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Abstract: Image segmentation is of significance because it can provide objects that are the minimum
analysis units for geographic object-based image analysis (GEOBIA). Most segmentation methods
usually set parameters to identify geo-objects, and different parameter settings lead to different seg-
mentation results; thus, parameter optimization is critical to obtain satisfactory segmentation results.
Currently, many parameter optimization methods have been developed and successfully applied
to the identification of single geo-objects. However, few studies have focused on the recognition of
the union of different types of geo-objects (semantic geo-objects), such as a park. The recognition of
semantic geo-objects is likely more crucial than that of single geo-objects because the former type
of recognition is more correlated with the human perception. This paper proposes an approach to
recognize semantic geo-objects. The key concept is that a single geo-object is the smallest compo-
nent unit of a semantic geo-object, and semantic geo-objects are recognized by iteratively merging
single geo-objects. Thus, the optimal scale of the semantic geo-objects is determined by iteratively
recognizing the optimal scales of single geo-objects and using them as the initiation point of the reset
scale parameter optimization interval. In this paper, we adopt the multiresolution segmentation
(MRS) method to segment Gaofen-1 images and tested three scale parameter optimization methods
to validate the proposed approach. The results show that the proposed approach can determine the
scale parameters, which can produce semantic geo-objects.

Keywords: GEOBIA; image segmentation; parameter optimization; semantic geo-object; Gaofen-1
images

1. Introduction

Advances in satellite sensor technologies have enabled the acquisition of images
with different spatial resolutions. For remote sensing images with moderate and high
spatial resolutions, the traditional pixel-based approach cannot satisfy the requirements
of several remote sensing applications because the same geo-object with different spectra
and different geo-objects with identical spectra are present in remote sensing images.
With the development of geographic object-based image analysis (GEOBIA) techniques,
image classification has been enhanced due to the reduction in spectral variability within
geo-objects [1–3].

Image segmentation is the first critical step in the GEOBIA framework, and the
quality of image segmentation determines the accuracy of subsequent image classifica-
tion [4–8]. It is challenging to perform image segmentation on remote sensing images
involving complex land covers, and many segmentation methods have been developed,
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such as the multiresolution segmentation (MRS) technique [9], watershed segmentation
technique [10], deep learning method [11], fractal network evolutionary approach [12],
and spectral angle segmentation approach [13]. In general, in these image segmentation
methods, parameters must be set to control the segmentation size, shape, and attributes of
an object [9,10,12,14–16]. Therefore, parameter optimization (PO) is of significance to ob-
tain satisfactory segmentation results. PO methods have been extensively and intensively
studied [17–27].

Most PO methods assume that to attain a satisfactory segmentation result, the in-
side of a segmented unit must be homogeneous, and the adjacent segmented units must
be heterogeneous [17,18,22,25,28–33]. Therefore, most PO methods calculate the homo-
geneity and heterogeneity by considering certain criteria and combine these indicators
into overall indicators to determine the suitable segmentation parameter(s). For example,
Espindola et al. (2006) proposed a segmentation measure that adopted the area-weighted
variance (WV) and global Moran’s I (MI) [28]. Johnson et al. (2015) used the same indi-
cators as those used by Espindola et al. (2006) but with different fusing strategies [22].
Specifically, the former researchers applied a sum approach, and the latter researchers
applied the F-measure method. Zhang et al. (2012) used two metrics (T and D) to measure
intrasegment homogeneity and intersegment heterogeneity, respectively, and achieved
satisfactory results in the corresponding research area [18]. Wang et al. (2018) used the two
indicators of WV and Jeffries–Matusita (JM) distance to assess the segmentation quality
and determine the optimal segmentation parameter(s) [34].

At present, many PO methods have been developed and successfully applied to identify
single geo-objects. However, only a few studies have attempted to recognize the union of
different types of single geo-objects (semantic geo-objects), such as parks. The recognition
of semantic geo-objects is likely more crucial than that of single geo-objects because the
recognition of semantic geo-objects is more highly correlated with the human perception.
For instance, if a person travels to a community to visit a person, the first objective is to
identify the community (semantic geo-object), and the second objective is to search for the
residential building and room within the community. Thus, it is meaningful to develop an
approach to determine the scale parameter that recognizes semantic geo-objects.

