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Abstract: With the popularity of location-aware devices (e.g., smart phones), a large number of
trajectory data were collected. The trajectory dataset can be used in many fields including traffic
monitoring, market analysis, city management, etc. The collection and release of trajectory data
will raise serious privacy concerns for users. If users’ privacy is not protected enough, they will
refuse to share their trajectory data. In this paper, a new trajectory privacy protection method based
on random sampling differential privacy (TPRSDP), which can provide more security protection,
is proposed. Compared with other methods, it takes less time to run this method. Experiments are
conducted on two real world datasets to validate the proposed scheme, and the results are compared
with others in terms of running time and information loss. The performance of the scheme with
different parameter values is verified. The setting of the new scheme parameters is discussed in
detail, and some valuable suggestions are given.

Keywords: trajectory privacy protection; differential privacy; K-anonymity; exponential mechanism;
laplace mechanism

1. Introduction

Due to the development of information technology, especially the popularization
of intelligent equipment (e.g., smart phones), it is much easier to collect a user’s data,
including trajectory data [1,2]. This data is a valuable resource. This data, including
the trajectory data, may subsequently be uploaded to various service providers after
user permission is granted. On the one hand, the rational use of this data can further
improve travel comfort and user satisfaction. Moreover, this data can also be applied to
traffic monitoring, market analysis, urban management and other fields [3–5]. On the
other hand, without proper protection methods, the trajectory dataset may reveal a user’s
privacy. With the help of auxiliary information, attackers can infer user identity, interests,
habits, religious beliefs, political opinions and other information based on the trajectory
dataset [6,7]. It is highly important to protect private information in trajectory data, and
the privacy protection method should not compromise the data availability [8].

Many privacy protection models have been proposed by researchers, such as K-
anonymity [9] and differential privacy [10]. K-anonymity is widely used in the privacy
protection field. However, it cannot resist background knowledge attack. Differential
privacy makes no assumption about the users’ background knowledge and also supplies a
quantitative analysis of privacy breach risk. Unfortunately, it is hard to get a good result if
differential privacy is directly applied to the original trajectory dataset [11].

Two problems must be addressed before using the differential privacy to protect the
trajectory privacy. The first one is how to improve the efficiency. Trajectory data is a special
kind of big data, and the computational cost of differential privacy is large. If the efficiency
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is low, it will take a lot of time to do differential privacy transformation. In our scheme,
a random sampling process is added to improve efficiency. The second problem is how
to reduce the amount of information loss. The trajectory data is a time series of location
records, each combination of location and time can be used as a quasi-identifier. Any
modification of the original data will result in a loss of information. In our scheme, both
the Laplace mechanism and the exponential mechanism are used. We use fake location
near the cluster center instead of the center of the cluster to replace the real location, which
can reduce the amount of information loss.

Montjoye et al. pointed out in [12,13] that over 90% of the trajectories can be reidenti-
fied using no more than four locations. It is very urgent to design an effective method to
protect the trajectory privacy. The contributions of this paper are summarized as follows.

• An efficient trajectory privacy protection method is proposed in this paper. Different
from others, there is an additional random sampling process in this scheme. The
random sampling process can greatly reduce the amount of records which will be
used to divide the original dataset, and this will significantly improve the efficiency
of this scheme.

• Our scheme can provide more privacy protection without increasing the amount of
information loss. Both Laplace mechanism and Exponential mechanism are used in
our method, which can provide more protection for privacy. Exponential mechanism
is used to select an approximate optimal partition from all the partition results, and
Laplace noises are added to the count of trajectories of each partition. Different from
others, the fake location records are not replace by the cluster centers. Those records
are generated randomly near the cluster centers. If the parameter setting is reasonable,
the scheme can provide more protection than K-anonymous.

• Experiments are conducted on two real-world datasets, and the results show that our
scheme is superior to others. Specially, the loss of information is no more than that of
others, and the efficiency is much higher than that of other schemes. The setting of
the system parameter is discussed in detail, and some pieces of advice are given.

The remainder of this manuscript is organized as follows. Section 2 briefly reviews the
related literature. In Section 3, the preliminaries are introduced. Our method is proposed in
Section 4, and the experimental results are described in Section 5. The setting of the system
parameter is discussed in detail in Section 6, and finally conclude the paper in Section 7.

2. Related Work

Existing trajectory publishing mechanisms can be classified into two types [1,14,15].
The first one is used for publishing a set of trajectories, and each trajectory is regarded as one
record. The second type publish one trajectory and each position in the trajectory is regard
as one record [1,15,16]. In this paper, we will focus on the first type of trajectory data pub-
lishing. Privacy-preserve trajectory data release mainly divide into anonymous [6,17,18],
suppression [17], data encryption [19–23], random perturbation [14,24–26] and others [27].
Cryptography can provide security protection for any type of information. However,
encryption usually takes a long time, and ciphertext greatly limits the use of data. The
scheme proposed in this paper can protect trajectory privacy without encrypting for data.

