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Abstract: In view of the fact that indoor positioning systems are usually affected by non-Gaussian
noise in complex indoor environments, this paper tests the data in the actual scene and analyzes
the distribution characteristics of noise, and proposes a new indoor positioning algorithm based
on maximum correntropy unscented information filter (MCUIF). The proposed indoor positioning
algorithm includes three steps: First, the estimation of the state matrix and the corresponding
covariance matrix are predicted through the unscented transformation (UT). Second, the observed
information is reconstructed by using a nonlinear regression method on the basis of the maximum
correntropy criterion (MCC). Third, the contribution of information vector is gained by non-Gaussian
measurement and the predicted information vector is corrected by the contribution of information
vector. Finally, the gain of information filtering is got by the information entropy state matrix and
the information entropy measurement matrix to calculate the position coordinates of the unknown
nodes. This algorithm enhances the robustness of the MCUIF to non-Gaussian noise in complex
indoor environments. The results from the indoor positioning experiments show that MCUIF is
better than the traditional methods in state estimation and position location of the unknown nodes.

Keywords: indoor positioning; Received Signal Strength (RSS); maximum correntropy; unscented
information filter

1. Introduction

In recent years, with the gradual increase in the demand, indoor positioning has been
applied in medical centers, smart homes, shopping malls, underground mine personnel
location tracking, cargo tracking, and other fields. At present, both visual positioning
technology and wireless positioning technology are hotspots in indoor positioning re-
search [1–3]. Visual positioning technology is more widely used in autonomous positioning
and the navigation of robots and unmanned aerial vehicles [4,5]. Visual positioning has a
very prominent advantage and does not need to carry a signal source or remote control.
However, the shortcomings are also obvious: the image processing volume is huge, the
general computer cannot complete the calculation, and the real-time performance is poor;
it is limited by the light conditions and cannot work in dark environments. Compared with
visual positioning, wireless positioning technology is not affected by light and has low
environmental requirements. The RSS-based wireless indoor positioning system received
widespread attention as soon as it first appeared due to its advantage of not requiring
specific hardware. Because of the huge application scenario and high commercial value
of indoor positioning [6], scholars have studied many excellent positioning algorithms
for indoor positioning systems [6–8]. The commonly used estimation algorithms [9,10]
are Angle of Arrival (AOA) [11], Received Signal Strength (RSS) [12], Time of Arrival
(TOA) [13], Time Difference of Arrival (TDOA) [14], and some mixed algorithms. Kalman
filter, as an optimal state estimation algorithm, has been introduced into indoor positioning
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and achieved good results. In addition, there are some improved Kalman filter algorithms
such as Extended Kalman Filter (EKF) [15–17], Unscented Kalman filter (UKF) [18,19], Cu-
bature Kalman Filter (CKF) [20,21], etc. The work in [15] applied wireless sensor network
positioning with extended Kalman filter (EKF). The work in [17] proposes an localization
algorithm based on EKF by edge computing, and its location landmark has been update in
a mobile robot. The work in [22] designs a mobile target location and tracking algorithm
based on square root unscented kalman filter (SR-UKF) in the Internet of Things environ-
ment. Compared with the traditional EKF and UKF algorithms in the indoor positioning
system, this algorithm has obtained lower positioning and tracking errors with the same
computational complexity. The authors of [23] propose a filtering method via Kalman filter
for the speed and direction of the indoor robots.

The algorithms in the above documents [15,17,22,23] are assumed that the observation
noise is Gaussian noise. However, in the actual complex indoor environment, radio
frequency signals are prone to reflection, diffraction, and refraction. At the same time,
changes in the surrounding environment such as temperature, humidity, obstacles, and
non-line-of-sight will also cause certain effects on the propagation of radio frequency
signals. These factors cause indoor positioning systems to be usually affected by multi-
peak heavy-tailed non-Gaussian noise [24]. The accuracy of the Kalman filter based on the
MMSE criterion will be significantly reduced, and even cause filter scattering. Therefore,
in the practical application of indoor positioning, the research on non-Gaussian noise
becomes very meaningful. In order to solve the positioning estimation problem in such
noise, by combining MCC and UIF, we propose an indoor positioning algorithm in view of
MCUIF [25–30], and given the indoor positioning system, MCUIF enhances the robustness
of UIF and achieves better performance than the traditional UKF and EKF.