This study aimed to establish an approach to determine the appropriate segmen-
tation parameter(s) that recognize semantic geo-objects. The proposed approach was
developed in three stages. (1) We selected several remote sensing images with different
land covers and obtained a series of segmentation results in a certain interval by imple-
menting the segmentation method. (2) We determined the appropriate segmentation
scale parameters of single geo-objects by using three PO methods. (3) The segmentation
results corresponding to the appropriate scale parameters were analyzed, and the iterative
operation was implemented with the reset scale parameter optimization interval until the
optimal scale parameters and segmentation results that satisfied the semantic geo-objects
were obtained. The organizational structure of this paper is as follows. Section 1 intro-
duces the research background, intent, and research significance of this paper. Section 2
describes the research area and workflow of the proposed approach. Section 3 presents the
experimental results and describes the objective analysis of the results. Section 4 discusses
the research findings and several relevant ideas, along with the limitations of this paper.
Section 5 presents the concluding remarks.

2. Materials and Methods
2.1. Study Area

In this paper, we selected one scene acquired by Gaofen-1 (GF-1) on 7 August 2015,
in Shenzhen, China. In general, the GF-1 satellite is equipped with six cameras: panchro-
matic and multispectral cameras with spatial resolutions of 2 and 8 m, respectively, and
four multispectral wide cameras with a spatial resolution of 16 m [35]. Other technical
specifications of the GF-1 satellite are presented in Table 1. The NNDiffuse pansharpening
function of ENVI 5.3 was used to fuse the multispectral and panchromatic images with
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spatial resolutions of 8 m and 2 m, respectively, into a 4-band pansharpened multispectral
image with a spatial resolution of 2 m.

Table 1. Technical specifications of the GF-1 satellite.

Parameter 2-m resolution panchromatic/
8-m resolution multispectral camera

16-m resolution
multispectral camera

Spectral range (µm)

Panchromatic 0.45–0.90 0.45–0.90

Multispectral

0.45–0.52 0.45–0.52

0.52–0.59 0.52–0.59

0.63–0.69 0.63–0.69

0.77–0.89 0.77–0.89

Spatial
Resolution

Panchromatic 2 m
16 m

Multispectral 8 m

Width 60 km (combination of two cameras) 800 km (combination
of four cameras)

Revisit Period 4 d 2 d

Coverage period 41 d 4 d

Shenzhen is a coastal city in southern China adjacent to Hong Kong. The city is located
south of the Tropic of Cancer, between 113◦43′ and 114◦38′ east longitude and between
22◦24′ and 22◦52′ north latitude. Shenzhen is located in the south of Guangdong Province;
the eastern coast of the Pearl River Estuary is bordered by Daya Bay and Dapeng Bay in
the east, Pearl River Estuary and Lingdingyang Bay in the west, Shenzhen River in the
south, connected with Hong Kong, and Dongguan and Huizhou in the north. The total
land area of Shenzhen is 1996.85 km2. The weather of Shenzhen corresponds to a dry, mild
climate with abundant rainfall. The main landforms of Shenzhen include low mountains,
flat platforms, and terraced hills. Plains account for 22.1% of the land area, and the forest
coverage rate is 44.6%.

Four experimental areas were selected for this study and included traditional urban
and suburban areas containing various land cover types. Roads, trees, water bodies, vege-
tation, various buildings, and other objects are present in the experimental areas. Small
geo-objects are relatively clear because the experimental images have a high spatial resolu-
tion of 2 m. Four test images are shown in Figure 1. The image shown in Figure 1a contains
factories, residential buildings, vegetation, and roads. The image shown in Figure 1b con-
tains forests, rivers, factories, houses, and roads. The shown image in Figure 1c contains
houses, small water bodies, vegetation, roads, and unconstructed land. The image shown
in Figure 1d contains a small section of rivers, ponds, vegetation, and roads. Different
combinations of geo-objects can provide several references for follow-up research. The
areas of the 4 images are all 1.6 × 1.6 km2.
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Figure 1. Images with a spatial resolution of 2 m: (a) P1, urban area, (b) P2, suburban area, (c) P3, 
urban area, and (d) P4, suburban area. 

