared segment-based and node-based approaches for
roads matching at feature level. They choose the node-based approach due to the reduced
computational cost and improve it to handle topological relationships and other network
components. It was used geometric (segment orientation and length), topological (checking
the links and neighbors of a node) and attribute-based (feature name) similarity metrics on
the matching process. The resulting method is used to assess the completeness of OSM
data in relation to the Swedish National Road Database.

Olteanu-Raimond et al. [82] present a data matching approach based on knowledge fu-
sion using belief theory. They model geometrical (position, orientation), semantic, attribute-
based (name of the feature), and contextual similarity metrics into belief functions to find
correct matching pairs.

In this work, the data matching process occurs at the feature level. For line features
the process starts with the creation of a list of candidates for matching by finding features
from one dataset that intersects the buffer of a feature in the other dataset. If a feature
has no candidate for matching it is considered as (a null match, or one-to-zero). Then, the
list is used to find matching pairs with one-to-one, one-to-many (or many-to-one), and
many-to-many cardinalities. To confirm a pairing, geometric similarity metrics such as
node proximity, length and angle similarity of the segments are used. For point features we
also create a list of possible matches using a KD-tree to speed up the search. The matches
are confirmed using geometric (distance), semantic (the type of the feature) and attribute-
based (name) similarity metrics used. For name similarity it is used the Levenshtein
distance; however, we introduce a treatment to reduce problems in name matching. The
names are converted to lowercase, tokenized, sorted alphabetically and concatenated.
The tokenization drops punctuation characters, and the sorting allows for more precise
matching when the names differ only in word order (a common situation for names in
crowdsourced data).

2.2.3. Spatial Data Fusion

The result of the spatial data matching task is a set of matched pairs of elements from
the datasets being integrated. The next step is to use the matched pairs across the databases
to find the underlying true values in case of conflicts [83]. This is the responsibility of
spatial data fusion step on spatial data integration process [84,85]. To illustrate the problem
faced by spatial data fusion, consider the following situation. Two road objects,Ra andRb
are from different spatial data sets with slightly different geometries and similar values for
the name attribute. Which object best represents the geometry of the actual road? Which
one has the most accurate version of the name of the road? The desired output is a road
object that has the best real-world correspondence for every considered attribute.

The techniques employed in data fusion can be classified in different ways [86], such
as by the relationship between the data sources [87]. In this case, the data sources involved
in the fusion process can be complementary, redundant, or cooperative. Figure 1 shows an
overview of these categories. In complementary data fusion, the input data sources represent
different views of the same subject so that one can complement the information present
in the other and generate a more complete unified version of the data. In redundant data
fusion, the same subject is represented in different data sources that can be unified to
increase confidence in this data. In cooperative data fusion, data from the input sources are
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combined into new information that is usually more complex or more complete than the
original sources.

Figure 1. Classification for data fusion techniques. Adapted from Castanedo [86].

In data fusion, especially of the redundant type, it is necessary to employ conflict
resolution strategies to conduct the transfer or fusion of information between the attributes
of the paired features. The strategy to be employed depends on the characteristics of the
data sources, the available data and the desired output. Bleiholder and Naumann [85]
presents a taxonomy for strategies for dealing with data conflicts based on three primary
strategies: conflict ignorance, conflict avoidance and conflict resolution.

Our framework performs spatial data fusion tasks at various times. When building
the street network, attribute values (road name, functional classification, and width) that
are missing in one of the datasets and are present in the other in the paired features are
updated, which configures a redundant data fusion. Unique street sections from one
dataset, as well as other information (parking lots, public transport), can be included in
the fusion result (complementary fusion). In the creation of the multimodal network, the
data are organized to allow routing throughout the network and its different modes, which
classifies the fusion process as cooperative. The resulting multimodal urban transport
network allows analysis and operations based on an integrated view of urban transport
that would be difficult or impossible if the datasets were used in isolation. The framework
proposes and uses a spatial data model along the data integration process and to store the
results. The spatial data model are discussed in the following section.

3. Multimodal Urban Transportation Network Data Model

The Multimodal Urban Transportation Network (MUTN) model represents the in-
tegrated infrastructure of urban transport, considering individual and collective trans-
portation modes. The individual mode comprises the infrastructure for private or shared
vehicles (including taxis, rentals, car sharing, bicycles, and others) and pedestrians, while
the collective transportation mode is responsible for public transit such as bus and metro
systems. The difference between them is that the public transit system typically follows a
pre-established structure where routes, stops, and schedules are defined. Multiple agencies
may be responsible for the management of public transit alternatives. The network for
each mode of transport is represented geographically, using geospatial coordinates, and
topologically, using directed graphs. The remainder of this section explains the structure
and functionality of the data model classes.
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We introduce a conceptual schema (Figure 2) to be used as the basis for data integration,
including schema matching, data matching and data fusion. All source datasets must be
matched and transformed as needed to fit the proposed schema. Next, we describe the
proposed schema in detail.

Figure 2. Conceptual schema for the Multimodal Urban Transportation Network in UML notation. Attributes were omitted
for readability.

The Property class stores attributes for each feature using a key-value schema, where
the key is an instance of the PropertyType class that has a name and a domain, given
through the DataDomain class. In turn, the DataDomain class has a name, a data type, and
a unit (e.g., km/h, meters, seconds, and other measurement units) for the interpretation of
values associated with the domain.

The main building block of the MUTN model is the abstract Feature class. A feature
represents a real-world object or a relationship among features. It must have a unique
identification (fid) and belong to a FeatureClass. Features may have a set of properties.
The FeatureClass contains all possible feature types the data model can use, and store
information about the properties for each feature class. A Feature can be specialized as a
Relationship, a GeoFeature, a NetFeature, a ModeNetwork or a MultimodalNetwork.

In many situations in modeling, we need to establish relationships between several
features so that each one can play a role in a relationship with others. The Relationship,
RelatioshipRole, RelationshipType, and Role classes are used in these situations. Rela-
tionshipType and Role define relationships for each one of the possible roles a feature
can assume. For example, consider a forbidden conversion constraint between s1 and s2
segments passing through road junction j1. This constraint can be modeled as follows:
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There must be a ‘no_turn’ RelationshipType associated with ‘from’, ‘via’, and ‘to’ roles, a
new instance of the Relationship class with type ‘no_turn’ and three new instances of the
RelationshipRole class are created for the segment s1, junction j1, and segment s2 in the
roles ‘from’, ‘via’, and ‘to’, respectively.

The abstract class NetFeature represents features that relate to others in topological
structures to form networks. A NetFeature can be a Junction, a Segment, a Path, or a Route.
A Junction corresponds to a network node, but with a geographic representation. The
Path class is used to represent a path through the transportation network using an ordered
sequence of Junctions. The Route class is used to represent a collective transportation
service with fixed schedule, for example, a bus or subway line. Junction and Segment
classes are the basis for establishing network structures as the ModeNetwork class. In the
proposed data model, the networks are modeled as directed graphs. From graph theory,
a directed graph is defined as an ordered pair G = (V, E), where V is a set of vertices,
and E is a set of edges, defined as ordered pairs of vertices. In the MUTN data model, a
ModeNetwork represents the network for one mode of transport as a directed graph in
which the vertices and edges are Junctions and Segments, respectively.