The structure of this paper about MCUIF is as below. In Section 2, we briefly ex-
plain the process model and the measurement model. Moreover, we collect the signal
strength between the unknown nodes and the known nodes in the actual scene, then adopt
Kolmogorov–Smirnov to test and analyze the distribution characteristics of RSS noise.
Next, the maximum entropy criterion is introduced, and the indoor location algorithm
based on MCUIF is derived in Section 3. Then, in Section 4, we describe the field scenario
experiments, and the experimental results show the excellent performance of MCUIF.
Finally, Section 5 gives a conclusion.

2. Process and Measurement Models
2.1. Process Model

Assume that L wireless Access Point(AP) nodes are set in the indoor scene, and the
coordinate of the l-th AP is (xl , yl). The moving unknown node can receive the signal
strength from the APs. The position and velocity of the moving unknown node are
described as the state x = (xn, ẋn, yn, ẏn)T . Its motion can be described by [31]

x(n + 1) =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1




xn
ẋn
yn
ẏn

+


T2/2 0

T 0
0 T2/2
0 T

ω(n). (1)

It can also be abbreviated as

x(n + 1) = f (x(n)) + ω(n) (2)

where f (x(n)) =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1




xn
ẋn
yn
ẏn

, where ω(n) represents the process noise and

its covariance matrix is Q(n). If we set T = 1 s as the sampling interval and the total
running time as 50 s, the total number of acquisitions is N = 50 times.
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2.2. Measurement Model

RSS ranging technology is also known as signal strength ranging method, which is
calculated based on the radio propagation path loss model [31]. In complex and change-
able indoor environment, traditional wireless signal transmission models are no longer
applicable. Currently, the more commonly used models are logarithmic distance path loss
models, which have been verified in various real environments. The general model is [32]

RS(d) = RS(d0) + 10γ lg(d/d0) + ϑdB, (3)

where RS(d) represents the received signal strength indication (RSSI) value received at
dm from the transmitting nodes. The measured value is generally a negative value, and
the absolute value of which is taken in the calculation. RS(d0) represents the RSSI value
received from the transmitting nodes, also known as the reference fading RSSI value,
where d0 calls as the reference distance is generally taken as 1 meter. The path dynamic
fading index γ indicates that the signal increases with the transmission distance. The
attenuation speed of the signal power is fading if the transmission distance increases. This
value depends on the transmission environment and the type of field environment. ϑdB
is the signal strength noise. In indoor positioning, the RSSI can be extracted from the
transceiver of the mobile nodes. We adopt the logarithmic distance path loss model as
the measurement model for predicting RSSI. RSAPi is the weighted average of the signal
strength measured multiple times from the i-th known node, as follows:

RSAPi =

N
∑

j=1
RS(j)

APi

N
(4)

where RS(j)
APi

is the j-th signal strength between the measured and the i-th AP. To enhance
the anti-interference ability of the indoor positioning system against other external wireless
radios, it is taken as the observation z =

[
RSAP1 , RSAP2 , · · · RSAPL

]T . That is,

Z(n) =

 RS(d0)− 10γ lg
(∥∥Ln − LAP1

∥∥/d0
)

...
RS(d0)− 10γ lg

(∥∥Ln − LAPL

∥∥/d0
)
+ r(n), (5)

where h(Ln) =

 RS(d0)− 10γ lg
(∥∥Ln − LAP1

∥∥/d0
)

...
RS(d0)− 10γ lg

(∥∥Ln − LAPL

∥∥/d0
)
 and r(n) is the observation noise

built by the mixed Gaussian model, its covariance matrix is R(n). LAPL is the coordinate
vector of the L-th known node, and Ln is the coordinate vector of the k-th moment of
the moving unknown node. ‖•‖ is the operator about the Euclidean distance between
unknown nodes and known nodes.

The actual indoor scene is shown in Figure 1. We use a CC2530-based Zigbee indoor
positioning system to test the signal strength from unknown nodes to known nodes and
analyze its noise characteristics. The experimental scene shown in Figure 1a is the corridor
on the fifth floor of the experimental building of Henan University of Technology. There are
obstacles and moving pedestrians in the corridor. The tested CC2530-based Zigbee indoor
positioning system has a coordinator, a test node, and four APs. The test node and the PC
are connected through a coordinator. The four APs are AP1, AP2, AP3, and AP4; they are
distributed as shown in Figure 1 and the coordinates of the APs have been determined.
They are known nodes and can be used as the transmitter and receiver of wireless signals.
The test node is a mobile unknown node. The signal strength of other nodes received by
the test node is transmitted to the coordinator, the coordinator node is connected with the
computer, the coordinator then transmits the received data to the computer, the computer



ISPRS Int. J. Geo-Inf. 2021, 10, 441 4 of 17

stores the data, and then calculates and determines the coordinates of the test node. In the
test experiment, the unknown node is resting state, the signal strength data is collected by
PC at rest for 3 min for each node each time, and 50 sets of data are selected among them.
The data sets are checked and analyzed for the error distribution characteristics of four
APs signals received by unknown nodes.