Researchers have done a lot of works on trajectory privacy protection and got many
valuable results [28]. Most of the trajectory publishing mechanisms are partition-based
privacy models. Differential privacy [14,24–26] and K-anonymity(including l-diversity
and t-closeness) [6,17,18,29] are two important privacy protection methods without en-
crypting data. K-anonymity makes at least k trajectories indistinguishable by clustering or
generalization. K-anonymity is easy to implement, and the damage to the original data is
relatively small [17]. Therefore, many trajectory privacy protection schemes are designed
based on K-anonymity [24,30]. In [31], Abul et al. proposed the K-anonymity model which
is used for preserving location privacy of moving objects. It requires that there are at
least k− 1 other trajectories in the same uncertainty region which are indistinguishable
from each other, where k represents the number of indistinguishable records. In [32],
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K-anonymity is achieved by sensitive attribute generalization and trajectory local sup-
pression. Xin et al. proposed a new K-anonymity which can be used in dynamic datasets
in [6]. In [33], an efficient method for finding the desired anonymity set is proposed in
the GeoSpark environment. The security of k-anonymity method is reinforced by dual
transformation in [34].

However, K-anonymity cannot provide sufficient privacy protection and is vulnerable
to attack [35–37]. It cannot provide protection against background knowledge attacks.
Differential privacy model [1,29], which is one kind of randomization-based privacy model,
is quickly applied in the field of trajectory privacy protection. This model makes no
assumption about the adversary’s background knowledge [15,25,26], and its security can
be proved mathematically. In [14], Jiang K et al. compared three differential privacy
mechanisms by adding noise to the whole trajectory, adding noise to each position and
adding noise to each coordinate, respectively. The experimental results in [14] show that
adding noise to each position is superior to the others. In this paper, we will focus on the
first type of trajectory data publishing, and the differential privacy transformation will be
done by adding noise to each position. In [38], Chen et al. first apply differential privacy
model to trajectory publishing. A noisy prefix tree, which groups the sequences with the
same prefixes into the same branch, is built. With the growth of the prefix tree, there will be
a large number of leaf nodes, which need to add a lot of noise to achieve differential privacy.
However, adding too much noise will greatly reduce the availability of trajectory dataset.
A multi-level query tree is used in [39]. Chen et al. use a variable n-gram model to improve
the utility in [40]. The methods proposed in [38–40] are all data dependent sanitization
mechanism. In [1], Hua J et al. proposed a differentially private publishing mechanism
for more general time-series trajectories, which need not have the prefix tree or n-grams
structure. Adding too much noise may make the trajectory data meaningless. In order
to improve the utility of the dataset, limited noise is used in [15]. Yilmaz et al. proposed
a new privacy-preserving mechanism based on differential privacy and homomorphic
encryption [19]. However, the homomorphic encryption greatly reduces the efficiency of
the scheme.

All the mechanisms discussed above, whether it is data dependent or not, have a
common drawback, which is that the computational cost is large. The method proposed in
this paper can improve the efficiency significantly without increase the loss of information.
In [41], Li et al. pointed out that we can benefit from the adversary’s uncertainty about the
data, so as to improve the security of differential privacy. Their conclusion is that random
sampling is a powerful tool to improve the security of K-anonymity and differential privacy.
In our scheme, the trajectory dataset is divided into sub datasets according to the timestamp
of each location record, and differential privacy transformation is carried out on each sub
dataset. There is an additional random sampling process in our scheme. The random
sampling process is mainly used to improve the efficiency, although it also enhances the
security. The details will be described in Section 4.

3. Preliminaries

If there are more than k records indistinguishable in a dataset, we say that the dataset
has achieved K-anonymity. K-anonymity was proposed by P. Samarati et al. in [9]. There
are mainly two kinds of method to achieve K-anonymity, one is generalization, the other is
suppression. Generalization technique makes the records indistinguishable from others by
generalizing the attribute values of different records to a larger range of allowable values.
Suppression technique makes the records indistinguishable from others by deleting records
or replacing the record value with another. While K-anonymity is used to protect the
privacy of location or trajectory dataset, the cluster center is usually used to replace the
other records. In this paper, the original records are replaced by the fake location records
which are generated randomly in a certain range around the center of the cluster.
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Differential privacy proposed by C. Dwork in [10] has become one of de facto standard
in the research field of privacy protection. It requires that modifying a single record should
have a negligible effect on the query outcome. The formal definition is as follows.

Definition 1. (ε-differential privacy). A randomized algorithm Ag is differentially private if and
only if any two databases D′ and D contain at most one different record (D′ and D are neighbor
datasets), and for any possible anonymized output O ∈ Range(Ag)

Pr[Ag(D) = O] ≤ eε × Pr[Ag(D′) = O] (1)

where Pr[∗] is the probability that algorithm Ag outputs a certain value, and ε is the differential
privacy budget. The smaller the value of ε, the stronger privacy protection can be provided by
differential privacy. There are mainly two techniques for achieving differential privacy. One is
Laplace mechanism [42], the other is Exponential mechanism [43].

Definition 2 (global sensitivity). For a given function f : D → Rd, its global sensitivity is

∆ f = maxD,D′ ‖ f (D)− f (D′) ‖ (2)

where D and D′ are neighbor datasets (D′ and D differ in a individual record).