Every Segment starts and ends at a Junction whose identifiers are stored in the segment
as its ‘source’ and ‘target’ attributes. The direction of the flow through the segment is
always from source to target. There are other mandatory attributes for segments besides
source and target, such as length, orientation, cost. The length represents the size of
the segment geometry in meters. The orientation attribute is the direction angle of the
segment considering East as 0, North as 90, West as 180 and South as 270 degrees. The cost
attribute is used for routing calculations. The default value is to store the time in seconds to
traverse the segment. A segment can be specialized as TransferSegment or RouteSegment.
The former is used to represent segments representing intra- and inter-modal transfers.
The latter is used to represent routes in collective transportation networks where there
is a defined departure and arrival times for a given service. The geometry attribute for
TransferSegment and RouteSegment class segments may not precisely represent the real-
world path. For instance, sometimes the exact path taken by a bus is not known, but it is
possible to determine the sequence, position, and interval between its stops on a route (a
common situation in General Transit Feed Specification (GTFS (https://developers.google.
com/transit/gtfs/reference (accessed on 21 June 2021)) files, as the path is optional). In
this case, a RouteSegment represents the link between each stop on the route and has an
associated timetable that stores information about the arrival and departure time of each
transport service that uses the segment. A isRealGeometry attribute can be checked to
determine if the RouteSegment’s geometry represents the real path or just the transition
between the stops.

Each Junction has a point geometry. A Junction represents an intersection between
segments in the network. However, a ConnectionNode represents a point where it is
possible to transition between different transportation networks or between different
services within the same network, for example, a connection between different bus lines. A
Junction can be of the type intersection, station, or transfer. A ConnectionNode can be of
the busStop, subwayStation, lightrailStation, railwayStation, parkingLot, parkAndRide,
airport, intercityBusStation type. The origin and destination Junction types of a segment
determine its type. For example, suppose both the source and target junctions are of the
intersection type. In that case, the segment will be of the default textitSegment type. If one
is of the textitintersection type and the other is of the transfer or station type, it denotes a
segment of the OuterTransfer type, indicating that there will be a change in the mode of
transport. Segments between two junctions of station type can be either RouteSegment or
InterTransfer; that is, the bus user, when arriving at a station, can continue on the same bus
line, or change to another line.

To represent elements that are not necessarily associated directly to the transportation
network, the classes PointFeature, LineFeature and AreaFeature can be used. For example,
a city boundary or a lake can be AreaFeature instances. A river can be modeled as a

https://developers.google.com/transit/gtfs/reference
https://developers.google.com/transit/gtfs/reference
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LineFeature. Trees, lamp posts, traffic signs, accidents can be represented as a PointFeature.
Although they do not necessarily need to be connected to the transport network, it is often
necessary to assign a network location to some GeoFeature. For example, the geometry
assigned for recording a traffic accident may not match a Junction or Segment. In this
case, GeoFeatures may have a NetLocation attribute that assigns to them a location on the
transport network based on its elements. The position can be related to a Junction or a
Segment. In the case of Junction the location coincides with the position of the junction,
since the representation is a point. In the case of a Segment, the assigned location can be
either a point or a line. If the NetLocation value references a Segment of the network, a
start position and, optionally, an end position must be provided. This location is recorded
as a position along the Segment line, using a value between 0 (start position) and 1 (end
position). For example, on a segment with 100 m, a start position with value 0.1 and end
position 0.5 indicates that the GeoFeature is located from 10 m, until the 50 m, measured
from the segment origin, along its line geometry. If no end position is informed, it is
assumed the location is a point along the segment given by the start position.

Finally, the MultimodalNetwork class is used to combine several ModeNetworks,
using TransferSegments and ConnectionNodes to integrate all modes into a single network.
Each ModeNetwork stores the data for one mode of transport. A transition between modes
of transport occurs at a ConnectionNode, which is linked to ModeNetwork via TransferSeg-
ment. Each ConnectionNode contains both incoming (fromMode) and outgoing (toMode)
transport mode information. A ConnectionNode has an associated cost for transport
mode transition. In this way, one can assign the cost of an intra- or inter-modal switch.
For example, a driver (ModeNetwork; mode = DRIVE) can leave their car in a parking
lot (ConnectionNode;fromMode = DRIVE;toMode = WALK) and walk (ModeNetwork;
mode = WALK) the rest of the way. The average time to park the car can be considered a
cost in changing the mode of transport.

The conceptual schema described in this section should be used as the basis for the
schema matching process, and its implementation can store the results of the data matching
and integration tasks from different datasets. The schema can also be used as a model
for creating new urban transportation-related datasets. The following section presents a
method to build a multimodal urban transportation network that can be stored using the
proposed schema to help analyze urban-related problems. Then, the method is applied to
create an integrated view for the urban network of the city of Belo Horizonte, Brazil.

4. Building the Multimodal Urban Transportation Network

The first step to build a MUTN is the creation of a street network, which is used by
pedestrians, bicycles and vehicles. This network is also where the components of collective
transportation infrastructure are connected, and other GeoFeatures can be located. Our
approach is to build the street network using data from different sources to get a more
complete and up-to-date dataset, to use it as the basis to integrate data from public transport
and other Geofeatures. An overview of the steps for building the multimodal network is
shown in Figure 3. The remainder of this section presents each process in detail.

4.1. Initial Definitions

The following definitions are used in the description of the process:

• Reference Dataset: This dataset is the basis for the integration process and construction
of the multimodal transportation network. It follows the proposed conceptual schema,
and is the dataset whose data will be given preference when resolving data conflicts
in data integration. Usually, but not necessarily, it should be an authoritative dataset.

• Complementary Dataset: contains data which can complement, expand, correct, or
update the Reference Dataset.

• Collective Transportation Data: data related to routes, stops, and schedules of collec-
tive transportation infrastructure available at the same region of the Reference and
Complementary datasets. The most common sources are GTFS files.
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• Features Dataset: various datasets that can be used to enrich the resulting multimodal
transportation network to enable its use in urban computing applications. This dataset
provides features that are related to transportation mode transfer, such as parking lots
or car sharing points, to enable multimodal routing.

Figure 3. An overview of the steps for building the multimodal network.

4.2. Schema Matching for the Reference and Complementary Datasets

The MUTN schema proposed in this work establishes that a transportation network
is represented as a directed graph. The first step of the work is to transform the reference
and complementary datasets into a uniform graph representation, following the proposed
schema. In the resulting network, each segment must begin and end in a junction. There
must be a junction at every segment intersection if the transition from one segment to the
other is possible. For example, in a street network, a road intersection must be a junction,
but the point where a road (segment) intersects a tunnel or a bridge cannot be a junction
since the transition is not possible.

Every junction must represent an intersection or a dead-end to match the MUTN
schema. A cleanup operation should identify useless junctions, i.e., pass-through nodes
that can be removed without altering the network’s topology. When such nodes are
eliminated, the neighboring segments are geometrically merged. This operation can only
be performed if the attributes of the neighboring segments are compatible. A set of
attributes is considered compatible if it differs only in the values that relate to the geometry
of the edge (e.g., length).
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After the simplification process, two new properties are added (or updated) to the
datasets, the length and the orientation of each segment. The length is the size of the
segment’s geometry, in meters. The orientation of the segment is the angle, in degrees,
from the source junction to the target junction considering east = 0, north = 90, west = 180,
south = 270 degrees.

It must be possible to identify the mode (or modes) of transport for the segments in
all datasets. Usually this information is stored as an attribute, else the entire dataset relates
to a single transport mode.

Each dataset can have an arbitrary number of attributes for both segments and junc-
tions. We opted to make manual matches in the case study, but existing semantic schema
matching techniques can be used [88–90].

