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Abstract: Hand, foot, and mouth disease (HFMD) is an epidemic infectious disease in China. Its
incidence is affected by a variety of natural environmental and socioeconomic factors, and its
transmission has strong seasonal and spatial heterogeneity. To quantify the spatial relationship
between the incidence of HFMD (I-HFMD) and eight potential risk factors (temperature, humidity,
precipitation, wind speed, air pressure, altitude, child population density, and per capita GDP) on
the Chinese mainland, we established a geographically weighted regression (GWR) model to analyze
their impacts in different seasons and provinces. The GWR model successfully describes the spatial
changes of the influence of potential risks, and shows greatly improved estimation performance
compared with the ordinary linear regression (OLR) method. Our findings help to understand the
seasonally and spatially relevant effects of natural environmental and socioeconomic factors on the
I-HFMD, and can provide information to be used to develop effective prevention strategies against
HFMD at different locations and in different seasons.

Keywords: GWR; HFMD; t-test; spatial non-stationary; seasonal non-stationary

1. Introduction

Hand, foot, and mouth disease (HFMD) is a common infectious disease that is usually
found in children under 5 years old. This disease is caused by viruses, such as Human
enterovirus 71 (EV71) and Coxsackie virus A16 strain (CoxA16), and can result in symptoms
in the hand, mouth, or foot, including fever, blisters, and ulcers [1]. In most cases, the
disease is mild and self-limiting, but severe neurological symptoms, such as meningitis,
encephalitis, poliomyelitis (such as paralysis), and pulmonary edema may occur, especially
in patients aged 5 or under [2]. Surveillance data from 2008 to 2017 show that the incidence
of HFMD (I-HFMD) was considerably high and that the high-risk areas were mainly in
central, southern, and eastern China [3]. A large number of epidemiological studies on
HFMD have been carried out in provinces with a high I-HFMD, such as Guangdong [4–6],
Sichuan [7], Henan [8,9], and Shandong [10].

Many studies have indicated that the I-HFMD is strongly related to socioeconomic
factors and natural environmental factors, such as temperature [1,11–14], precipita-
tion [1,5,15,16], humidity [13–17], altitude [18], wind speed [1,19], air pressure [20], child
population density [21,22] and per capita GDP [23–26]. Quantifying the influence of po-
tential risk factors on the I-HFMD is conducive to the prevention and treatment of the
disease. Most studies of HFMD have used exploratory data analysis methods to analyze
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the spatial distribution of HFMD in the form of graphs and tables, or classical data models
to predict HFMD and estimate its potential risk factors, for which the model types mainly
include dynamic models [27–29], linear regression models [5,14], seasonal moving average
models [24,30], and Bayes networks [24].

Current studies have generally used datasets derived from disease surveillance sys-
tems with spatiotemporal information. As the classical data model cannot effectively
mine the geographical information in the HFMD monitoring data, some spatial statistical
methods, such as the geographically weighted regression (GWR) model [21,22,31], have
also been applied to study HFMD. However, these studies have mainly focused on a single
dimension of time and space, rather than attempting a combined analysis on a large scale
and in the long term. Furthermore, studies in China have mainly focused on a particular
city or province and have usually adopted a time span of a single season or year.

Few studies have investigated the spatial and temporal effects of the I-HFMD across
the entire Chinese mainland over the long term. Because the spread of HFMD in China
can be quite large in scale and significantly seasonal over the long term, studying HFMD
in a local area (e.g., a city or a province) over a short period (e.g., a season or a year) can
reflect some local-level laws but not the spatiotemporal changes and their mechanisms
across the entire Chinese mainland. In addition, due to the complex landform and vast
area of the Chinese mainland, managing the spatiotemporal heterogeneity in this region
is quite difficult and needs further investigation. Therefore, it is of great importance to
study HFMD at the scale of the whole Chinese mainland, as this can capture more accurate
and useful information on which to base suggestions for restraining the spread of HFMD
in China. In this study, the spatial association between the I-HFMD and socioeconomic
and natural environmental factors was therefore investigated to explore the potential
spatiotemporal non-stationary characteristics of the hypothetical relationship between
these factors and the I-HFMD in the Chinese mainland.