(a) Experimental scene.
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(b) Indoor experiment floor plan.

Figure 1. The scene and floor plan of the indoor positioning experiment. The wireless icon marks the location of the AP
node, the small circle is the trajectory of the test node along the corridor, the green ones are the obstacles, and the small
person is the walking pedestrian.

The experimental results of the tests are shown in Figure 2. With the experimental
results of the Kolmogorov–Smirnov [33–36] test analysis, if the test rejects the null hypothe-
sis at 15% significant level, the signal strengths from the unknown nodes to the four APs
have a non-Gaussian distribution.

Therefore, as shown in Figure 2, the signal strength of the APs received by the un-
known node shows a non-Gaussian distribution, and then the ranging errors between the
unknown nodes and the known APs are also non-Gaussian noise. However, the current
methods such as the algorithms in [15,17,22,23] are aimed at the noise of Gaussian. In
this paper, for such non-Gaussian indoor positioning problem, we consider the dimension
of the observation vector is smaller than the dimension of the state vector, and we have
designed a class MCUIF with relatively low computational complexity. Then, the signal
intensity distribution is consistent with the superposition of several Gaussian distributions,
and the signal intensity distribution is fitted by the mixed Gaussian model. The proposed
MCUIF positioning algorithm is calculated according to such distribution.
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Figure 2. Error distribution of the signal strength collected from APs.

3. Related Work
3.1. Maximum Correntropy Criterion

Assume ℵ1 and ℵ2 are random variables and define the correlation entropy between
ℵ1 and ℵ2 [27,28], which is expressed as

VΥ(ℵ1,ℵ2) = E[κΥ(ℵ1 − ℵ2)] (6)

where κΥ(·) is the kernel function and E is the expected operation symbol.
The kernel function based on maximum correntropy is usually selected as the Gaus-

sian one:

κΥ(h̄1 − h̄2) = GΥ(h̄1 − h̄2) =
1√

2πΥ
exp

(
− (h̄1 − h̄2)

2

2Υ2

)
, (7)

where Υ > 0 is the kernel width, and h̄1 and h̄2 are the elements of random variables ℵ1
and ℵ2, respectively.

Assuming that the function of joint distribution between ℵ1 and ℵ2 is expression of
Fℵ1ℵ2(h̄1, h̄2), then the correntropy is expressed as

VΥ(ℵ1,ℵ2) =
∫

GΥ(h̄1 − h̄2)dFℵ1ℵ2(h̄1, h̄2). (8)

In the practical complex indoor positioning application environment, the data volume
is usually limited, and the function Fℵ1ℵ2(h̄1, h̄2) of joint distribution between ℵ1 and ℵ2 is
usually unknown, the correntropy has been estimated through the average estimator of the
finite sample:

V̄Υ(ℵ1,ℵ2) =
1
M

M

∑
i=1

GΥ(ei) (9)

where ei = h̄1i− h̄2i, {(h̄1i, h̄2i)}M
i=1, and i is the i-th sampling point of the function Fℵ1ℵ2(h̄1, h̄2),

and M is a feasible set of parameters.
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3.2. Location Algorithm Based on MCUIF

The MCUIF algorithm reconstructs the observation information is based on the non-
linear regression method of MCC. Such an algorithm enhances the robustness of UIF to
non-Gaussian noise. The algorithm regarding the proposed indoor positioning is applied
to the state estimation of the indoor localization nodes, and the problem of the influ-
ence of heavy-tailed non-Gaussian noise in indoor localization is solved. According to
Equations (1) and (5), the nonlinear discrete-time system model for indoor positioning is

x(n + 1) = f (x(n)) + ω(n) (10)

y(n) = h(x(n)) + r(n), (11)

where x(n) represents the state vector of the unknown node, y(n) represents the obser-
vation vector of the indoor positioning network system. f (·) and h(·), representing the
nonlinear functions of the system and the observation, respectively, are assumed to be
continuously differentiable.