Finally, the last step is to transform all geometries to use the same coordinate reference
system (CRS). The result of the schema matching are the graphs, GR and GC, representing
the reference and complementary datasets, respectively, with their attributes mapped to
properties from the MUTN data model. The exclusive attributes from the complementary
dataset are kept to be used, if necessary, in the data fusion process. The common attributes
can be used in the data matching step to improve matching results by confirming or
rejecting matching pairs based on available semantic information.

4.3. Data Matching for Network Data

The data matching process works by finding matching pairs with increasing cardinality.
We defined four cardinalities for the matching pairs: full, contains, within, and partial.
Figure 4 shows in a simplified way the possible cardinalities for matching pairs. A fifth
category, called null (one-to-zero cardinality), is used for features that have no match in the
other dataset. This category is of fundamental importance for complementary data fusion,
allowing one dataset to expand on the contents of the other to improve the completeness
of the result. A full match (one-to-one cardinality), occurs when one segment from GR
has an exact counterpart in GC and vice versa, which means that the source and target
junctions of both segments are closer than a threshold and both geometries are similar. In
Figure 4a, the segment r1 from GR has a full match with segment c1 from GC. A contains
match occurs when one segment of GC has the projections of its source and target junctions
located at the same segment in GR. In Figure 4b, the segment r2 from GR has a contains
match (one-to-many cardinality) with segments c2, c3 e c4. A within match (many-to-one
cardinality) is symmetrical to the contains match. It occurs when one segment in GR has the
projection of its source and target junctions located in the same segment in GC. Figure 4c
shows that segment r3 and r4 from GR has within match with c5 from GC. A partial match
(many-to-many cardinality) happens when the source and target junctions of a segment
from GR has its projections in different segments in GC and correspondent segments in
GC also cannot be related to one single segment in GR. In Figure 4d segment r5 has partial
match with segments c6 and c7 from GC.

(a) Full Match (1:1) (b) Contains Match (1:N)

(c) Within Match (N:1) (d) Partial Match (N:M)

Figure 4. Cardinalities of matching pairs.
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The data matching process starts with a list of all possible candidate matching pairs
(LMP) from GR and GC. Next, LMP is analyzed to find full matching pairs, then contains
and within matches, and finally, the remaining non-matched edges are tested to find partial
matching. If semantic information is available, an additional procedure can be triggered to
check the reliability of the matching pairs found and to seek other possible matches in the
non-matched edges.

4.3.1. Building the Set of Candidates for Matching

The first step in the process to find the list of all candidates for matching (LPM) is to
build an R-Tree based spatial index to accelerate the process. The index is created for the
segments in GC. Then, we search for nearby segments in GR. Each segment in GR is buffered
and used to search the index for segments in GC that intersect the segment’s buffer. All
segments from GC that intersect the buffer are inserted in LPM along with the counterparts
in GR as candidate matching pairs, with the following metrics: the difference between
the segment orientations (in degrees) (Db), the distance between the source junction of
both segments (Duu), the distance between the target junctions of both segments (Dvv), the
distance between the source junction from GR and the target segment from GC (Duv), the
distance between the target junction from GR and the source junction from GC (Dvu), a flag
indicating if the buffer of the segment from GR contains the candidate segment from GC
(BGT) and the length difference ratio (Ldr). All segments for which no candidate matching
is found (a null matching) are marked as exclusive to the particular dataset and are not
considered in the next matching steps, but it can be used in the data fusion process.

In the next steps, some metrics are calculated to guide the matching process. They are
Node Proximity, Length Similarity, Angle Similarity.

Node Proximity

The node proximity is used to verify if the source and destination junctions of a seg-
ment r are close enough to the source and destination junctions of a segment c, considering
distance tolerance, td. It is defined as:

Psim(n1, n2) =
dist(n1, n2)

td
(1)

where n1 and n2 are junction in the transportation network; dist(n1, n2) is a function to
calculate the distance between the two junctions, for example, Euclidean distance, and td
is the maximum distance to consider the two junctions as a possible match. There is no
fixed value for td, as it depends on both datasets’ positional accuracy. For example, if both
datasets have a high positional accuracy, a threshold of 5 or 10 m can be used to determine
if a junction is close enough to the other. If the accuracy is low, it may be necessary to use a
higher tolerance.

Length Similarity

The similarity by length considers that merely defining a tolerance based on a ratio of
the difference in lengths is not appropriate. For example, if a segment r1 is 20 m long and a
segment c1 is 16 m long they may match, even with the a 20% difference in length between
them. However, if r1 is 1000 m long and c1 is 800 m long, possibly a 200 m difference is
too high to consider them a match. The same principle applies if we only consider an
absolute value for the difference. Suppose a difference of up to 40 m is used to consider two
segments similar in length. In this case, a r1 edge with 10 m and a c1 edge with 50 m would
be considered a match, which is not desirable. This way, lower and an higher absolute
limits for the difference in length are defined, while intermediate values depend on the
length difference ratio between the segments. The length similarity is defined as:

Lsim =
|lr − lc|

min(tlmax, max(tmed, tlmin))
(2)
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where
tmed = max(lr, lc)× tratio (3)

and lr and lc are the lengths of segments r and c, respectively. The tlmax and tlmin are the
maximum and minimum absolute distance tolerance value, respectively; and tratio is the
tolerance value, in terms of the ratio between lr and lc.

Angle Similarity

The angle similarity establishes if the difference of orientation angle of segments r and
c is smaller than a threshold. It is defined as:

Bsim =
|Db|
tbmax

(4)

where Db is the angle between segments r and c, and tbmax is the threshold difference (in
degrees) to consider the orientation angle of both segments to be similar. For example,
a tbmax of 15 degrees means that segments with angle differences up to 15 degrees are
considered similar in orientation angle.

4.3.2. Finding Matching Pairs

The process of finding matching pairs works iteratively, searching for matches ac-
cording to their cardinality. First, full matches are searched, then the contains and within
matches, and finally the partial matches. Matching results are stored in hash lists keyed by
the segment or junction ID for efficient retrieval.

A full matching occurs when one segment r in GR, with rs and rt as source and target
junctions, respectively, corresponds to exactly one segment c in GC , with cs and ct as source
and target junctions, respectively. The candidates list LPM is used to find full matching
pairs, which are identified by checking if the values for length, angle similarity and node
proximity, Psim(rs, cs) and Psim(rt, ct), are all less than or equal to one. The segments that
satisfy this criterion are marked as a full matching. If a segment r has more than one
candidate segment in GC for full matching, the one with the largest name similarity is
chosen. In the case of a new tie, the candidate segment with the shortest distance is chosen.
The candidate segments not chosen are available for new matching.

If a candidate pair fails the full matching test, the verification for the contains and
within matching types occurs. A contains matching is established when one segment r from
GR corresponds to one or multiple segments from GC, and these segments in GC entirely
fit the geometry of r, so we can say that r contains the segments from GC. A segment pair
(r, c), where r ∈ GR and c ∈ GC, is a contains match if r strictly contains c, and the segment
in r that corresponds to c (the projection of c in r) has Lsim and Bsim less than or equal to
one. We defined that segment r strictly contains c if cs and ct have a valid projection in r,
and, if the projection of cs in r is equal to rs, then P(rs, cs) must be less than one, and, if
the projection of ct in r is equal to rt, then P(rt, ct) must less than one. An edge can have a
within relation with only one other segment. When multiple candidates appear, the pair
with the smallest distance is selected.

To find partial matches, we check if only one of the junctions of a segment c, cs or
ct, have a projection inside segment r. Considering r′ as the part of r representing the
projection of c in r, and c′ the part in c representing the projection of r in c, if r′ and c′ have
Lsim and Bsim less than than one, then r and c partially match each other.