This study had three main objectives: (1) study the spatial and seasonal relationship
between the I-HFMD and potential influencing factors based on monthly average data
for 11 years in the Chinese mainland with 31 provinces; (2) construct the GWR model
to estimate the I-HFMD in the Chinese mainland and compare its performance with the
ordinary linear regression (OLR) model; and (3) analyze local heterogeneity and put
forward appropriate measures to limit the I-HFMD in each season. Our article is organized
as follows. In the second section, we describe the study area and dataset and introduce the
methods of the spatial autocorrelation test and the GWR model. Sections 3 and 4 describe
the results of the GR model for I-HFMD estimation and analyze the seasonal characteristics
of the influence of each potential risk factor. Finally, we draw conclusions and summarize
the paper in Section 5.

2. Materials and Methods
2.1. Research Region and Data

The study area used in this study was the Chinese mainland, including 31 provinces
(except Hong Kong, Macau, and Taiwan). The spatial measured unit was the provincial
administrative unit, and the time span was from 2007 to 2017 with a time resolution of
1 month. The I-HFMD data were the monthly incidence data for each province, collected by
the Chinese Center for Disease Control, Prevention and Health. The collected I-HFMD data
were divided into four seasons with each season including 31 provinces and 36 months
with more than 1000 records. The distribution of the cumulative incidence rate from 2007
to 2017 in each season for the 31 provinces of the Chinese mainland is shown in Figure 1.
Northwestern, northeastern, northern and central China had a significantly low I-HFMD in
the four seasons, whereas the I-HFMD in southwestern and southern China was relatively
high. Furthermore, the I-HFMD of Guangxi, Hainan and Guangdong provinces were
always among the highest in the country.
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Figure 1. The seasonal distribution of cumulative incidence of hand, foot, and mouth disease (I-HFMD) on the Chin-
ese mainland.

Many studies have shown that socioeconomic and natural environmental factors
significantly affect the I-HFMD. This study analyzed six natural environmental factors and
two socioeconomic factors as potential influences. The natural environmental factors were
temperature (TEMP), precipitation (PREC), humidity (HU), altitude (ALT), wind speed
(WS), and air pressure (AP). The socioeconomic factors were child population density
(CHD) and per capita GDP (mGDP). The sources and details of the experimental data are
shown in Table 1.

The values of TEMP, PREC, HU, AP, and WS were derived from the Chinese regional
surface meteorological element-driven dataset of the China Qinghai-Tibet Plateau Scien-
tific Data Center [32,33]. This dataset is based on the international Princeton reanalysis
data, Global Land Data Assimilation System (GLDAS) data, Global Energy and Water
Exchanges-Surface Radiation Budget (GEWEX-SRB) radiation data and Tropical Rainfall
Measuring Mission (TRMM) precipitation data. It merges the conventional meteorological
observation data of the China Meteorological Administration. The original data come from
meteorological bureau observation data, reanalysis data, and remote sensing data. The
values of non-physical range have been removed using ANU-Spline statistical interpolation.
The accuracy of this dataset is between the meteorological bureau observation data and
satellite remote sensing data, which is better than the international reanalysis data [32,33].
The obtained data were the monthly averages for China. We used the vector data at the
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province level in China to calculate the average values in the raster range of each province
for the six environmental factors. ETOPO1 is a 1 arc-minute global relief model of Earth’s
surface that integrates land topography and ocean bathymetry. ALT was calculated from
the ETOPO1 data for each province. Data for the two socioeconomic variables (i.e., CHD
and mGDP) were extracted from national statistical yearbooks and are accurate to the
provincial administrative unit level.

Table 1. Sources and details of potential risk factors and I-HFMD data.