Laplace mechanism is always used for the functions whose outputs are real. Proper
Laplace noises are added to the real outputs to achieve differential privacy. The Laplace
noises are generated according to a Laplace distribution Lap(µ, ∆ f /ε). The probability

density function is Pr(x|µ, ∆/ε) = 1
2∗∆ f /ε e

−|x−µ|
∆ f /ε where µ is the mean of this distribution,

and the value is always zero. ∆ f is the global sensitivity, and ε is the privacy budget. While
the value of µ is zero, we use Lap(∆ f /ε) to denote Lap(µ, ∆ f /ε).

Theorem 1 ([43]). For any function f : D → Rd, the mechanism

A(D) = f (D) + Lap(∆ f /ε) (3)

achieves ε− di f f erential privacy.

Exponential mechanism proposed by Mcsherry F et al. in [43] is mainly used for the
queries whose output values are non numeric. A score function u : (D× τ)→ R is defined,
and each output r is assigned a real value score. The probability of output result r ∈ R is

proportional to e
εu(D,r)

2∆u , where ∆u = max∀r,D,D′ |u(D, r)− u(D′, r)| is the sensitivity of the
score function. As a result, the outputs with higher scores will be more likely to be output.

Theorem 2 ([42]). For any function u : (D × τ) → R, if the mechanism chooses an output

r ∈ R (R is the output domain) with the probability proportional to e
εu(D,r)

2∆u , the mechanism satisfies
ε− di f f erential privacy.

There are two important properties of differential privacy. The first is named sequential
composition. A sequence of differential privacy transformations are done on the same
dataset independently. The whole transformation provides differential privacy, and the
privacy budget is accumulated. Theorem 3 gives a formal description. The second is known
as parallel composition. Several differential privacy transformations are done on disjoint
sub dataset, respectively, the whole transformation also provides differential privacy, and
the privacy budget is determined by the worst case. The formal description is shown in
Theorem 4.
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Theorem 3 ((sequential composition) [15]). Let function fi each provide differential privacy,
and the privacy budget εi is, respectively. Then running in sequence all functions fi over a database
D provides ∑i εi − di f f erential privacy.

Theorem 4 ((parallel composition) [15]). Let function fi each provide differential privacy, and
the privacy budget is εi. Then applying each function over a set of disjoint databases Di provide
maxi{εi} − di f f erential privacy.

4. Trajectory Database and Privacy Protection Method
4.1. Method Overview

A trajectory is a trace history of one user. It is a sequence of time and location tuples.
A trajectory is marked T = (l1, t1) → (l2, t2) → · · · → (l|T|, t|T|), where |T| denotes the
number of locations of T. li is a spatial point, and ti is the timestamp of the location record
(li, ti). A user may arrive at the same point at different time, which means that one location
in the same trajectory may appear more than one time. A trajectory database D contains
many trajectories, and the size is denoted as |D|. Each record in D corresponds to one
trajectory, and the length of different trajectory may be different.

There are three main steps in this scheme. First of all, trajectory dataset is divided into
different sub datasets. In the same sub dataset, the timestamp value of each location record
is the same. The second step is to divide sub dataset into different clusters. ϕ clustering
results will be generated, and one of partition results will be selected according to the value
of score function. Finally, Laplace noise is added to the count of different clusters. Specially,
in the second step, there is an additional random sampling process in this scheme, and the
method how to divide the original dataset is modified accordingly.

An example is shown in Figure 1. There are six trajectories marked T1, T2, · · · , T6 in
the trajectory database, which is divided into three sub datasets according to the value of
its timestamps. Random sampling is performed on the sub dataset to obtain the dataset srs.
The dataset srs is clustered using K-means algorithm, and the original dataset is divided
into several clusters according to the distance from the cluster centers of srs. For instance,
suppose L1, L2, L5 and L6 are selected in sub dataset t1. According to K-means clustering
results, the region is divided into two partitions. L1

1 and L1
2 are the centers of the two

partitions, respectively, and then all the records including L3 and L4 are classified into
the two partitions according to the distance between the records and the partition centers.
Finally, the original location records are generalized to random location records which are
generated by adding noises to the cluster centers. The original database is shown in Table 1.
After clustering and generalization, the final released database is shown in Table 2. T2 and
T3 are generalized to NT2. T1, T4, T5 and T6 are generalized to NT1, NT3, NT4 and NT5,
respectively. The notation ‘real_count’ in Table 2 represents the actual number of records in
the cluster, and the ‘noisy_count’ is the final released count, which is generated by adding
Laplace noises to the ‘real_count’. We summarize the main symbols used in this study, as
shown in Table 3.

Table 1. Original trajectory records.

ID. Trajectories ID Trajectories

T1 (L1, t1)→ (L9, t2)→ (L15, t3) T4 (L4, t1)→ (L11, t2)→ (L16, t3)
T2 (L2, t1)→ (L7, t2)→ (L14, t3) T5 (L5, t1)→ (L10, t2)
T3 (L3, t1)→ (L8, t2)→ (L17, t3) T6 (L6, t1)→ (L12, t2)→ (L13, t3)



ISPRS Int. J. Geo-Inf. 2021, 10, 454 6 of 22

Table 2. Noisy trajectory records.