Then, the MCUIF filtering algorithm based on maximum correntropy has two main
parts of the state time updating and the measurement updating, and is specifically derived
as follows:

1. State Time Updating
First, according to the UT transformation and formulas (12) and (13), a set of sampling
points (called Sigma point set) has been calculated:

X0 = X̂, i = 0

X(i) = X̂ + (
√
(k + λ)P)i , i = 1 · · · k

X(i) = X̂− (
√
(k + λ)P)i , i = n + 1 · · · 2k

(12)

where k is the state dimension, λ is a scaling parameter, and P = (
√

P)T(
√

P), (
√

P)i
means the i-th column of the square root of the matrix.
Next, the corresponding weights of these sampling points have been obtained:

ω0
m =

λ

k + λ

ω0
c =

λ

k + λ
+
(

1 + α2 + β
)

ωi
m = ωi

c =
1

2(k + λ)
, i = 1, 2, · · · 2k

(13)

where β is a non-negative weighting factor and α describes the distribution status of
sampling points.
Then, the set of 2k + 1 Sigma points is formed according to the system equation:

X(i)(n + 1 | n) =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1




xn
(i)

ẋ(i)n
yn

(i)

ẏ(i)n

, i = 1, 2, · · · 2k (14)
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Then, the prediction and covariance matrix of the system state quantities are, respec-
tively, as follows:

X̂(n + 1 | n) =
2k

∑
i=0

ωi
m


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1




xn
(i)

ẋ(i)n
yn

(i)

ẏ(i)n

 =
2k

∑
i=0

ωi
mX(i)(n + 1 | n) (15)

and

P(n + 1 | n) =
2k
∑

i=0
ωi

c[X̂(n + 1 | n)− X(i)(n + 1 | n)]×

[X̂(n + 1 | n)− X(i)(n + 1 | n)]T + Q(n)
(16)

Then, the matrix about Fisher information Ŷ(n + 1 | n) is expressed as

Ŷ(n + 1 | n) = P−1(n + 1 | n), (17)

and the information state of information filtering ŷ(n + 1 | n) is expressed as

ŷ(n + 1 | n) = Ŷ(n + 1 | n)X̂(n + 1 | n). (18)

2. Measurement Updating
According to the predicted value of one step, the UT transformation is used again to
generate a new Sigma point set:

X0(n + 1 | n) = X̂(n + 1 | n), (19)

X(i)(n + 1 | n) = X̂(n + 1 | n) + (
√
(k + λ)P(n + 1 | n))i , i = 1, 2, · · · k, (20)

X(i)(n + 1 | n) = X̂(n + 1 | n)− (
√
(k + λ)P(n + 1 | n))i−k ,

i = k + 1 · · · 2k.
(21)

The predicted new Sigma point set is substituted into the observation Equation (10) to
obtain the corresponding observed Sigma point set:

Z(i)(n + 1 | n) =


RS(d0)− 10γlog10

(∥∥∥x(i)n+1 − xAP1

∥∥∥/d0

)
...

RS(d0)− 10γlog10

(∥∥∥x(i)n+1 − xAPL

∥∥∥/d0

)
 , i = 1 · · · 2k (22)

The predicted observed values of the observation Sigma point set are obtained accord-
ing to step (3), and then the predicted mean values of the indoor positioning system
are obtained by weighted summation as follows:

Ẑ(n + 1 | n) =
2k

∑
i=0

ωi
mZ(i)(n + 1 | n) =

2k

∑
i=0

ωi
m


RS(d0)− 10γlog10

(∥∥∥x(i)n+1 − xAP1

∥∥∥/d0

)
...

RS(d0)− 10γlog10

(∥∥∥x(i)n+1 − xAPL

∥∥∥/d0

)
 (23)
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Combining Equations (10) and (11) with Equations (15) and (18), we obtain the follow-
ing nonlinear model:[

X̂(n + 1 | n)
Z(n)

]
=

[
x(n + 1 | n)

h(x(n))

]
+

[
x̂(n + 1 | n)− x(n)

r(n)

]
=

[
x(n + 1 | n)

h(x(n))

]
+ φ(n)

(24)

with φ(n) =
[
−(x(n)− x̂(n + 1 | n))

r(n)

]
, and E[r(n)rT(n)] = R(n).