4.3.3. Selection of Exclusive Features from the Complementary Dataset

After the matching process, the GC features that had no match (null matching) in GR
are analyzed for a possible data fusion operation with GR. This operation is also called
conflation in the literature [34,61,76,91,92]. Merging one dataset’s exclusive data into the
another allows complementing the data in the reference dataset and improving its coverage
and completeness. The next section details the fusion process.
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4.4. Data Fusion for Network Data

In this stage, the data fusion occurs in two ways: redundant and complementary. In
the redundant data fusion, the matched features can have their attribute values updated.
For example, if two road segments are matched, the value for a name attribute of one feature
can be used to update the other. One problem that arises is how to define the attribute
value of the feature resulting from the fusion of features. There is no single strategy, and
cases may vary depending on the characteristics of the data sources and the purpose for the
data fusion. When dealing with authoritative and crowdsourced data, the default strategy
is to use the trust your friends technique from the conflict resolution category (see the data
conflict taxonomy in Bleiholder and Naumann [85]) to give preference to the authoritative
data source. If the value is not present in the authoritative data, a take the information
strategy from the conflict avoidance category can be used to take the value available from
other source, when available.

The complementary data fusion techniques are used to complement a dataset with
features from other datasets without a correspondence (null matches). In this case, a fully
automated process is complex and may be subject to errors that must be verified by humans.
In this work, the complementary fusion at this stage is used in two situations: missing
driving directions information and inclusion of connected segments for which no match
was found.

To detect missing driving directions, the road segments for which there are matching
candidates that could not be matched are analyzed. If, for instance, there is a mismatch
due to the angle similarity metric, and the angle difference is close to 180 degrees, then the
segment is considered an erroneous driving direction, and a new segment is inserted.

The data fusion process to include sets of connected segments that did not match
checks if there are any connections of previously matched segments to any segment from the
set. If connections exist, they are inserted in the reference dataset and connected. Otherwise,
the junctions in the set closer than a distance tolerance (td as default) from a junction or
segment in the reference dataset are connected. The new segments created to connect the
sets of segments receive a flag ‘needs_review’ to indicates they need further validation.

4.5. Creation of the Collective Transportation Network

The creation of a collective transportation network dataset has particularities that
must be taken into account. First, unlike individual transportation networks, collective
transportation routes are defined with a specific schedule. Second, the actual physical
path taken by a vehicle in collective transportation is not always available; however, it is
possible to collect data regarding the lines and their sequence of stops. A currently adopted
standard for collective transportation information dissemination is GTFS files.

The proposed data model allows building a public transport network with pre-defined
routes through Connection Node, Route, RouteSegment, and Timetable classes by mapping
GTFS data to the proposed schema. A Route stands for a path through a sequence of
collective transportation stops. Each stop is represented as a ConnectionNode as they allow
a change in the mode of transport (WALK→BUS). The GTFS file allows the grouping of
stops in stations. When building the collective transportation network for the proposed
data model, the same station’s stops are unified in the same ConnectionNode represented
as a station. When leaving a route, the user can change the transport mode (BUS→WALK)
or make a connection to another route (BUS→BUS). To enable inter and intra-modal
routing, each ConnectionNode used by several routes is duplicated (one for each possible
route), and TransferSegments of type InterTransfer are created to enable the assignment
of a cost when a collective transportation user makes the connection. The connection of
ConnectionNode to the individual transportation network is made according to the possible
mode of transport. Generally, the collective transportation network will be connected to
the pedestrian (street) network through TransferSegments of type OuterTransfer. For each
RouteSegment, the corresponding Timetable is created containing the information of days
and times of arrivals and departures of a vehicle traveling along a certain route.
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4.6. GeoFeatures Matching and Duplicates Removal

Geofeatures can appear in the MUTN data model as points, lines, or polygons. The
task of consolidating data from different sources for the features is complex. For example,
Geofeatures represented as points have no geometric attributes that can identify duplicates
beyond their position. Therefore, the use of semantics in the matching process is always
necessary. Even so, the task remains hard to be fully automated because features have
different sets of attributes, attributes that represent the same information appear with
different names or data types, attribute values may be in different languages, among
other challenges related to automated schema matching. In this work we only deal with
PointFeature matching.

To identify duplicates, the strategy is to compare PointFeatures close to each other
at an arbitrary tolerance distance and with similar names (all GeoFeatures must have a
value for the name property, null values are not allowed). The Levenshtein distance is
a widely used similarity metric to compare names. However, its results are sensitive to
the order in which the words appear in the strings, to punctuation, and to lowercase or
uppercase letters. For example, a place p1 named “Capitólio Estacionamento” and another
p2 named “Estacionamento Capitolio” has a normalized Levenshtein similarity of 0.58.
Crowdsourced data has great variability in the attributes whose values the user can provide
freely. To minimize this variability and improve the matching results, we pre-process the
names before using the Levenshtein distance. First, the names are converted to lowercase
characters, and the punctuation is eliminated by tokenizing the strings. The tokens are
then sorted alphabetically and concatenated. Then the Levenshtein distance is calculated
and normalized. The name similarity, Nsim, can be expressed as Equation (5):

Nsim(p1, p2) =
(length(p1.name′) + length(p2.name′))− levenshtein(p1.name′, p2.name′)

length(p1.name′) + length(p2.name′)
(5)

where length is a function to return the number of characters of the string representing
the name of the PointFeature, and name′ represents the processed name of the feature after
conversion to lowercase characters, tokenization, sorting and concatenation. Applying
Nsim to the previous example of p1 and p2 results in a value of 0.98.

PointFeatures p1 and p2, with the same FeatureClass that are close enough to each
other and have similar names according to a given tolerance (tname), are considered to
be duplicated. If Psim(p1, p2) (Equation (1)) is less than than one, p2 is automatically
considered a duplicate. If not, those points that names have Nsim(p1, p2) with value of
tname or more are considered duplicates until a distance up to dm (distance multiplier) times
the td (distance tolerance). Formally, the isDuplicate(p1, p2) function is defined as:

isDuplicate(p1, p2) =

{
true, if (Psim(p1, p2) ≤ 1) or (Psim(p1, p2) ≤ dm and Nsim(p1, p2) ≥ tname)
f alse, otherwise.

(6)

4.7. Selection of ConnectionNodes

ConnectionNodes are selected from the GeoFeatures. To create the multimodal trans-
portation network, we select GeoFeatures types that can be used to change the mode of
transport. For example, parking lots can be used in the transition from car to rail transport
mode, and vice versa.

4.8. Creation of Transfers between Transport Modes

The points to be used as ConnectionNodes are classified according to the mode of
transport from which a transition in and out can occur. For each set, connections are created
by looking for the Junction closest to the position of the ConnectionNode and creating a
TransferSegment of type OuterTransfer. For example, a set of ConnectionNodes that will
be used to transition from DRIVE to WALK will be connected to the DRIVE network via an
incoming OuterTransfer and to the WALK network via an outgoing OuterTransfer segment.
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4.9. Linking GeoFeatures to the Multimodal Urban Transportation Network

The MUTN data model allows us to store GeoFeatures for different applications. For
those that are not directly related to routing, it is not necessary to create Junctions for them.
Instead, the GeoFeatures are created, and the class NetLocation is used to store where in
the transportation network a GeoFeature can be reached. This way, the MUTN data model
is kept stable without excessive partitioning of the segments to create links to GeoFeatures.