ID. Trajectories Real_Count Noisy_Count

NT1 (L1
1, t1)→ (L2

1, t2)→ (L3
1, t3) 1 0.811

NT2 (L1
1, t1)→ (L2

1, t2)→ (L3
2, t3) 2 2.50

NT3 (L1
2, t1)→ (L2

2, t2)→ (L3
2, t3) 1 1.30

NT4 (L1
2, t1)→ (L2

1, t2) 1 0.93
NT5 (L1

2, t1)→ (L2
2, t2)→ (L3

1, t3) 1 0.97

Table 3. Summary of notations.

Notation Description Notation Description

T The original trajectory dataset Popt The selected partition result
T′ The sanitized trajectory dataset R A dataset of partition result
si Sub dataset of T divided according to the value of timestamp ci The i-th cluster
s′i The noisy dataset of si sci The cluster center of the i-th cluster
Pk One partition result of si ε The privacy budget

Figure 1. An example of our method.

4.2. Privacy Protection Method

The trajectory privacy protection method based on random sampling differential
privacy (TPRSDP) is described in detail in Algorithm 1. The travel time is divided into
time slice. In the first line, the original dataset is divided into sub dataset {s1, s2, · · · , sm}
according to the timestamp value of each record. The timestamp t of each location record
in si has the same value. By dividing the original trajectory dataset into sub dataset, the
trajectory dataset which is a sequence of positions is transformed into common dataset.
This method which is very popular in the research field can be used on all kinds of trajectory
dataset. In other words, this method is data independent.

In the following, the transformation will be done on different si (i = 1 · · ·m), respec-
tively. In the third line, the RScluster which will be introduced in the following, is called
and the partition results P0 is generated. Based on P0, ϕ sub optimal partition results
are generated by sub_optimal in line 4. In the fifth line, differential privacy is achieved
by Exponential mechanism, and one partition result Popt is selected. From line 6 to line
10, all the location records in each cluster are sanitized. The methods sub_optimal and
noisy_cluster will be introduced in the following section. Finally the sanitized trajectory
dataset is returned.
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Algorithm 1 trajectory privacy protection method based on random sampling differential
privacy (TPRSDP).

Input: The original trajectory dataset T

Output: The sanitized dataset T′ = {s′1, s′2, · · · , s′m}
Procedure:

1 the original database T is divided into sub dataset T = {s1, s2, · · · , sm}, T′ = ∅

2 for each si in {s1, s2, · · · , sm} do

3 P0 = RScluster(si)

4 R = {P0, P1, · · · , Pϕ−1} = sub_optimal(P0)

5 use exponential mechanism to select a partition result Popt = {c1, c2, · · · , ck} from R

according to the value of score function

6 s′i = ∅

7 for ci in Popt

8 Add Laplace noise to the count of cj

9 c′j = noisy_cluster(cj)

10 s′i = s′i ∪ c′j
11 endfor

12 add s′i to T′

13 endfor

14 returnT′ and noisy counts

4.2.1. Clustering the Sub Dataset

Clustering a large database is a time-consuming process. In this paper, there is an
additional process of random sampling. The clustering is performed on the subset which
is obtained by random sampling. We use random sampling to select records from the
original dataset. The probability that each record in the original data is selected is equal,
which means that the distribution of the subset is nearly the same as the distribution of
the original dataset. We assume that there are n records in the dataset. According to the
value of each record, all the records are assigned to k buckets. There are nk records in the
k-th bucket. We select one record from the original dataset. The probability that a record
from the k-th bucket is nk

n . If there are m records in the subset, there will be m ∗ nk
n records

selected from the k-th bucket. In the subset, the ratio of the number of records in each
bucket is the same as that in the original dataset, which means that the data in the original
dataset and the subset have the same distribution. It is reasonable to divide the original
dataset according to the cluster center of the subset.

The number of records in the subset is much smaller than that in the original dataset,
and the clustering efficiency will be significantly improved. The original dataset will be
divided into different cluster according to the distance between the record to the subset
cluster center. Herein, different from others, we use the center of the subset to divide the
original dataset. The details are shown in Algorithm 2.

In line 1 of Algorithm 2, l records are selected from si, and how to set the value of l will
be discussed in following section. In [1,15], the K-means is run on the original dataset, and
one initial clustering result is got. However, In this paper, K-means is run on the random
sampling subset, and the subset is divided into k clusters in line 2. The original dataset is
divided into k clusters according to the distance between the location records and the k
cluster centers of random sampling subset in line 3. Finally the initial partition result is
returned.
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Algorithm 2 RScluster.