Variables Data Type Variables
Name

Time
Resolution

Space
Resolution Data Source Units

Incidence of
HFMD

Statistical
yearbook I-HFMD Monthly mean - Public Health

Science Data Center 1/100,000

Temperature Remote
sensing TEMP Monthly mean 1 km National Tibetan

Plateau Data Center Celsius

Amount of
precipitation

Remote
sensing PREC Monthly mean 1 km National Tibetan

Plateau Data Center milliliter

Specific
humidity

Remote
sensing HU Monthly mean 1 km National Tibetan

Plateau Data Center g/kg

Air pressure Remote
sensing AP Monthly mean 1 km National Tibetan

Plateau Data Center kPa

Wind speed Remote
sensing WS Monthly mean 1 km National Tibetan

Plateau Data Center m/s

Altitude Remote
sensing ALT All years 0.1◦

NOAA
ETOPO1 Global

Relief Model
m

Children
population

density

Statistical
yearbook CHD Seasonal

average - National Bureau of
Statistics of China Person/km2

Real GDP
per capita

Statistical
yearbook mGDP Seasonal

average - National Bureau of
Statistics of China Yuan/Person

2.2. Research Framework

The research framework of this study was as follows. First, we analyzed the correlation
and multicollinearity of the potential risk factors. Second, we adopted Moran’s index to
evaluate the spatial autocorrelation in the I-HFMD dataset. Third, we used the GWR
model to study the spatial and seasonal heterogeneity of the relationship between the
I-HFMD and potential risk factors. During the analysis, it was found that the independent
and dependent variables had extreme values, which may have negative effects on the
regression models, leaving the results susceptible to deviations. The five variables of PREC,
ALT, CHD, mGDP and I-HFMD were therefore logarithmically transformed to reduce the
influence of extreme values. Fourth, we optimized the bandwidth parameter of the GWR
model and evaluated its accuracy. Fifth, we compared the performance of the GWR model
with that of the OLR model in each season to evaluate its applicability and superiority.
Sixth, we conducted statistical significance test of the GWR model to examine whether
the spatially varying coefficients of the GWR model were statistically significant, and then
analyze the influence characteristics of various factors on the I-HFMD over space in each
season, providing an explanation and understanding of the spatial pattern and relationship
between the I-HFMD and climate change, economic development, and changes in the child
population on the Chinese mainland.

2.3. Methods
2.3.1. Correlation Analysis and Multicollinearity Test

The Pearson correlation test was used to explore the correlation of potential risks with
the I-HFMD. This analysis was carried out in SPSS v.20 using the bilateral significance test.
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The Pearson correlation coefficient between two variables is defined as the quotient of the
covariance and standard deviation, as follows:

ρX,Y =
cov(X, Y)

σXσY
=

E[(X− µX)(Y− µY)]

σXσY
, (1)

where E[(X− µX)(Y− µY)] is the covariance of X and Y, σX , σY are the standard deviation
of X, Y.

As the multicollinearity of independent variables will seriously affect the experimental
results of regression models [34], the variance inflation factor (VIF) was used to measure
the severity of multicollinearity in the regression models. The VIF value represents the
quotient of the variance in a model with multiple terms by the variance of a model with
one term alone, and is expressed as follows:

VIF =
1

1− R2
i

, (2)

where Ri is the multi-correlation coefficient of Xi with others variable Xj(i 6= j).

2.3.2. Spatial Autocorrelation Test

To explore the spatial aggregation effect of HFMD, Moran’s index was adopted to
evaluate the spatial autocorrelation in the I-HFMD dataset [35]. The Moran’s index value,
along with the z-score and p-value, helps to evaluate the significance of the index, and is
expressed as follows:

I =
n
S0

∑n
i=1 ∑n

j=1 wij(xi − x)
(
xj − x

)
∑n

i=1(xi − x)2 , (3)

S0 =
n

∑
i=1

n

∑
j=1

wij, (4)

where xi and xj are the attribute values of features i and j, x is the average of n cells’ attribute
values; wij is the spatial weight matrix.

2.3.3. Geographically Weighted Regression

The GWR model, extending from the OLR model, was used to study the relationship
between potential risk factors and the I-HFMD. OLR is a traditional method of estimating
global regression coefficients and does not change the coefficients by geographic location.
The regression formula of the classic OLR model is expressed as follows:

I−HFMDi = β0 +
p

∑
k=1

βkxik + εi i = 1, 2, · · · , n, (5)

where yi and xi1, xi2, xi3, . . . , xip are the dependent variable and independent variables,
respectively; β0, β1, β2, . . . , βp are the regressive coefficients; and εi is the error term. GWR
extends OLR by allowing local estimates across space, and the form used in this study is
the same as in [36–38]:

I−HFMDi = βi0 + βi1 × HUi + βi2 × TEMPi + βi3 × PRECi + βi4 ×WSi +
βi5 × APi + βi6 × ALTi + βi7 × CHDi + βi8 ×mGDPi + εi

i = 1, 2, · · · , n,
(6)

where βik denotes the series coefficients of point i. GWR captures the local effects through
the spatially varying coefficients βi, calculated as follows:

β̂i = (XTWiX)
−1

XTWi(I−HFMD)i, (7)
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where Wi is an n× n geographical weighting matrix with the diagonal elements repre-
senting non-stationary weights. A certain weight kernel of GWR should be specified
to calculate the weight matrix. The widely used fixed Gaussian and adaptive bi-square
weighting functions were adopted in our experiments. In addition, GWR was used with the
corrected Akaike information criterion (AICc) value as its performance criterion to achieve
the best model and was implemented in MATLAB 2013a. Two types of GWR model were
tested in this study, as defined in Table 2, and their performance were compared with the
OLR model for each season to evaluate the applicability.

Table 2. The definition of GWR-AAB and GWR-AFG.

Model Name Bandwidth Optimization Criteria
Kernel Function

Type Structure

GWR-AFG AICc Fixed Gaussian
GWR-AAB AICc Adaptive Bi-square

It is usually necessary to examine whether the GWR results have significant spatial
non-stationarity through diagnostic analysis. A F1-test based on the extremely approximate
distribution of the residual square sums proposed by Leung [39] and Wu [40] was adopted
to test the significance of the spatial non-stationarity in the GWR results.

Moreover, the local R2, which indicates how well the local regression model fits the
I-HFMD, was used to represent the local fitting accuracy and was computed as follows [36]:

R2
i = (TSSw − RSSw)/TSSw, (8)

where TSSw is the geographically weighted total sum of squares, and RSSw is the geo-
graphically weighted residual sum of squares.

2.3.4. Model Evaluation

The following indices were used to evaluate model performance: determination
coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and AICc. The formula for each indicator is as follows [36,37,41]:

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 , (9)

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
, (10)

MAE =
∑n

i=1|yi − ŷi|
n

, (11)

MAPE =
1
n

n

∑
i=1
|yi − ŷi

yi
| × 100%, (12)

AICc = nloge(σ̂
2) + nloge(2π) + n(

n + tr(S)
n− 2− tr(S)

), (13)

where y represents the average of the observed values and σ̂2 is the mean square error of
the model.

3. Results
3.1. Correlation Analysis and Multicollinearity Test

The results of the correlation analysis and significance test for each potential risk
factor in the four seasons are shown in Table 3. All potential risk factors were significantly
correlated with the I-HFMD in each season. Specifically, HU, TEMP, PREC, AP, CHD, and
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mGDP were positively related to the I-HFMD, whereas ALT was negatively related to the
I-HFMD in each season. Notably, WS was positively related to the I-HFMD in spring and
winter but negatively related to the I-HFMD in summer and autumn, suggesting significant
temporal non-stationarity in the association between WS and the I-HFMD. In addition,
CHD had the strongest correlation with the I-HFMD in spring (0.421), summer (0.420), and
autumn (0.416), whereas mGDP had the strongest correlation with the I-HFMD in winter
(0.402). Multicollinearity among all potential risk variables was tested using VIF values, as
shown in Table 4. All VIF values were less than 10, suggesting that the eight potential risks
did not show multicollinearity. Therefore, the subsequent regression analysis selected all
potential risks as explanatory variables.

Table 3. Pearson correlations between the I-HFMD and eight potential risk factors for each season.

Independent

Independent
HU TEMP PREC WS AP ALT CHD mGDP

I-HFMD in Spring 0.124 ** 0.187 ** 0.254 ** −0.233 ** 0.244 ** −0.202 ** 0.421 ** 0.238 **
I-HFMD in Summer 0.239 ** 0.228 ** 0.166 ** 0.152 * 0.133 ** −0.328 ** 0.420 ** 0.297 **
I-HFMD in Autumn 0.289 ** 0.183 ** 0.228 ** 0.233 * 0.178 ** −0.292 ** 0.416 ** 0.299 **
I-HFMD in Winter 0.285 ** 0.378 ** 0.148 ** −0.168 ** 0.234 ** −0.206 ** 0.359 ** 0.402 **

** Stands for significance at the 1% level. * Stands for significance at the 5% level.

Table 4. VIF values of multicollinearity testing of potential risks for each season.