Through the derivation of MCC, formula (25) can be obtained. See Appendix A for
the detailed derivation process. Then, the modified covariance is

φ̃(n) = S(n)Λ−1(n)ST(n) = diag
(
φ̃p(n), φ̃r(n)

)
(25)

where Λ(n) = diag(GΥ(e1(n)), · · · , GΥ(enmc+nmc(n))),

φ̃p(n) =


GΥ(e1(n)) · · · 0

...
. . .

...
0 · · · GΥ(ek(n))

, φ̃r(n) =


GΥ(ek+1(n)) · · · 0

...
. . .

...
0 · · · GΥ(enmc+mmc (n))

.

However, the true state is unknown in practice indoor environment. Suppose ϕ(·) = 0,
that is, X(n + 1) = X̂(n + 1 | n) in Equation (A2), then we get Φ̃p(n) = P(n + 1 | n)
and the modified observation covariance is R̃(n) = Φ̃r(n). Then, the covariance of
the systematic observation is

Pznzn =
2k

∑
i=0

ωi
c

[
Z(i)(n + 1 | n)− Ẑ(n + 1 | n)

]
∗

[
Z(i)(n + 1 | n)− Ẑ(n + 1 | n)

]T
+ R̃(n + 1),

(26)

and the covariance matrix is

Pxnzn =
2k

∑
i=0

ωi
c

[
X(i)(n + 1 | n)− X̂(n + 1 | n)

]
∗
[

Z(i)(n + 1 | n)− Ẑ(n + 1 | n)
]T

. (27)

Then, the information state contribution is(n + 1) is calculated as

is(n + 1) = P−1
znzn

Pxnzn R̃(n + 1)[Ẑ(n + 1 | n)− h(X̂(n + 1 | n)) +
(P−1

znzn
Pxnzn )

T X̂(n + 1 | n)]
(28)

and the corresponding information matrix Is(k + 1) is obtained as

Is(n + 1) = P−1
znzn Pxnzn R̃(n + 1)(Pznzn Pxnzn)

T . (29)

Finally, the information state vector ŷ(n + 1|n + 1) and the Fischer information matrix
Y(n + 1|n + 1) are calculated:

ŷ(n + 1|n + 1) = ŷ(n + 1|k) + is(n + 1),

Y(n + 1|n + 1) = Y(n + 1|n) + Is(n + 1).
(30)

4. Experiment and Simulation Analysis
4.1. Validity Analysis of MCUIF Method

In the experimental positioning scenario shown in Figure 1, we randomly selected
9 Testing Nodes (TNs) and placed the positioning tags at TNs in turn for 2 min, collected
the signal strength data, and used different positioning algorithms of LS, EKF, UIF, and
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MCUIF to calculate the positioning coordinates of each reference node; the path dynamic
attenuation index is γ = 2. In the LS, EKF, and UIF algorithms, assume that the observed
noise is Gaussian noise conforming to the normal distribution, and set the observed noise
variance R = 1. The positioning accuracy is measured by the Root Mean Square Error
(RMSE) of each reference node:

RMSE =

√√√√ 1
MTN

MTN

∑
i=1

(
x̂pi − xpi0

)2
+
(
ŷpi − ypi0

)2, (31)

where MTN represents the amount of TNs, and (x̂pi, ŷpi) and (xpio, ypio) represent the
estimated position coordinates and actual position coordinates of the unknown nodes,
respectively.

In order to base the experimental conclusions on a more scientific and reliable basis and
avoid simplification and absoluteness, we use the significance T test method in statistical
theory for testing. As the MCUIF and LS two sets of test data in this experiment belong to
the independent sample T test, t can be calculated according to the following formula:

t =

∣∣X1 − X2
∣∣

SX1−X2

, (32)

where X1 and X2 are the average values measured by MCUIF and LS, respectively, and
SX1−X2

is the standard deviation of the difference between the average value measured by
MCUIF and LS.

If the number of two samples is the same, the formula for calculating the standard
deviation of the difference between the averages of the two samples is

SX1−X2
=

√
S2

X1
+ S2

X2

n
(33)

where SX1
, SX2

are the standard deviations of MCUIF and LS tests, respectively, and n is
the number of MCUIF and LS measurement data, respectively.

The relevant data of MCUIF and LS tests are shown in the Table 1.