5. Case Study

To test the validity of the framework, a multimodal urban transportation network for
the Brazilian city of Belo Horizonte was built. Data from different sources were used and
integrated to allow the creation of multimodal routes. Official (reference) and alternative
(complementary) datasets were used. Datasets were considered official if their provider
is an agency connected to the public administration, otherwise they were considered to
be alternative. First, the datasets’ schemas were mapped to the MUTN proposed schema.
Second, datasets were integrated using data matching and fusion techniques to build
the individual transportation network dataset. Then, GTFS files were used to build the
collective transportation network dataset. Finally, data from additional and heterogeneous
sources were integrated to establish ConnectionNodes between modes of transport. The
resulting multimodal urban transportation network was used to find routes among eighty
points using DRIVE, WALK, and TRANSIT transportation modes. The routes created
were then compared against the equivalent Google Maps routes. The experiments were
conducted on a laptop computer with Intel Core i5-9300H processor, 1TB hard disk, 20 GB
RAM, PostgreSQL 11.7 (64-bit) with extensions PostGIS (3.0.1) and hstore (1.5) enabled.
All the methods were implemented using the Python (3.8.5) language. Figure 5 shows an
overview of the procedures executed in the case study.

Figure 5. Case study overview

The remainder of this section describes the datasets used in the case study, and
explains how they were integrated to build the MUTN. Section 6 discusses the results.
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5.1. Datasets
5.1.1. Alternative Datasets

This work used data from OpenStreetMap, Yelp, Foursquare, Google Places and
Facebook Places as alternative datasets.

OpenStreetMap (https://www.openstreetmap.org/ (accessed on 21 june 2021)) (OSM)
is a crowdsourced mapping platform to which any person in the world can contribute.
OSM data are represented by only three different types of objects: nodes, ways, and
relations. A node represents a geographical point. It has, at least, an ID number (osmid)
and the geographical coordinates as latitude and longitude values (EPSG = 4326). A way
represents linear features (streets, rivers) or area boundaries (buildings, forests, lakes) and
is formed by an ordered list of between 2 and 2000 nodes. When the way represents an
area boundary, the first and the last nodes have to coincide spatially. The area can be solid
(e.g., a building) or not (e.g., a roundabout), and the tags associated with the way have to
be examined to define its type. Relations represent a relationship between two or more
other OSM elements (nodes, ways, or other relations). For example, an area boundary with
a hole can be represented as a relation between two ways representing areas. A relation is
an ordered list of the objects it contains, which are called the relation’s members.

Attributes in OSM use a free tagging system that allows the inclusion of an unlimited
number of attributes to each feature. This system is very flexible, but makes querying
and manipulating data harder [13]. The tags are organized as key-value pairs, but there is
no formal convention to use them. Informal rules emerge from community usage, in the
form of agreements to use some keys and values to describe specific elements. Frequently,
the community of contributors draws up proposals to approve new tags, but this not
guarantee their proper or universal use. In the end, the “crowd” defines what and how to
use these elements.

OSM data was downloaded from Geofabrik (https://download.geofabrik.de/south-
america/brazil/sudeste.html (accessed on 7 July 2020)), a service that hosts OSM extracts
for several regions. Data used in this case study represent a snapshot from 1 July 2020.
The data was clipped to include only the objects inside the polygon representing Belo
Horizonte’s city boundary. However, looking at the collective transportation data, several
points along bus routes fall outside the official city limits. This way, we used a buffered
version of the polygon (it was necessary to expand the original polygon in 1200 m) to clip
the original data. The resulting OSM dataset representing the road network includes 33,348
road segments totaling 7,053,116 m.

Facebook Places (DFP), Google Places (DGP), Yelp (DYP), Foursquare (DFS) and OSM
(DOP) were used as sources for points of interest. All services provide APIs for data queries.
However, there are limitations on the volume of queries that can be executed at a given
time (for DFP, DGP, DYP and DFS). The collection was assembled by querying reference
points 25 m away distributed as a grid across the available area. Data for each service
were cleaned to eliminate duplicates (see Section 4.6) and stored. For instance, the number
of points representing parking lots was initially 1613. After cleaning and elimination of
duplicates, the total count dropped to 1238 (Table 1). Facebook Places and Yelp contributed
with a relatively small amount of data. However, some of them were unique, and so we
chose not to remove them from the data integration process to get a more complete result.

5.1.2. Official Datasets

Four official datasets were used. The first dataset, called “Classificação Viária” (HV),
stores data about functional classification for each road segment. The second dataset, called
“Trecho Logradouro” (TL), contains the name of each road segment. These two datasets
have relational integrity constraints defined, thus it is straightforward to join information
of both datasets using relational database operations (HVTL). The third dataset, called
“Circulação Viária” (TC), has data about the city street network. Each segment is related to
an origin and a destination node. Street data corresponds to a directed graph using two
edges to represent two-way streets, which causes many duplicate nodes at intersections,

https://www.openstreetmap.org/
https://download.geofabrik.de/south-america/brazil/sudeste.html
https://download.geofabrik.de/south-america/brazil/sudeste.html
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used to represent turn permissions. There is no way to link a segment in TC to a segment in
HVTL only using attribute values, so it is necessary to use spatial data matching operations
to integrate the data from both datasets. All three datasets are part of Belo Horizonte’s
Spatial Data Infrastructure (http://bhmap.pbh.gov.br/ (accessed on 9 July 2020)), created
and managed by the city’s administration.

The fourth dataset is the set of GTFS files provided by the city’s traffic department,
BHTrans (https://dados.pbh.gov.br/dataset/gtfs-estatico-do-sistema-convencional (ac-
cessed on 3 July 2020)). The data used is from 29 July 2020, has 9328 stops, 643 routes,
56,771 trips, and 3,202,454 timetable entries for each trip at each stop. Table 1 shows an
overview of the number of point and line objects gathered from official and alternative
datasets and the results after schema matching procedures.

Table 1. The number of points and lines from datasets before and after schema matching procedures.

Dataset Raw Data After Schema Matching
Points Lines Points Lines

TC 146,542 231,112 145,625 125,554
HVTL — 54,354 40,287 111,740
GTFS 9328 — 35,250 322,122
OSM 123,308 260,265 47,458 127,656

DOP (OSM-parking lots) 317 — 49 —
DGP (Google Places) 918 — 857 —

DFP (Facebook Places) 6 — 5 —
DSY (Yelp) 52 — 31 —

DSF (Foursquare) 320 — 296 —

5.2. Schema Matching Procedures

The schema matching process starts by creating a directed graph representation of the
datasets to match the proposed MUTN schema. The TC dataset is already in the proper
format, since it has a segment for each direction, and each segment has a source and
destination junction. However, TC dataset has segments that do not follow the physical
counterpart in real world, which are used to represent the allowed turns between segments.
These segments were used to build the TC network, but were not considered in the data
matching process. After schema matching, the TC dataset had 145,625 nodes (junctions)
and 125,554 lines (segments) (Table 1).

The network structure to represent HVTL had to be built, since only the segments’
geometry was available. A junction was created for each segment intersection and the
respective segments received the attributes for their source and target junctions. There was
no information to infer the traffic flow in HVTL. This dataset was used primarily to transfer
information about road functional classification, road names and exclusive pedestrian
segments to the MUTN data model. After schema matching the HVTL dataset had 40,287
points (junctions) and 111,740 lines (segments) (see Table 1).