Independent

Independent
HU TEMP PREC WS AP ALT CHD mGDP

I-HFMD in Spring 6.045 5.681 2.547 2.623 3.927 3.891 5.036 1.229
I-HFMD in Summer 4.682 8.055 4.224 2.108 1.580 4.719 5.336 1.235
I-HFMD in Autumn 9.319 9.600 2.377 1.702 4.113 3.431 4.914 1.277
I-HFMD in Winter 7.936 9.805 1.965 1.580 4.150 3.523 5.959 1.218

3.2. Diagnosis of Spatial Autocorrelation of the I-HFMD

To investigate the spatial autocorrelation of the I-HFMD, the global Moran’s index of
the I-HFMD for each season was calculated by ArcGIS. Moran’s index was 0.89 (p < 0.01) in
spring, −0.50 (p < 0.01) in summer, 0.32 (p < 0.01) in autumn, and 0.79 (p < 0.01) in winter,
which indicates that the I-HFMD was spatially positively clustered in spring, autumn
and winter but spatially negatively clustered in summer. In addition, Moran’s index of
the I-HFMD for each season was statistically significant, indicating that there was strong
spatial autocorrelation in the incidence rate. Thus, spatial regression models were likely to
be needed to determine the relationship between the I-HFMD and potential risk factors.

3.3. Model Performance of OLR and GWR

Table 5 shows the model performance of OLR and GWR for I-HFMD estimation in the
four seasons. GWR-AFG and GWR-AAB showed great improvements over the traditional
global regression for all statistical indicators, benefiting from its consideration of spatial
heterogeneity. The p-values of the F1 test also showed significant spatial non-stationarity
in the estimated relationship. In addition, the estimation accuracy of the GWR model
with adaptive bi-square kernel (GWR-AAB) was better than that of the GWR model with
fixed Gaussian kernel (GWR-AFG) in spring, summer, and winter, but worse than that of
GWR-AFG in autumn. This suggests that the adaptive kernel is more suitable than the fixed
kernel to characterize the spatially non-stationary relationship between the I-HFMD and
the eight potential risk factors, which is most likely a reflection of the complex landform
and vast area of the Chinese mainland.
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Table 5. Model performance of OLR and GWR for I-HFMD estimation in the four seasons.

Model R2 RMSE MAE MAPE AICc F1 p-Value of F1 Bandwidth

OLR in Spring 60.10% 1.096 0.792 27.81 2837.6 - - -
GWR-AFG in Spring 73.61% 0.892 0.614 20.05 2598.3 0.72 0.01 37,0839.6
GWR-AAB in Spring 75.47% 0.856 0.596 19.54 2584.1 0.69 0.01 295.3

OLR in Summer 29.09% 0.851 0.656 5.07 2285.6 - - -
GWR-AFG in Summer 62.94% 0.615 0.476 3.21 1928.4 0.60 0.01 27,6411.9
GWR-AAB in Summer 68.95% 0.563 0.429 2.90 1902.5 0.54 0.01 146.5

OLR in Autumn 39.35% 0.841 0.660 10.06 2267.5 - - -
GWR-AFG in Autumn 76.29% 0.523 0.393 5.19 1690.7 0.46 0.01 26,1822.0
GWR-AAB in Autumn 74.31% 0.547 0.416 5.77 1702.8 0.48 0.01 262.2

OLR in Winter 56.46% 1.273 0.952 47.15 2979.6 - - -
GWR-AFG in Winter 76.77% 0.930 0.688 33.93 2664.3 0.62 0.01 30,0018.8
GWR-AAB in Winter 78.04% 0.904 0.674 33.21 2640.2 0.60 0.01 279.2

The better of the two GWR models was chosen in each season for analysis. The
estimation accuracy (R2) for the four seasons increased from 60.01% with OLR to 75.47%
with GWR-AAB in spring, from 29.09% with OLR to 68.95% with GWR-AAB in summer,
from 39.35% with OLR to 76.29% with GWR-AFG in autumn, and from 56.46% with OLR
to 78.04% with GWR-AAB in winter. Regarding other evaluation indices, the RMSE, MAE,
MAPE, and AICc values of the GWR model were also considerably lower than those of the
OLR model in each season.