Table 1. Sample statistics.

n Mean Standard Deviation Standard Error of Mean

LS 9 2.467 0.116 0.038
EKF 9 1.985 0.165 0.055
UIF 9 1.450 0.121 0.040

MCUIF 9 0.983 0.115 0.038

In this T test, we assume the null hypothesis is H0 : µ1 > µ2 and alternative hypothesis
is H1 : µ1 ≤ µ2. The difference between the averages of the two samples of MCUIF and LS is∣∣X1 − X2

∣∣ = |0.983− 2.467| = 1.483 m. (34)

From the t distribution table, it can be obtained that t0.059 = 2.262. Now, calculate
t = 36.447 > 2.262 according to the formula (32), and the result falls in the negative domain.
Therefore, the alternative hypothesis can be rejected, which means that at the significance
level of 0.05, the MCUIF algorithm is better than the LS method. In turn, the significance
T test method can be used; therefore, it can also be verified that the MCUIF algorithm is
better than the EKF algorithm and the UIF algorithm when the confidence is taken as 95%.
The test proves that the experimental result is statistically significant when the current
measurement value or more of the measurement value is measured.
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The RMSE results calculated by each different algorithm are shown in Figure 3. In
the LS, EKF, and UIF algorithms shown in Figure 3, the observation noise is assumed to
be Gaussian noise conforming to the normal distribution. As can be seen from Figure 3,
by the MCUIF-based indoor positioning algorithm, the maximum value of RMSE for each
reference point is 1.13 m, the minimum value is 0.88 m, and the average value is 0.867 m,
which is smaller than the RMSE of LS, EKF, and UIF indoor positioning, and has high
positioning accuracy at the significance level of 0.05.
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Figure 3. Comparison on positioning accuracies of different location algorithms.

As shown in Figure 3, the LS, EKF, and UIF algorithms assume that their noise is
Gaussian distribution. Due to the introduction of maximum correlation entropy, MCUIF
compared with other positioning algorithms shows that due to the use of Gaussian mixture
model to fit noise, which is closer to the actual situation, MCUIF has lower requirements
for the distribution characteristics of observation noise, and it can also perform better on
observation data under non-Gaussian conditions. With filtering processing, the positioning
accuracy has been significantly improved, especially when the positioning errors of other
algorithms are large, the accuracy of the MCUIF positioning algorithm is more obvious.
Therefore, the MCUIF positioning algorithm is more robust than other algorithms and has
the stronger ability to adapt to the environment.

4.2. Analysis of MCUIF Method Robustness

The research algorithm is more in line with the real application environment in the
location of multiple pedestrians, and it is of great significance for evaluating the robustness
of the algorithm. The experiment site is still selected on the corridors in the experimental
site as shown in Figure 1, because there are often pedestrians walking in the corridors. In
five different working days, a total of 300 test samples were collected under the condition of
pedestrians walking back and forth for position estimation, and the average error distance
of the positioning results of several algorithms was compared. The comparison of the
average error distance of the algorithm in a multi-pedestrian environment is shown in
Table 2. Compared with the ALE in Figure 3, the performance of each algorithm has
decreased. Among them, the performance degradation of the LS algorithm and EKF
algorithm is more significant. The average error of the UIF algorithm and MCUIF algorithm
also increased by 16.7% and 13.3%, respectively. Nevertheless, the average error distance
of the UIF algorithm remains within 1.5 m, which is basically acceptable.
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In the simulation process, the Averaged Localization Error (ALE) is used to compare
various positioning methods; ALE is defined as

ALE =
1
N

N

∑
k=1

√(
x̂pk − xpk0

)2
+
(

ŷpk − ypk0

)2
, (35)

The smaller the ALE estimated for the unknown node position, the higher the accuracy
of the characterization estimation.

Table 2. Comparison ALE of different algorithms in multiple pedestrian walking environments.

Number Algorithms ALE (m)

1 LS 3.06
2 EKF 2.52
3 UIF 1.74
4 MCUIF 1.13

4.3. Experimental Analysis of the Corner

There are many corners in the teaching building, and we have done experimental
analysis specifically for the corners. The test results show that the placement of the AP
at the corner is closely related to its positioning accuracy. For Scheme I, we placed APs
as shown in Figure 4a; the AP1-4 placed on one side of the corridor corner remained
unchanged, and two APs were placed on the other side of the corridor corner: AP5 and
AP6; Scheme II, as shown in Figure 4b, AP1-6 is placed in the same location as in scheme I,
we add AP7 at the key points of the corner, and the positioning accuracy is significantly
improved. The RMSE of its positioning is shown in Table 3. As shown in Table 3, at the
curve, in the second scheme, the performance of the four algorithms of LS, EKF, UIF and
MCUIF has been significantly improved. Four points were selected for testing before and
after the corner, a total of 8 points, the average mean square error of the test results is
shown in Table 3. The average error of the UIF algorithm and the MCUIF algorithm of
scheme II and scheme I is also reduced 13.4% and 15.7%, respectively.
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Figure 4. Positioning experiment of placing AP at the corner.
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Table 3. The ALE of AP placement at the corner.