Input: The original dataset si

Output: P0 = {c1, c2, · · · , ck}
Procedure:

1 random select l locations records from si, l << |si|
2 run K-means on the l records, and k cluster centers {sc1, sc2, · · · , sck} are generated

3 redivided si into {c1, c2, · · · , ck} according to the distance between the record and the k

cluster centers {sc1, sc2, · · · , sck}
4 return P0 = {c1, c2, · · · , ck}

If there are n records in the dataset si, the total number of partition results will be
kn. It is very large, and it is infeasible to find out all the partition results. Inspired by the
method in [1] (INFOCOM15) and [15] (INFOSCI17), we proposed a new method to reduce
the partition number from kn to ϕ. The other ϕ− 1 partition results are generated based on
the initial partition result P0 = {c1, c2, · · · , ck}. First of all, one cluster is selected randomly
from the K-means partition result, then modify the cluster to generate new partition results.
Herein, modifying the cluster is to delete a trajectory records from the cluster randomly
or to move one trajectory record from one cluster to another. Do this until the other ϕ− 1
partition results are generated. Different from the method proposed in [1,15], when we
modify different clusters, different trajectory records are selected for each cluster. The
details are shown in Algorithm 3. One new partition result is generated by the inner loop
of Algorithm 3, and the partition result is added to R in line 7. Finally, R containing ϕ
partition results is returned.

Algorithm 3 sub_optimal.

Input: P0 = {c1, c2, · · · , ck}
Output: R0 = {P1, P2, · · · , Pϕ−1}
Procedure:

1 R = {P0}
2 for i = 1 to ϕ− 1

3 copy P0 = {c1, c2, · · · , ck} to temp

4 for j = 1 to k

5 Select one trajectory in cj(cj is one element of temp), move the location records to

ct, where t is a random integer, 1 ≤ t ≤ k .

6 endfor

7 add temp to R

8 endfor

9 return R

4.2.2. Score Function

The score function plays a very important role in our scheme. As described in Line
5 of Algorithm 1, one partition result will be selected according to the value of the score
function. The score function should output higher value for the reasonable partition result,
and vice versa. Herein, a reasonable partition result means that the average distance
between the records in the same cluster must be as small as possible. The score function
we used is based on Euclidean distance. The score function is defined as Formulas (4)–(6).
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The location records in each sub dataset si are divided into k cluster. AvgDistk
ci

j
denote

the average inner distance of the j-th cluster, and the definition is as following:

AvgDistk
ci

j
=

2
(|ci

j| · (|ci
j| − 1))

· ∑
∀l1,l2∈ci

j

Distance(l1, l2) (4)

where |ci
j| represents the number of locations in cluster ci

j. distance(l1, l2) is the Euclidean
distance between l1 and l2. We further define the average inner distance of all the k
clusters as:

AvgDistpi =
1
k

j=k

∑
j=1

AvgDistci
j

(5)

The smaller value of AvgDistpi , the better of the partition result. Smaller value of
AvgDistpi indicates that the closer points are divided into the same cluster, which means
that the partition result is reasonable.

Based on AvgDistpi , the score function of each partition result pi is defined as:

u(pi) = 1−
AvgDistpi

sumk=0,··· ,k=φ−1 AvgDistpk

(6)

The global sensitivity of u is : ∆u = max |(u(pi)− u(pj)|. Suppose the differential
privacy is ε, the probability that partition result pi(i = 1, 2, · · · , m) is selected is:

Pr(q(R) = pi) =
exp ( ε1

2∆u u(pi))

∑j=1,··· ,m exp ( ε1
2∆u u(pj))

(7)

4.2.3. Generating Noisy Clusters

One of the partition results will be selected according to the value of score function.
Each cluster of the selected partition result will be generalized. Algorithm 4 describes the
details of the generalized method. There are mainly two steps in Algorithm 4. The first
step is to generalize the location records in the same cluster into the center of the cluster.
The second step is to generate noisy location records according to the noisy count.

|C| represents the records number of cluster C. noisy_count is the noisy count of
cluster C, which is obtained from line 8 of algorithm 1. b|C| − noisy_countc represents the
nearest integer to |C| − noisy_count. 0 ≤ α ≤ 1. While α = 0, it means using the cluster
center to replace all the location record in the cluster, and while α = 1, it means random
select one location record to replace the original location record.

4.2.4. Privacy Analysis

In this section, we prove that our scheme satisfies differential privacy. Two differential
privacy transformation is performed in Algorithm 1. In line 5, Exponential mechanism
transformation is conducted and one partition result is selected. In line 8, Laplace noise is
added to achieve differential privacy transformation. First of all, we prove that select one
partition result from R satisfies differential privacy.
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Algorithm 4 generate sanitized cluster

Input: A cluster C and a parameter α

Output: Noisy cluster C′

Procedure:

1 find out the cluster center c and radius r

2 |C| points are generated randomly, and the distance between these points and point c

does not exceed α · r
3 add all the generated location records to C′

4 if noisy_count > |C|
5 bnoisy_count− |C| points are generated randomly, and the distance between those

points and the cluster center c does not exceed α · r
6 if noisy_count < |C|
7 Randomly delete b|C| − noisy_countc records from C′

8 return C′

Lemma 1. The process of selecting one partition result from R satisfies differential privacy.

Proof. Proof. Suppose that q is the query function, and R′ is the neighbor dataset of R.
Pr(∗) is the output probability.