OSM data required some transformations to match the MUTN data model. Road
segments representing two-way streets in OSM were duplicated and inverted to create
two one-way segments. An OSM way feature was considered oneway if it has a tag
oneway with any of the values: yes, true, 1 or −1. In the case of value −1, the direction of
the segment was reversed. Source and target junctions are not readily available in OSM
dataset. Each way in OSM has a nodes attribute, which is an ordered list of all node codes
that compose the way’s geometry. OSM graph is first constructed using all nodes and
then is simplified to eliminate intermediate nodes following the procedures described in
Section 4.2. After schema matching the OSM dataset had 47,458 points (junctions) and
127,656 lines (segments) (see Table 1).

Data from Foursquare, Google Places, Facebook Places, OSM, and Yelp were selected
from their respective datasets, filtering only those that corresponded to parking locations.

http://bhmap.pbh.gov.br/
https://dados.pbh.gov.br/dataset/gtfs-estatico-do-sistema-convencional
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We manually identified the attribute values needed to filter the data in each dataset correctly.
For example, the data in OSM was filtered using the tag value amenity = parking. The
resulting number of points from each dataset is shown in Table 1.

5.3. Data Matching and Fusion between OSM and HVTL

The data matching procedure find corresponding pairs of segments in the datasets.
First, the matching is done between OSM and HVTL datasets following procedures pre-
sented in Section 4.3.2. The resulting matching pairs are used to fuse the data between
the datasets. The OSM dataset contributed with information about the mode of transport
allowed in each segment (derived from the tags). The HVTL dataset was used as a source
for checking the information of the segments’ names and functional classification. It was
also used as a source of additional pedestrian segments.

Table 2 shows the number and total length (in meters) of segments in each dataset that
were matched discriminated by the type of matching. This information can characterize the
potential of each dataset to contain complementary or redundant data relative to the other,
but does not show whether the matches are correct or not (see Section 5.5). Approximately
69% of the segments and total length of OSM and 86% of the segments and 91% of the total
length of segments in HVTL were matched. The high rate of segments and length matched
in HVTL indicates that it will contribute mostly as redundant data in the data integration
process, while OSM has more complementary information to contribute.

Table 2. Number and length (meters) of segments matched between OSM and HVTL datasets.

OSM HVTL

Count % Length % Count % Length %

full 49,010 38 4,620,917 37 49,010 44 4,624,037 49
contains 10,055 08 1,565,083 12 7805 07 1,004,634 11
within 9877 08 740,788 06 18,113 16 1,000,159 11
partial 18,678 15 1,776,123 14 21,495 19 1,939,919 21

Matched 87,620 69 8,702,913 69 96,398 86 8,568,751 92

Once the matching pairs have been established, the fusion procedure for the datasets
takes place. Three attributes were used in the fusion process: width, level, and name, which
represent the width, functional classification, and the segment name, respectively. OSM
dataset had few segments with width value (115). In this case, the fusion strategy was to
rely on data from the HVTL dataset. In case of difference in values, if the same segment is
involved in more than one matching pair, the new value for width is calculated by averaging
the values found. A total of 87,532 segments had their width value assigned or updated.

During the schema matching phase, each dataset’s attributes representing the level
value in the MUTN data model were mapped to corresponding values. Table 3 shows the
correspondences in the values. In the OSM dataset, the values in the table represent the
contents of the ‘highway’ tag for the segments. In the HVTL dataset, the values represent
the contents of the ‘desc_class’ attribute. The fusion strategy adopted was to consider the
lowest level in case of disparity to prevail over the most restrictive classification in terms
of speed allowed in the segment. At the end of the process, 2553 segments had their level
values updated.

The OSM dataset has 3438 segments with no value for the name attribute among those
with a corresponding pair. When merging the name attribute, a strategy was adopted
to update the values only when the corresponding pair’s value had a similarity below
80% (Equation (5)). In this case, the name value of the dataset HVTL was preferred, since it
is an official source (Trust your friend fusion strategy). For partial or contains matching, the
HVTL dataset values were considered only when more than 50% of the segment length was
matched. At the end of the process, 2813 segments had new values for the name attribute,
and 10,599 segments were updated.
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Table 3. Value mapping for attribute ‘level’ in the segments of the MUTN data model.

MUTN OSM HVTL
Level Highway Desc_Class

1
residential, unclassified, service, services, construction,
corridor, crossing, cycleway, disused, dummy, footway,
industrial, living_street, path, pedestrian, steps, track

local

2 secondary, secondary_link, tertiary, tertiary_link coletora

3 primary, primary_link arterial

4 motorway, motorway_link, trunk, trunk_link ligação regional

The last procedure in the fusion between OSM and HVTL datasets was the insertion of
exclusive pedestrian segments from HVTL. The segments were identified by the attribute
values ‘tipo_lograd’ equal to ‘VIA DE PEDESTRE’ (walkway), ’BECO’ (alley), or ‘TRAV-
ESSA’ (a narrow cross-street). Even if some of these segments could be used for motor
vehicles, they were considered only for pedestrian use. There was not enough information
in the HVTL dataset to guarantee, for example, whether or not a segment could be used by
cars and which would be its correct driving direction.

In the fusion strategy, the exclusive pedestrian segments in HVTL that did not match
with one in OSM were grouped into connected components. For each connected component,
Junctions were detected that were within a tolerance distance of some segment of the OSM
dataset. If it exists, the respective segments are connected, and the entire group is integrated.
If not, all the connected component is disregarded. Figure 6 shows segments from OSM
dataset (in black) and the segments from HVTL that were successfully integrated (in green)
and the ones that were dismissed (in red). In this process, 5591 HVTL segments were
found grouped into 1219 connected components. The resulting dataset from the fusion was
named DSA and had 136,675 segments, 51,179 junctions, and a total length of 12,694,791 m.

Figure 6. Exclusive pedestrian segments from HVTL integrated with OSM dataset. Segments in black
represent the OSM original dataset. Segments in green represent the exclusive pedestrian segments
in HVTL that were integrated with OSM. The ones in red were not integrated as they are far from
any segment in OSM. The UTM bounding box of this area is (606,757.440, 7,793,281.679, 610,038.036,
7,794,457.742) with EPSG = 31,983.

5.4. Data Matching and Fusion between DSA and TC

The integration between DSA and TC follows the same procedures used in the fusion
between OSM and HVTL. First, the matching pairs are found. At this stage, only the DSA
segments (DSAd) that allow motor vehicles were considered since in the dataset TC there
is only this type.

Table 4 shows the number and total length (in meters) of segments that were matched
between the DSAd (only segments for motor vehicles) and TC datasets, discriminated by the
type of matching. Approximately 64% of the segments of DSAd and 96% of the segments
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in HVTL were matched. DSAd had most of the matched segments of type contains, which
is in line with the high rate of within matches in the TC dataset. The results indicate a more
significant fragmentation of TC segments, but the high overall rate of matched segments
suggests it is a source of redundant data to the data integration process. These matching
results shows that correspondences were found among the segments of the dataset, but
does not confirm if it was correctly matched or not. Section 5.5 presents the quantitative
evaluation of the matching process to assess the quality of the matchings.

Once the matching pairs were found, they were used to check the driving direction in
DSAd. For this purpose, we analyzed all the segments in DSAd that had a match, but that
their equivalent in the opposite direction did not. Using this approach 1300 segments with
the incorrect direction were found and removed from DSAd. The DSA dataset, with the
removal of the segments in the wrong driving direction, was named DSB.

Table 4. Number and length (meters) of segments matched between DSAd and TC datasets.