2.2. Methods 
2.2.1. Overview 

A semantic geo-object represents the union of different single geo-objects; conse-
quently, the optimization of the scale parameters of semantic geo-objects is based on the 
optimization of single geo-objects. Thus, the proposed approach to recognize semantic 
geo-objects can be divided into three steps. The first step involves segmentation; we obtain 
a series of segmentation results by using MRS method in the experiment. The second step 
involves the scale parameter optimization of single geo-objects; we use the three PO meth-
ods reported by Johnson et al. (2015), Wang et al. (2018), and Zhang et al. (2012), referred 
to as Johnson’s method (JSM), Wang’s method (WM), and Zhang’s method (ZM), respec-

Figure 1. Images with a spatial resolution of 2 m: (a) P1, urban area, (b) P2, suburban area, (c) P3,
urban area, and (d) P4, suburban area.

2.2. Methods
2.2.1. Overview

A semantic geo-object represents the union of different single geo-objects; conse-
quently, the optimization of the scale parameters of semantic geo-objects is based on the
optimization of single geo-objects. Thus, the proposed approach to recognize semantic
geo-objects can be divided into three steps. The first step involves segmentation; we obtain
a series of segmentation results by using MRS method in the experiment. The second step
involves the scale parameter optimization of single geo-objects; we use the three PO meth-
ods reported by Johnson et al. (2015), Wang et al. (2018), and Zhang et al. (2012), referred to
as Johnson’s method (JSM), Wang’s method (WM), and Zhang’s method (ZM), respectively,
to obtain the optimal scales of single objects. The third step involves the scale parameter
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optimization of semantic geo-objects, and the implementation of an iterative process to
determine the scale parameter(s) of semantic geo-objects. The approach to recognize the
segmentation parameter(s) that can produce semantic geo-objects is illustrated in Figure 2.
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Figure 2. Process flow to determine the compatible semantic segmentation scale (the formulation of
the workflow refers to the paper of Wang et al. (2021) [36]).

2.2.2. Semantic Geo-Object PO

(i) Segmentation
The multiresolution segmentation (MRS) method is used to segment the test images.

The MRS method, which is embedded in eCognition Developer 9.0 software, is a bottom-
up approach based on a region-merging technique; the approach selects each pixel and
considers the shape, size, and attributes of the pixels within the object [37]. The method
stops merging when the heterogeneity threshold is reached. The MRS method involves
three parameters: scale, shape, and compactness. The scale parameter determines the
maximum allowable heterogeneity, the shape parameter controls the shape and color,
and the compactness parameter controls the smoothness of the image. The shape and
compactness parameters are both set as 0.1 through visual analysis. The focus of this study
is to determine a suitable scale parameter.

(ii) PO of single geo-objects
Based on a series of segmentation results, we use the following three PO methods to

search for the appropriate segmentation scale parameter of single geo-objects.
The first PO method is JSM, proposed by Johnson et al. (2015) [22]. This method uses

the WV and MI to measure the intrasegment homogeneity and intersegment heterogeneity,
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respectively [22,28,38]. The WV can clarify the differences in a region. A low WV value
indicates a high homogeneity. The WV can be calculated as follows:

WV =
∑n

i=1 ai · vi

∑n
i=1 ai

(1)

where ai and vi denote the area and variance in region i, respectively, and n is the number
of segments.

MI is an autocorrelation index that reflects the degree of spatial correlation [38]. A low
MI value indicates a high heterogeneity. The MI can be determined as follows:

MI =
n ∑n

i=1 ∑n
j=1 wij

(
yi −

ˆ
y
)(

yj −
ˆ
y
)

(
∑n

i=1 (yi −
ˆ
y)

2)(
∑i 6=j ∑ wij

) (2)

where n is the total number of segments; yi and yj are the mean gray values of segments
i and j; y is the mean gray value of the entire image; and wij is a measure of the spatial
adjacency of segments i and j [23,28]. If regions i and j are adjacent, wij = 1; otherwise,
wij = 0 [28].