Pr(q(R) = pi)

Pr(q(R′) = pi)
=

exp (
ε1

2∆u u(R,pi))

∑j=1,··· ,m exp (
ε1

2∆u u(R,pj))

exp (
ε1

2∆u u(R′ ,pi))

∑j=1,··· ,m exp (
ε1

2∆u u(R′ ,pj))

=
exp( ε1

2∆u u(R, pi))

exp( ε1
2∆u u(R′, pi))

∗
∑j=1,··· ,m exp ( ε1

2∆u u(R′, pj))

∑j=1,··· ,m exp ( ε1
2∆u u(R, pj))

(8)

the first multiplication factor of formula (8) is :

exp( ε1
2δu u(R, pi))

exp( ε1
2δu u(R′, pi))

= exp(
ε1

2∆u
(u(R, pi)− u(R′, pi)))

<= exp(
ε1

2∆u
∗ ∆u) = exp(

ε1

2
)

(9)

the second multiplication factor of formula (8) is :

∑j=1,··· ,m exp ( ε1
2∆u u(R′, pj))

∑j=1,··· ,m exp ( ε1
2∆u u(R, pj))

=
∑j=1,··· ,m(exp ( ε1

2∆u u(R, pj)) ∗ exp ( ε1
2∆u u(R′, pj)− ( ε1

2∆u u(R, pj))))

∑j=1,··· ,m exp ( ε1
2∆u u(R, pj))

<=
∑j=1,··· ,m(exp ( ε1

2∆u u(R, pj)) ∗ exp ( ε1
2 ))

∑j=1,··· ,m exp ( ε1
2∆u u(R, pj))

= exp (
ε1

2
)

(10)

from Formulas (8)–(10), we can get :

Pr(q(R) = pi)

Pr(q(R′) = pi)
<= exp(ε1) (11)

which means that the process of selecting one partition from R satisfies differential privacy.

Lemma 2. The transformation of line 8 of Algorithm 1 satisfies differential privacy.

Proof. We prove that adding Laplace noise to the number of location record in cj satisfies
differential privacy. |cj| is the number of location record in cj. q is the query funciton. Let
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X be the noise injected to q(cj). X follows the Laplace distribution Lap(∆q
ε2
). Pr(∗) is the

output probability.

Pr[q(cj) = t] = Pr[|cj|+ X = t] = Pr[X = t− |cj|] =
ε2

2∆q
∗ exp(

−ε2|t− q(cj)|
∆q

) (12)

Suppose c′j is the neighbor of cj. Similarly, we have

Pr[q(c′j) = t] =
ε2

2∆q
∗ exp(

−ε2|t− q(c′j)|
∆q

) (13)

Thus,

Pr[q(c′j) = t]

Pr[q(cj) = t]
=

exp(
−ε2|t−q(cj)|

∆q )

exp(
−ε2|t−q(c′j)|

∆q )
= exp(

ε2(|t− q(c′j)| − |t− q(cj)|)
∆q

)

<= exp(
ε2|q(cj)− q(c′j)|

∆q
) <= exp(ε2)

(14)

Theorem 5. The Algorithm 1 satisfies differential privacy.

Proof. According to Lemma 1, the transformation of line 5 in Algorithm 1 satisfies dif-
ferential privacy and the differential privacy budget is ε1. According to Lemma 2, the
transformation of line 8 in Algorithm 1 satisfies differential privacy. The differential privacy
budget is ε2. According to Theorem 3, the transformation for each time slice si satisfies
differential privacy, and the total privacy budget is ε1 + ε2. This transformation is done on
different time slice, respectively. According to Theorem 4, Algorithm 1 satisfies differential
privacy, and the privacy budget is maxsi{ε1 + ε2}.

5. Experiments and Analysis

Experiments are conducted on two different real-world trajectory databases. The GPS
trajectory dataset is collected in Geolife (Microsoft Research Asia) project by 182 users in a
period of over five years, and this dataset is used in [44–46]. It contains 17,621 trajectories
with total distance of 1,292,951 km. Here, transportation mode is ignored. Four of seven
attributes, which are latitude, longitude, date and time are used in our experiments. Two
new attributes trajectory ID (IDentity) and location record ID (IDentity) are added. There
are too many records in the original dataset. We only use the trajectory data from 6:00 a.m.
to 7:00 a.m. on 1–2 January and 2009. There are 38 trajectories with 106,535 location records
in the dataset we use.

The second dataset is T-drive Taxi Trajectories dataset collected by Microsoft Research,
which has been used in [1,15,47,48]. The dataset contains the GPS trajectories of 10,357 taxis
during the period of 2–8 February 2008 within Beijing. Each taxi’s GPS trajectory record is
saved in a single file, respectively, and every record has four attributes named ‘taxi id’, ‘date
time’, ‘longitude’, ‘latitude’. The trajectory data of 1000 taxis are selected randomly from
6:00 a.m. to 7:00 a.m. on 4 February. The proposed method is compared with the existing
methods on the above two datasets in terms of execution efficiency and data utility. In the
following, our experimental results are mainly compared with those in [1] (INFOCOM15)
and [15] (INFOSCI17).