Number Algorithms ALE of Scheme I (m) ALE of Scheme II (m)

1 LS 2.85 2.63
2 EKF 2.36 2.01
3 UIF 1.83 1.59
4 MCUIF 1.21 1.02

4.4. Simulation Analysis to Select the Appropriate Kernel Bandwidth

In the actual complex indoor environment, the positioning accuracy is often affected
by non-Gaussian noise, which will cause the accuracy of traditional nonlinear filtering algo-
rithms to decrease or even diverge. Therefore, it is necessary to study the nonlinear robust
filtering algorithm for non-Gaussian noise, and the method proposed introduces the maxi-
mum correntropy based on UIF, which makes the filtering robust against non-Gaussian.

The following is a specific simulation experiment comparing and analyzing the selec-
tion of the appropriate kernel bandwidth. As shown in Figure 5, four APs are deployed
in the indoor localization area, whose corresponding coordinates are A1(0,0), A2(0,10),
A3(10,0), and A4(10,10). Assuming that the state vector of the unknown node in the
experiment is shown in Equation (1), the initial real state is provided by LS (position
unit m, velocity unit m/s) x̂(0 | 0) = (2, 0.5 m/s, 0, 0.5 m/s)T, the initial estimation of
state noise covariance matrix is set to P(0 | 0) = diag([1, 0.5, 1, 0.5]), and the initial
covariance matrix of the process noise is Q(0, 0.1). The observed non-Gaussian noise
is comprehensively analyzed by the measured signal strength, and it is obtained as
R(n) ∼ 0.40N(−62.70, 0.40) + 0.33N(−64.88, 0.76) + 0.27N(−60.93, 0.71).

Figure 5. Node location diagram.

In order to find the best kernel bandwidth, four different kernel bandwidths are
selected first for experiment, and the kernel bandwidths are set to Υ = 5, Υ = 10, Υ = 20,
and Υ = 50, respectively. The experimental results are shown in Figures 6–8.
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Figure 6. Dynamic localization with different kernel bandwidths.
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Based on the analysis of the above simulation experiments, Figure 6 shows the com-
parison of the dynamic positioning of the MCUIF algorithm in the four kernel bandwidths,
and Figure 7 is the comparison of the positioning RMSE in the four kernel bandwidths.
Figure 8a is the velocity estimation error of the unknown nodes in the x direction, and
Figure 8b is the velocity estimation error of the unknown node in the y direction.

The analysis of Figures 6–8 and Table 4 shows that when MCUIF selects the kernel
bandwidth, the positioning accuracy after filtering by MCUIF is the highest and the
performance effect is the best. Based on the analysis in Figures 6–8 and Table 4, when
MCUIF selects the kernel bandwidth, the positioning accuracy after the filtering of MCUIF
is the highest, and the performance effect is the best.

Table 4. Simulation results of MCUIF for four different kernel bandwidths.

Kernel Bandwidth ALE(m)

MCUIF(Υ = 5) 1.04
MCUIF(Υ = 10) 0.98
MCUIF(Υ = 20) 1.31
MCUIF(Υ = 50) 1.53
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0 5 10 15 20 25 30 35 40 45 50

time/s

-8

-6

-4

-2

0

2

4

6

8

v
e

lo
c
it
y
 e

rr
o

r 
in

 x
 d

ir
e

c
ti
o

n

=5

=10

=20

=50

(a) In x direction.

0 5 10 15 20 25 30 35 40 45 50

time/s

-6

-4

-2

0

2

4

6

8

v
e
lo

c
it
y
 e

rr
o
r 

in
 y

 d
ir
e
c
ti
o
n

=5

=10

=20

=50

(b) In y direction.