For the statistically significant seasonal GWR model, the local R2 values at the provin-
cial level are shown in Figure 2. In Figure 2, the local R2 values are distributed in the
range 0.23–0.70, and winter and spring show higher local accuracy than summer and
autumn. The distributions of local R2 vary over time and space, which demonstrates the
comprehensive statistical effect and fit accuracy of the influential risks on the I-HFMD.
Most of the provinces of mainland China show robust estimation performance, indicating
the well-fitted properties of the GWR model.

Figure 2. Local R2 distributions of the GWR model in each season.
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3.4. Statistical Significance Test of the GWR Model

The t-test, which indicates whether the spatially varying coefficients of the GWR
model were statistically significant, was used to evaluate whether the influence of the
potential risk factors on the I-HFMD was significant in each province [36,39]. According to
the t-test table, an absolute value of the t-test of over 1.96 is statistically significant. The
pass rate proposed by Hong [21], which was defined as the ratio between the number of
statistically significant provinces and the total number of provinces, was adopted in our
analysis. We calculated the pass rate of all potential risks in the four seasons and the results
are shown in Table 6. If the pass rate is zero, it obviously suggests no statistical significance.
According to previous studies, the pass rate was considered to be statistically significant
if it was more than 35% [21,40]. Of the potential risks, mGDP had the highest pass rate,
ranging from 48.4% to 100% in the four seasons. The pass rates of AP and ALT were over
40% in all seasons. The pass rates of HU and TEMP were not statistically significant in
summer and autumn, and that of PREC was not statistically significant in spring and
autumn. Furthermore, the pass rate of WS was not statistically significant in spring and
that of CHD was not statistically significant in summer. Of the four seasons, summer had
the lowest statistical significance with an average of 35.2%, whereas winter had the highest
statistical significance with an average of 56.9%.

Table 6. The t-test pass rate of the potential risk factors in the four seasons.

Season Intercept HU TEMP PREC WS AP ALT CHD mGDP

Spring 70.9% 41.9% 38.3% 22.6% 35.3% 61.2% 58.1% 41.9% 64.5%
Summer 41.9% 32.3% 3.2% 38.7% 45.2% 41.9% 31.9% 22.6% 48.4%
Autumn 87.10% 22.6% 25.8% 22.6% 48.4% 54.8% 31.9% 67.7% 64.5%
Winter 54.8% 54.8% 45.1% 58.1% 51.6% 58.1% 34.1% 45.1% 100%

3.5. Seasonal and Spatial Variations of the Relationship between Potential Risk Factors and
the I-HFMD

The spatially varying coefficients of the potential risks generated by the GWR model in
each season of each province from 2007 to 2017 were averaged to study the overall seasonal
variations of their influence on the I-HFMD, as shown in Figure 3. In spring, HU, TEMP,
WS, AP, ALT, and mGDP had positive effects on the I-HFMD, which suggests that these
variables can promote the incidence of HFMD. CHD had a negative effect on the I-HFMD
in spring, suggesting that it can inhibit the incidence of HFMD. PREC had a positive effect
on the I-HFMD, but it was not statistically significant (22.6% in Table 6). In summer, PREC,
WS, AP, and mGDP had positive influences on the I-HFMD and HU, TEMP, CHD, and
ALT had no statistically significant relationship with the I-HFMD. In autumn, WS, AP, and
mGDP had positive influences on the I-HFMD, whereas CHD had a negative influence
on the I-HFMD. ALT, HU, TEMP, and PREC had no statistically significant relationship
with the I-HFMD in autumn (see Table 6). In winter, HU, TEMP AP, and mGDP had
positive effects on the I-HFMD, whereas PREC, WS, and CHD had negative effects on
the I-HFMD. ALT had no statistically significant relationship with the I-HFMD in winter
(34.1% in Table 6).

Based on the results of the GWR model, we further investigated the seasonal relation-
ship between natural environmental factors, socioeconomic factors, and the I-HFMD in
different provinces and analyzed the spatiotemporal heterogeneity of each potential risk
factor. The spatial distributions of the coefficients of the potential risk factors are shown in
Figures 4–7.
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Figure 3. Average coefficients of the potential risk factors in the four seasons.

Figure 4. The spatial variations of the coefficients of the GWR model in spring.

Figure 5. The spatial variations of the coefficients of the GWR model in summer.
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Figure 6. The spatial variations of the coefficients of the GWR model in autumn.