5.1. Information Loss

Any modification of the original dataset will cause some damage to it, which will
reduces the utility of the original dataset. In this paper, the distance between the sanitized
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dataset and the original dataset is used to measure the loss of information. The farther the
distance is, the more information is lost and the vice versa.

Similar to [1,15], Hausdorff distance is used to measure the infmormation loss, and
the definition is as follows:

in f or_loss(D′, D) = max{h(D, D′), h(D′, D)} (15)

where h(D, D′) = maxT∈D{minT∈D′{distance(T, T′)}}. The smaller the value of in f or_loss
(D′, D) is, the less information is lost.

5.2. Compared with Other Method

Comparative experiments are conducted on the two real world datasets. The experi-
mental results are shown in the following figures. From Figures 2 and 3, we can see that the
efficiency of INFOSCI17 proposed in [15] is significantly better than INFOCOM15 proposed
in [1] on the both datasets. The results of our method proposed in this paper are marked as
‘TPRSDP_0.3’, ‘TPRSDP_0.6’ and ‘TPRSDP_0.9’, which represent our method with different
sampling rates 0.3, 0.6 and 0.9, respectively. On the Geolife dataset, the time cost of our
scheme with different sampling rate is 50% less than that of INFOCOM15. On the T-drive
dataset, the time cost of our scheme is obviously better than existing work. As can be
seen in Figure 3, while the sampling rate is 0.9, the time cost is be slightly higher than
INFOSCI17. This because, compared with the exiting work, our scheme has an additional
random sampling process, and the sampling rate is relatively high. The experimental
results show that when the sampling rate is 0.6, the time cost of this scheme is obviously
better than that of INFOCOM15 and INFOSCI17.

Figure 2. Time cost (Geolife dataset).

The loss of information of different methods on the Geolife dataset and the T-drive
dataset is shown in Figures 4 and 5. The amount of information lost generated by our
scheme is significantly less than that caused by INFOCOM15 on the Geolife dataset. While
the sampling rate is 0.6 or 0.9, the loss of information by our scheme is nearly the same
with INFOSCI17. However, while the sampling rate is 0.3, the loss of information by our
scheme is more than that of INFOSCI17. The reason for this is that the sampling rate is
too low, and it is not reasonable to divide the original dataset according to the cluster
center of the random sampling sub-dataset. On the T-drive dataset, the performance of
our scheme is nearly similar to INFOCOM15 and INFOSCI17. The performances of our
scheme are different on the two datasets in terms of information loss. It is mainly because
the two datasets have different characteristics. There are only 182 users’ trajectory records
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in Geolife dataset, however, there are more than one thousand taxis’trajectory records in T-
drive dataset. While the sampling rate is only 0.3, there will be many records extracted from
T-drive dataset. These records can well represent the characteristics of the original dataset.

Figure 3. Time cost (T-drive dataset).

Figure 4. The loss of information(Geolife dataset).

Figure 5. The loss of information(T-drive dataset).
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As discussed above, the efficiency of the proposed method is obviously better than
that of other methods, and the loss of information of the sanitized dataset is affected by the
dataset itself and system parameter settings. In the following, we will discuss the setting of
system parameters in detail.

6. Parameter Setting

The value of parameters have a great influence on the system performance. Experi-
ments are conducted on the two real-world datasets to verify the influence of the parameters
with different values on the system performance. The number of partition result is ϕ in
Algorithm 1. In the following experiments, we set ϕ to 10, 15 or 20, respectively, to verify
the performance of our scheme.

6.1. The Number of Cluster

Experimental results are shown in Figures 6–9 with different cluster number. In
Figures 6 and 7, the time costs of our scheme on Geolife dataset and T-drive dataset are
shown, respectively. As can be seen from Figures 6 and 7, when the number of partition
results is larger, the experiment will take more time. The reason for this is obvious. It
will take more time to generate more partition results. On the two datasets, the time
cost decreases rapidly with the increase of the number of clusters in each time slice.
However, when the number of clusters exceeds 10, the change becomes insignificant. This
is because there are fewer records in each cluster, and it will take less time to generate fake
location records.

Figure 6. Time cost (Geolife dataset).

Figure 7. Time cost (Tdrive dataset).
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The losses of information of our scheme on the two datasets are shown in
Figures 8 and 9. while the number of cluster is less than 7, the loss of information is
decrease rapidly on Geolife dataset. However, while the number of cluster is more than 7,
the change of information loss is relative small. On the T-drive dataset, while the number
of partition results is less than 6, the loss of information varies greatly, and the trend of
change is inconsistent. While the number of partition result is more than 6, the losses of
information are nearly the same corresponding to different partition number. From the
above discussion, we know that in the same sub dataset, when the number of clusters
is greater than 6, the time cost is lower and the amount of information loss is relatively
smaller. The reason for this is that our method is based on K-means. One of the popular
ways to choose the number of cluster in K-means is elbow method [40,49]. The main idea
is as follows: When the value of K is much smaller than the actual number of categories,
increasing the value of K will significantly increase the performance of K-means algorithm.
On the contrary, when the value of K is greater than or equal to the actual number of
categories, increasing the value of K will not significantly improve the algorithm. As can
be seen from Figures 6 and 7, when the number of cluster on the Geolif dataset is 7, it is
relatively reasonable. The reason may be that most of the location records are concentrated
in seven areas. From Figures 8 and 9, we know that the reasonable cluster number may
be 6 on T-drive dataset. From the above discussion, we know that the number of clusters
should be set according to the distribution of different datasets. In other words, the number
of clusters depends on the dataset itself. However, it will be better to be larger than the
number of relatively dense areas in the dataset.