DSAd TC

Count % Length % Count % Length %

full 4346 4 294,352 2 4346 3 273,233 4
contains 57,320 47 6,375,217 53 2697 2 396,296 5
within 3836 3 209,065 2 64,461 51 5,132,231 68
partial 12,131 10 1,051,726 9 49,777 40 1,528,043 20

Matched 77,633 64 7,930,362 66 121,272 96 7,329,804 97

5.5. Quantitative Evaluation of Data Matching Results

To quantitatively evaluate the data matching process, we conducted a manual match-
ing of a random sample of 400 features for each process, OSM-HVTL and DSAd-TC, and
compared the respective results This sample size gives us a 95% confidence interval with
less than 5% margin of error. The samples were selected in QGIS using the random selection
tool. Then, each selected feature was manually matched by visual inspection. The results
were then compared with the data matching processes for OSM-HVTL and DSAd-TC. Two
evaluation metrics were used, precision and recall, defined by Equations (7) and (8):

precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

where True Positive (TP) is the number of segment pairs corrected matched. False Positive
(FP) is the number of segment pairs wrongly matched. False Negative (FN) is the number
of segment pairs missed by the data matching process. The intuition is that precision relates
to the correctness and recall to the completeness of matching.

The data matching process between OSM and HTVL had a precision of 97.7% and
recall of 96.7%. The results for the matching between DSA and TC was of 98.2% and 97.7%,
for precision and recall, respectively.

5.6. Creation of the Collective Transportation Network from GTFS

Although OSM can represent the geography of collective transportation, it lacks
information to be effectively used for route planning. For example, OSM data has only
1457 bus stops (nodes with tag highway = bus_stop), while GTFS data for Belo Horizonte
has 9328 stops. Furthermore, although there are some proposals to store timetable data in
OSM, it is not clear if the community will embrace it, since it violates some principles on
not including temporal and seasonal features. Hence, we rely on GTFS data to build the
collective transportation transport network dataset to be integrated into MUTN.
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The processing of GTFS files for Belo Horizonte follows the steps described in Section 4.5.
For each stop-route combination, a Junction is created. Then, TransferSegments are cre-
ated to connect each Junction, which represents the same stop. This way, we can create
TransferSegments between the routes.

For each segment of a route, a transition between two stops, a RouteSegment, is
created. Each RouteSegment has an associated timetable object with all departure times
assigned to that route between the two stops (in GTFS, this is represented as a trip). It
is common that the GTFS files do not to have the complete departure time data for each
stop, since it is only mandatory for them to be present at the first and last stop. In this
case, each stop’s estimated departure time was interpolated using the total time spent on
the route by the number of stops. Then, each timetable object of each TransferSegment
between ConnectionNodes representing collective transportation stops is fulfilled with all
departure times from one stop to another and the traversal time (in seconds).

A collective transportation stop is where a change in transportation mode can occur,
which means it is a ConnectionNode in the MUTN. This way, each stop is connected to
the closest segment that allows the pedestrian transportation mode. TransferSegments are
created, both inbound and outbound, for each ConnectionNode and its nearest pedestrian
segment. The numbers resulting from creating the collective transportation network for
the MUTN were shown in Table 1. The total number of ConnectionNodes was 35,250, and
TransferSegments was 322,122.

5.7. Integration of ConnectionNodes into MUTN

The creation of ConnectionNodes used data from five datasets: OSM (DOP), Yelp
(DSY), Facebook Places (DFP), Google Places (DGP), and Foursquare (DSF). The points
from all datasets identified as parking lots were selected. In the case of DOP, it is possible
to find parking lots also represented using area features. For them, a point inside the area
is automatically generated to represent the parking lot as a ConnectionNode.

The integration of the points uses two criteria (as seen in Section 4.6): the node
proximity and the name similarity. For the case study, we used a distance tolerance (td) of
5 m. So, if two points were less than or equal to 5 m from each other, they were considered
to be duplicates. Else, up to 20 m (dm = 4, which means four times the tolerance), the name
similarity (Nsim) is executed, and any two points with a similarity of 0.8 (tname) or more are
considered to be duplicates. The values for td, dm, tname were determined empirically.

After processing, 1238 ConnectionNode were created. The integration of these points
into the MUTN was made using information on the possibility of change of transport
mode at the TranferJunctions. We considered the parking lots as a local to change from
DRIVE (motorized vehicles) to WALK (pedestrian). For each one, we identify the nearest
segment with transport mode DRIVE and connect them with a TransferSegment of type
OuterTransfer (DRIVE→ ConnectionNode). Similarly, we find the nearest segment with
transport mode WALK and connect to the ConnectionNode (ConnectionNode→WALK).

After this integration step, the MUTN is almost complete, and is necessary to associate
traversal costs for the segments to enable calculation of multimodal routes. Our approach
was to use the time in seconds to traverse the segment as the default cost.

5.8. Cost Assignment to Segments

The maximum speed and segment length are required for the cost calculation. Only
5.72% of the segments have a value for the maximum speed assigned. For segments that
do not have an assigned value, a default value is derived from the segment’s functional
classification (level). The Brazilian traffic code (http://www.planalto.gov.br/ccivil_03/leis/
L9503Compilado.htm (accessed on 7 August 2020)) establishes four different classifications
for urban roads: fast, arterial, collector, and local traffic. Each of them has a maximum
speed of 80 km/h, 60 km/h, 40 km/h, and 30 km/h, respectively, if there is no signal
indicating otherwise. If there is already a speed indication for the segment, the lowest
value is used. However, a vehicle does not move at maximum allowed road speed all the

http://www.planalto.gov.br/ccivil_03/leis/L9503Compilado.htm
http://www.planalto.gov.br/ccivil_03/leis/L9503Compilado.htm
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time, and there are many variables that affect its speed, such as type of vehicle, time of day,
weather conditions, and school hours. We adopted a value of 65% of the maximum speed
for the cost calculations. This value is an estimation based on radar data from BHTrans
(https://dados.pbh.gov.br/dataset/contagens-volumetricas-de-radares (accessed on 7
August 2020)).

For pedestrians, an average walking speed of 4.8 km/h was used [93]. The segments
for collective transportation already have time in seconds of transition between their points
defined in GTFS files. These values were used as the cost of the segments. For segments that
represent transfer between routes in collective transportation (InterTransfers), a cost of half
of the interval between departures on the destination route was used. For the study case,
only parking lots were used as possible points to change the mode of transport between
DRIVE and WALK modes (OuterTransfers). The time spent to park a car varies widely
depending on location and time of day, and it is difficult to estimate it accurately [94,95].
For the case study, we empirically set a cost of 300 s when a transition happens.

5.9. Multimodal Routes Using the MUTN

After the segment costs were defined, the MUTN had all the necessary information to
generate routes using different transport modes. In the case study, the possible transitions
between transport modes are from walking to collective transportation (and vice versa),
and private vehicle to walking. The first is the typical situation of a collective transportation
user who walks to a station or stops, takes a bus, and possibly changes lines until the end
of their journey. The second case considers a driver who needs an appropriate place to
park their vehicle near the destination.

The possibility of stopping the vehicle on the streets was not considered, only in
specific parking lots. We consider that parking on the streets is already contemplated by
the transportation mode, considering only the private vehicle (although a time penalty
may be applied according to the expected time to find a parking spot near the destination).
Therefore, the MUTN for Belo Horizonte supports routing for DRIVE, WALK, TRANSIT,
and D-W (drive and walk) for the modes of transport of private vehicle, pedestrian,
collective transportation, and private vehicle with the need for parking and walking to the
destination, respectively.

Dijkstra’s algorithm was used to determine optimal MUTN routes based on the
segment costs. Figure 7 shows examples of routes created in the MUTN network
considering DRIVE, WALK, TRANSIT, and D-W modes between the same points
(Origin: (600,421.4768275785, 7,784,595.199524326); Destination: (608,600.8233442156,
7,803,574.252453946); EPSG:31,983).