Figure 7. The spatial variations of the coefficients of the GWR model in winter.

In spring, mGDP had the greatest influence on the I-HFMD in the southwestern and
southeastern regions with a high I-HFMD, as shown in Figure 4. AP showed obvious spatial
heterogeneity with inhibitory effects in northeastern, southwestern, and northwestern
China but positive effects in the southeastern and northern regions. Furthermore, AP was
positively associated with the I-HFMD in higher AP provinces but negatively associated
with the I-HFMD in lower AP provinces. The influence of ALT also showed spatial non-
stationarity, with an inhibitory effect in northeastern, southwestern, and northwestern
China but a positive effect in northern, central, southern, and eastern China. Furthermore,
ALT played an inhibitory role in high-altitude provinces and a positive role in low-altitude
provinces. The more mountainous high-altitude provinces might isolate people, hampering
the spread of HFMD. HU had a positive effect in all provinces and a higher coefficient
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in provinces with higher incidence. TEMP had a positive impact in about 70% of the
provinces, mostly those with low incidence.

In summer, WS had a statistically significant influence on the I-HFMD in most
provinces. WS had a positive effect mainly in northeastern and eastern China, accel-
erating the spread of HFMD in Inner Mongolia [21]. In addition, mGDP had a positive
effect on the I-HFMD in most provinces in summer, which may to some extent be due to
high mGDP reflecting more economic activity and social contact and therefore a greater
spread of HFMD.

In autumn, CHD had a negative effect in the high-risk provinces in northern, central,
and southern China and mGDP had a positive effect in most provinces across the Chinese
mainland. AP had a positive effect on the I-HFMD in northern and eastern China, with
relatively high AP values compared to other parts of China. This indicates that high AP
in autumn can promote the spread of HFMD. WS had a positive effect in 80.6% of the
provinces, including Hainan, Guangxi, Guangdong, Fujian, and Shanghai.

In winter, mGDP had a positive effect on the I-HFMD in all provinces. AP positively
influenced the I-HFMD in 75% of the provinces and had a positive effect in areas at high
risk of HFMD, which may be due to AP being higher in winter than in other seasons; this
is consistent with previous studies that have shown that high AP contributes to the spread
of HFMD viruses [21]. PREC had a negative effect in all provinces, which may be because
low precipitation inhibits the reproduction of HFMD viruses. HU had a positive effect in
90% of the provinces due to relatively moderate HU in winter promoting the reproduction
of HFMD viruses. Except for Guangdong province, TEMP had a positive effect on the
I-HFMD in other provinces because outdoor activities are inhibited in winter and children
can easily transmit the virus to their younger siblings or neighbors indoors [21]. CHD
inhibited the I-HFMD in most provinces, and more significantly in high-risk provinces
such as Hainan, Guangxi, Yunnan, and Shanghai. WS promoted the I-HFMD in 77% of
the provinces.

4. Discussion

In this study, we established a GWR model to quantify the spatial relationship be-
tween the I-HFMD and eight socioeconomic and natural environmental factors on the
Chinese mainland and then analyzed their impacts in different seasons and provinces.
The GWR model successfully described the spatial changes in the influence of potential
risks and showed a great improvement in model performance compared with the global
regression method. Socioeconomic factors and natural environmental factors were found
to be potential contributors to the I-HFMD in most parts of the Chinese mainland. In
addition, the intensity and direction of influence between these factors and the I-HFMD
were significantly spatially non-stationary at the local geographical level.

The finding that meteorological factors had significant influences on the I-HFMD
is consistent with previous studies [1,2,4,6,8,16,17,21,22,24,25,29,38,42–45]. However, the
exact mechanism of the association between meteorological parameters and the I-HFMD is
still not clear. It is generally assumed that meteorological parameters influence its incidence
rate by affecting HFMD transmission [1]. As for each potential risk factor, we found that
HU had a positive correlation with the I-HFMD in spring and winter, which is similar to
Wang’s finding that HU was positively related to the I-HFMD in Hong Kong and was the
most influential factor [44]. In contrast, HU had no statistically significant effect in summer
and autumn, when HU is generally higher than in other seasons. Other studies have also
been unable to establish a general pattern in relation to higher HU [5,15,16].