Figure 8. The loss of information (Geolif dataset).

Figure 9. The loss of information (T-drive dataset).
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6.2. The length of Time Slice

The travel time is divided into time slices, and the dataset is divided into sub dataset
according to the time slice. The length of the time slice has a great influence on the
performance of the system. On the two datasets, the time costs of the experiments with
different length of time slice are shown in Figures 10 and 11. While the length of time slice
increases, the cost of time will increase gradually. The reason for this is obvious. If the
length of time slice is longer, there will be more location records in each cluster, and the
time cost of running K-means will increase. When the length of time slice is constant, the
greater the number of partition results is, the more time cost is. This means that if the
number of partition results is large, the length of the time slice should not be too long.

Figure 10. The cost of time (Geolife dataset).

Figure 11. The cost of time (T-drive dataset).

The losses of information on Geolife dataset and T-drive dataset are shown in
Figures 12 and 13, respectively. On the Geolife dataset, while the length of time slice
is less than 8 min, the amount of information loss is relatively small. However, while
the length of time slice is more than 8 min, the amount of information lost increases sig-
nificantly. On the T-drive dataset, the amount of information lost does not change too
much with different length of time slice, and the reason for this is that there much more
trajectories in the T-drive dataset. From Figures 12 and 13, we can see that when the number
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of partitions are 10, 15 and 20, respectively, the amount of information loss is almost the
same, which means that the number of partitions has only a little influence on the amount
of information loss. When the length of time slice increases, the fluctuation of information
loss will increase. Generally speaking, when the length of time slice is shorter than 8 min,
the performance of our scheme is better.

Figure 12. The loss of information (Geolife dataset).

Figure 13. The loss of information (T-drive dataset).

6.3. The Budget of Differential Privacy

The impact of privacy budget is validated in the following experiments. The time cost
with different budget on the two dataset is shown in Figures 14 and 15, respectively. It is
can be seen that there is no significant differences between the time costs with different
budgets, and the reason for this is that the effect of adding noise is offset by the process of
random sampling. From the above comparison, we can see that the time cost of our scheme
is mainly depends on the number of partition results, the number of clusters, the length of
time slices and the dataset itself.

The loss of information with different budget on the two datasets are shown on
Figures 16 and 17. On T-drive dataset, the amount of information loss is significantly larger
than that on the Geolife dataset. This is mainly because there are much more location
records in T-drive dataset than in Geolife dataset. There are only 182 users’ GPS trajectories
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in Geolife dataset, however, more than ten thousand taxis’ GPS trajectories are collected in
T-drive dataset. The amount of information loss with different privacy budget is nearly
the same, and with the increase of differential privacy budget, the amount of information
loss does not decrease significantly. The amount of information loss is not stable. There are
two main reasons. The first is that the suboptimal partition results may be generated by
different K-means clustering results. The second is that the results of random sampling
may be quite different.

Figure 14. Time cost with different epsilon (Geolife dataset).

Figure 15. The time cost with different epsilon (T-drive dataset).

As discussed above, while the time slice is shorter and the number of cluster of each
time slice is bigger, the performance of our scheme will be better. However, the scheme
proposed in this paper must be provide more privacy protection than K-anonymous, which
means that there must be more than k location records in each time slice. T is the total
length of time, l is the length of time slice, c is the number of cluster, and there are n location
records. Suppose that the location records follow uniform distribution, then n

T/t ·
1
c ≥ k.

In order to provide enough protection for the trajectory datastet, the parameter of the
scheme must satisfy t

c ≥
k·T
n .
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Figure 16. Time cost with different epsilon (Geolife dataset).

Figure 17. The information loss with different epsilon (T-drive dataset).

7. Conclusions

The scheme proposed in this paper is superior to the existing scheme; in particular,
the efficiency is much higher than others. The information loss of this method is no more
than that of others. A random sampling process is added, which can greatly reduce the
number of data processed by the K-means algorithm. Both the Laplace mechanism and the
Exponential mechanism are used in our scheme, and we proved that our scheme satisfies
differential privacy.

The influence of parameter setting on the performance of the system is verified
by experiments. The experimental results show that if the setting of the parameters is
reasonable, the loss of information of our scheme is less than that of INFOCOM15. While
the number of clusters is not too large, and the length of time slice is not too long, our
scheme has a good performance. Unfortunately, while the parameter values of our scheme
are the same, the performance of our scheme on different datasets may be different, which
means that the parameter setting for specific dataset needs further study.
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