(a) WALK routing (b) TRANSIT Routing (c) DRIVE Routing (d) D-W Routing

Figure 7. MUTN routing examples (distance in meters).

https://dados.pbh.gov.br/dataset/contagens-volumetricas-de-radares
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6. Results and Discussion

To compare the results obtained by modeling and integrating the data, we created
routes between 80 points spread throughout the municipality area. Each point represents
a location at the MUTN closest to the centroid of each of Belo Horizonte’s planning
units. Planning units are territories formed by the aggregation of census sectors, used
by the public administration in various situations, such as calculating socioeconomic
indicators (e.g., urban life quality, social vulnerability), and distributing participatory
budget resources.

Routes between all pairs of points were calculated for the WALK, DRIVE, TRANSIT
transport modes using MUTN, and Google Maps. Google Maps does not have an option
for car routes looking for parking near the destination, so it was impossible to compare it
with the D-W routing option.

For each route, the time and the distance were calculated using MUTN and Google
Maps. Then, the differences between distances and times were calculated, and finally, the
ratio between the differences and the respective values obtained by MUTN. Table 5 shows
a comparison of the results. The table’s values represent the average of the absolute values
of the ratios for time and distance. The time difference between the routes created through
MUTN and Google Maps was 4.6%, 7.3%, and 17.5% for WALK, DRIVE, and TRANSIT
modes of transport. Simultaneously, the distance difference among the routes was 9.4%,
9.9%, and 19.4%.

To investigate if the distance between the points has any significant effect on the
difference between the routes, we divided the results into ten distinct groups, each one
with 630± 4 elements, and calculated the respective averages. Table 5 shows that the
smallest differences are found in the groups of routes with the largest distances between
the origin and destination. In contrast, the most significant differences occurred in the
group with smaller distances for each mode of transport. A possible explanation for this
situation is that any difference in routes considering a small distance will significantly
impact the difference between them, while for longer distances, small variations in routes
do not have a significant impact.

Table 5. Comparison, by time and distance, between the routes created using the Multimodal Urban Network and Google
Maps. Values represent the average of the absolute ratio difference.

Distance Range (m)
WALK DRIVE TRANSIT

dist_diff time_diff dist_diff time_diff dist_diff time_diff
(%) (%) (%) (%) (%) (%)

(0, 3486] 0.057 0.126 0.111 0.153 0.282 0.248
(3486, 5109] 0.051 0.111 0.089 0.119 0.217 0.201
(5109, 6515] 0.050 0.102 0.077 0.104 0.203 0.188
(6515, 7805] 0.046 0.094 0.071 0.091 0.183 0.185
(7805, 9087] 0.050 0.095 0.076 0.084 0.175 0.182

(9087, 10,448] 0.044 0.087 0.071 0.080 0.163 0.181
(10,448, 11,948] 0.045 0.089 0.068 0.079 0.148 0.175
(11,948, 13,716] 0.041 0.081 0.061 0.079 0.137 0.182
(13,716, 16,320] 0.039 0.079 0.056 0.085 0.137 0.206
(16,320, 26,000] 0.044 0.081 0.051 0.121 0.110 0.202

(0, 26,000] 0.046 0.094 0.073 0.099 0.175 0.194

While the routes for DRIVE and WALK had a difference of less than 10% in both time
and distance, TRANSIT results obtained higher values, of 17.5% and 19.4% of difference for
distance and time, respectively. When investigating some routes with a more significant
difference, we observed that, in certain situations, the MUTN network traced longer routes
than Google Maps. Figure 8a shows the route in which the most significant difference
in relative distance occurred. The Google Maps route uses a path in which there is no
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apparent connection in the map segments, and returned a route length of 4394 m. Routing
on the MUTN network only returns routes by connected segments (Figure 8b). The route
length returned by MUTN was 11,183.68 m. Another hypothesis to explain the difference
in TRANSIT’s routes may be the transition cost between routes or when entering the
collective transportation network that can return different routes from those returned by
Google Maps.

(a) Google Maps route (b) MUTN route

Figure 8. The difference in routes generated by Google Maps (a) and MUTN (b). Google Maps uses a path by apparently
disconnected routes. Origin: (614152.9317131266, 7808868.689015543), destination: (614152.9317131266, 7808868.689015543),
EPSG:31983.

The proposed data model proved adequate as a frame of reference to organize the
process and to integrate the data in a structure that is suitable for the necessary processing.
The final result of MUTN for Belo Horizonte and associated data took up 177 MB of
disk space.

7. Conclusions and Future Work

In this work, spatial data integration methods and a data model to store the results
were proposed. The spatial data integration method is composed of schema matching steps,
data matching, and data fusion. In the schema matching stage, datasets with different
schemas and detail levels are made compatible with the proposed data model. In the
data matching stage, matching pairs are found in the datasets, with different cardinalities,
full (one-to-one), contains and within (one-to-many), and partial (many-to-many). The
segments that have no matching candidate are identified and marked as null matches. In
the data fusion stage, such null matches can be incorporated into the integrated database,
and attributes can be transferred and consolidated. Once the datasets were integrated,
information regarding collective transportation and transitions between modes of transport
were incorporated, also using data integration methods.

The methods were tested on real-world data for the city of Belo Horizonte. Data
from authoritative and crowdsourced datasets were integrated into a multimodal dataset,
containing information that allows performing multimodal routing and analysis in the
urban environment. The routes created in the process were compared with Google Maps,
showing close results. For the routes related to collective transportation that presented a
more considerable discrepancy, we identified that differences could be partially explained
by limitations in Google Maps, which lead to routes that use apparently disconnected
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segments. Another hypothesis raised for the differences relates to the cost estimation
used in the MUTN model. As there is no precise information on how Google Maps gets
its results, a more precise comparison is difficult. Nevertheless, the results obtained can
help in several urban analyses, such as mobility (times, costs, mode options), accessibility
studies, and transit planning. The method is generic and can be used to integrate various
datasets, and the process can be chained to integrate more than two datasets, as shown in
the case study.

Limitations identified for our work include (1) the need to establish reference values
for thresholds in data integration processes; (2) difficulties in matching features with a
large differences as to the level of detail; (3) difficulties in updating the MUTN from
changes in the original datasets, requiring the re-execution of the entire data integration
process; (4) lack of a user-friendly interface for using the framework. These limitations
also indicate directions for future research. The data integration process needs further
study to determine thresholds or tolerance values in the calculation of similarity metrics.
However, the establishment of an optimal value that maximizes correct matches, minimizes
or prevents incorrect matches, and balance performance with results is not simple and
depends on the quality (positional accuracy) and other characteristics of the input data,
such as the road pattern [96]. For example, data of streets organized in gridiron with high
positional accuracy can have a lower threshold for angle similarity than data with lower
positional accuracy or with streets distributed in a loops and lollipops street pattern. The
immediate approach would be to find the values empirically [34]. An approach using
machine learning techniques to determine the optimal values for the thresholds should
be investigated. Another future research need is to find ways to avoid the re-execution of
the data integration process when part of the original data is modified. For OSM data, it
may be possible to leverage the edit history metadata and to incorporate only the changes
into the integrated data view. A current difficulty in using the framework is the lack of
a more user-friendly and intuitive interface. One possibility is the implementation of a
plugin to allow access and use of the framework from open source GIS tools such as QGIS
(https://www.qgis.org/ (accesssed on 7 August 2020)).
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