Figure 8. Error curve of velocity estimation.
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5. Conclusions

This paper has mainly studied and analyzed the indoor positioning problem when
the measured noise is non-Gaussian and has proposed an indoor positioning method
based on MCUIF. Indoor positioning experiments have been carried out on the indoor
positioning method based on the LS, EKF, UIF, and MCUIF indoor positioning methods
proposed. The indoor positioning experimental results have shown that the alignment
accuracy of the indoor positioning method based on LS, EKF, and UIF is lower than the
proposed MCUIF method. Moreover, the indoor positioning method based on MCUIF
under four different kernel bandwidths has been analyzed, and it has been concluded
that the proposed MCUIF-based method has the best effect when Υ = 10. In summary,
the experiments and analysis show that the MCUIF-based indoor positioning method can
better accomplish indoor positioning with non-Gaussian noise in the measurement noise,
and the positioning accuracy is higher than that of LS, EKF, and UIF indoor positioning
methods.

The method proposed in this paper can be used for autonomous navigation of wheeled
robots. Inertial measurement unit (IMU), wireless positioning technology, vision, etc. can be
used for autonomous navigation of wheeled robots. At present, IMU, wireless positioning
technology, and vision have their own advantages and disadvantages. IMU will have
cumulative errors, and visual navigation will be limited to factors such as light. If wireless
positioning technology can be combined with visual positioning, IMU, etc. for fusion
positioning, autonomous navigation of wheeled robots will be more widely used. Therefore,
our next step is to study the application of MCUIF-based wireless positioning technology,
vision, and IMU fusion positioning in autonomous navigation of wheeled robots.
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Appendix A

Conducting Cholesky decomposition of the covariance matrix P(n + 1 | n) and the
joint matrix of R(n) from formula (24), we get

E[φ(n)φT(n)] =
[

P(n + 1 | n) 0
0 R(n)

]
=

[
Sp(n + 1 | n)Sp

T(n + 1 | n) 0
0 Sr(n)Sr

T(n)

]
= S(n)ST(n)

(A1)
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Both sides of Equation (A1) are left multiplied by S−1(n), due to S−1(n) = ST(n) ,
then the following equation is obtained:

ST(n)
[

X̂(n + 1 | n)
Z(n)

]
= ST(n)(

[
x(n)

h(x(n))

]
+ φ(n))

D(n) = ST(n)
[

x(n)
h(x(n))

]
+ ST(n)φ(n) = Γ(x(n)) + e(n)

, (A2)

then, where D(n) = ST(n)
[

X̂(n + 1 | n)
Z(n)

]
, Γ(x(n)) = ST(n)

[
x(n)

h(x(n))

]
, and

e(n) = ST(n)φ(n).
As E

[
e(n)eT(n)

]
= I, the residual error are white. Then, the element ej(n) in the j-th

row of e(n) is

ej(n) = dj(n)− τj(x(n)). (A3)

According to the properties of correntropy, the cost function is

J(n) = 1
nmc+mmc

nmc+mmc
∑

j=1
GΥ
(
ej(n)

)
= 1

nmc+mmc

nmc+mmc
∑

j=1
GΥ
(
dj(n)− τj(x(n))

) , (A4)

where dn(j) denotes the dimension and the j-th element of D(n), τj(x(n)) denotes the j-th
row of τ(x(n)), and, where the kernel bandwidth is Υ.

If the function J(·) is maximized, the optimal estimation of the state can be obtained.
Then, the optimal estimation value satisfies

x̂(n) = arg max
x(k)

Jj(x(n))

= arg max
x(n)

nmc+τmc
∑

j=1
GΥ
(
dj(n)− τj(x(n))

)
= arg max

x(n)

nmc+τmc
∑

j=1
exp(− (dj(n)−τj(x(n)))2

2Υ2 )

(A5)

Let

∂Jj(x(n))
∂x(n)

= 0 (A6)

that is

nmc+τmc

∑
j=1

(
exp

(
−
(dj(n)− τj(x(n)))2

2Υ2

)
×
(
−
(
dj(n)− τj(x(n))

)
Υ2

)
×

∂
(
dj(n)− τj(x(n))

)
∂x(n)

)
= 0. (A7)

From the properties of related entropy, it can also be written as

nmc+mmc

∑
j=1

(
GΥ
(
ej(n)

)
ej(n)

∂ej(n)
∂x(n)

)
= 0. (A8)

Therefore, it can be seen that(
∂Γ(x(n))

∂x(n)

)T
S(n)× (D(x(n))− Γ(x(n))) = 0. (A9)
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