TEMP showed influences similar to HU, being generally positively correlated with
the I-HFMD in spring and winter but having no statistically significant effect in summer
and autumn. There are two potential reasons for the complex association between TEMP
and the I-HFMD: (1) there is virological evidence for the temperature-sensitive nature of
enteroviruses and other human enteric viruses [12,13], and (2) more outdoor activities in
moderately warmer weather increase close contact between individuals and thus increase
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HFMD transmission [1]. The studies by Xu et al. [14] in Beijing and Huang et al. [45]
in Guangzhou found similar patterns. Furthermore, PREC was positively related to the
I-HFMD in summer and negatively related to the I-HFMD in winter, and had no statistically
significant effect in spring and autumn. However, studies have found that higher PREC
was positively associated with the I-HFMD, including studies in Singapore [46], Hong
Kong [44], and mainland China [2,3,17,18,22,47,48]. A possible reason is that PREC in
China is highest in summer and lowest in winter.

WS was generally positively correlated with the I-HFMD [1]. However, although
WS was positively associated with the I-HFMD in spring, summer, and autumn, it was
negatively associated with the I-HFMD in winter, mainly because WS is higher in winter
than in other seasons. Suya Yi [19] came to similar conclusions with WS generally positively
correlated with the I-HFMD in Beijing but showing a negative correlation with the I-HFMD
as it increased. AP was found to typically present spatial non-stationarity in all seasons,
with AP being positively related to the I-HFMD in higher AP provinces and negatively
related to the I-HFMD in lower AP provinces. This conclusion is the opposite to that of
a study at the local scale, which revealed a 6.8% drop in cases of HFMD for every 1 hPa
increase in AP in Guangdong [4]. ALT positively affected the I-HFMD in spring and had
no statistically significant effect in other seasons. This may be due to ALT usually playing
a special and indirect role in the influence of I-HFMD: for example, Xiong Xiao found that
ALT may have modification effects on the TEMP–HFMD relationship in a multi-city study
on the Chinese mainland [18].

In our study, we also took two socioeconomic factors into account to analyze their
impacts in different seasons and provinces. CHD had a negative correlation with the
I-HFMD in spring, autumn, and winter and no statistically significant effect in summer.
There is no consensus in the literature over the influence of CHD on the I-HFMD. Studies
have found that the strength [22] and direction of the association between CHD and the
I-HFMD have obvious spatial non-stationarity at the local geographical level. In some areas,
CHD was not significantly related to the I-HFMD, whereas in other areas, it was positively
related to the I-HFMD or had an inverse association with the I-HFMD of a different strength.
In addition, mGDP was found to have a positive correlation with the I-HFMD in all seasons,
which is similar to a previous finding that mGDP was positively associated with disease
incidence [23]. Gou also found that mGDP and CHD had a significant effect on HFMD
transmission [24]. Moreover, urban and urban–rural border areas with a much higher
mGDP value have been found to be at high risk of occurrence of HFMD due to the frequent
migration of people to these areas [25,26].

5. Conclusions

A correct understanding of the spatial relationship between natural environmental
and socioeconomic factors and the I-HFMD is important for health care workers to for-
mulate reasonable epidemic prevention and control measures. This study provides a
new perspective to explore the main spatiotemporal patterns and potential risk factors of
HFMD, using the GWR model to study the seasonal influence characteristics of potential
risk factors on the I-HFMD at a large geospatial range and over a long period. Based on
the results of the GWR model, we provide an explanation and understanding of the spatial
pattern and relationships between the I-HFMD and climate change, economic development
and changes in the child population in the Chinese mainland. The findings of this study
may help predict the risk of HFMD in children in different seasons and regions based on
climatic, economic and demographic information in China.

However, there are some limitations to this study. First, medical resources, such as
the number of doctors and hospital beds per capita, may have a significant impact on the
risk of HFMD. We did not analyze this effect as we do not currently have suitable medical
resource data. Second, the combined effects of the two environmental factors were not
analyzed in this study. Studies have shown that different combinations of climatic factors
may produce different types of climate, thus affecting the infection and spread of HFMD.
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These considerations should be addressed in future studies. Despite these limitations, we
believe that our findings can help to understand the seasonal and spatially relevant effects
of socioeconomic and natural environmental factors on the I-HFMD, which is conducive to
developing effective prevention strategies for different locations and different seasons.
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