The MI and WV values should be normalized to 0–1 before implementing the
F-measure. The normalized formula can be defined as follows:

WVnorm(MInorm) =
X− Xmin

Xmax − Xmin
(3)

where WVnorm and MInorm represent the normalized WV and MI values, respectively;
X is the WV or MI value; and Xmax and Xmin represent the maximum and minimum
WV or MI values of all generated segmentations, respectively [22]. High WVnorm value
represents low intrasegment homogeneity, and low MInorm value represents high inter-
segment heterogeneity. Furthermore, WVnorm and MInorm are calculated for each spectral
band and subsequently averaged [22,39]. Finally, the F-measure is used to combine the WV
and MI values to measure the “overall goodness” (OG), as follows:

OG f =
(

1 + b2
) MInormWVnorm

b2MInorm + WVnorm
(4)

where b is the relative contribution of WVnorm and MInorm. In this paper, we consider
WVnorm and MInorm have identical weights, i.e., b = 1.

The second PO method is WM, proposed by Wang et al. (2018) [34]. The homogene-
ity indicator and the combination strategy of this approach are similar to those in JSM,
although a different heterogeneity indicator is adopted [34]. The JM distance, which is
used as the heterogeneity indicator, has been demonstrated to be effective in evaluating the
segmentation quality. The JM distance is typically used to measure the spectral separability
between two class density functions [40,41]. Thus, the spectral heterogeneity of two adja-
cent fragments can be measured using the JM distance. For more information regarding
the JM distance, please refer to the work of Wang et al. (2018) [34].

The third PO method is ZM, proposed by Zhang et al. (2012) [18]. This method
uses two metrics (T and D) to measure the intrasegment homogeneity and intersegment
heterogeneity, respectively. T is calculated as follows:

T(I) =
1

10S

√
R

R

∑
i=1

Ei
1 + log Ai

(5)

The segmented image is represented by I, the image size is represented by S, the
number in region i is represented by R, the mean error of the feature vector is denoted by
Ei, and the area of region i is denoted by Ai.
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D, which is used to measure the intersegment heterogeneity, represents a normalized
variance that considers the mean feature vector [18]. D is calculated as follows:

D(I) =
∑c

i=1 ∑R
j=1

(
mij −mmi

)
/R

√
R

(6)

where mij is the mean spectral value of band i in region j; mmi is the mean value of all the
spectral mean values for the band I for all regions; and c is the number of spectral bands.
The variance increases with the number of regions in the segmentation result; therefore, D
can be scaled by

√
R [18].

The T and D values are normalized to 0–1 before implementing the OG strategy. OGz
is the weighted sum of T and D, calculated as follows:

OGz = T + λD (7)

The value of T and D are large when oversegmentation and undersegmentation occur,
respectively. Because another normalization operation is implemented in the original
method, the optimal segmentation pertains to the result with the maximum OGz. The
change rate of T with respect to D can help determine the weight λ [26], which is calculated
as follows:

λ =
Tmax − Tmin
Dmax − Dmin

(8)

(iii) PO of semantic geo-objects
Based on the scale parameter optimization results of single geo-objects, we perform

the PO of semantic geo-objects.
The PO of semantic geo-objects is an iterative process that proceeds from small single

geo-objects to large single geo-objects to semantic geo-objects. In the optimization process,
the results of the first optimization are usually associated with small and medium single
geo-objects. The second optimization produces results pertaining to medium single geo-
objects and semantic geo-objects. The third and subsequent optimizations gradually
produce the semantic segmentation results. Usually, semantic geo-objects are formed by
a combination of single geo-objects, and the choice of semantic geo-objects is derived
from single geo-objects. For example, geo-objects such as residential buildings, green
belts, and small pools are present in one semantic geo-object (a community). To more
accurately recognize semantic geo-objects, we develop an approach to identify the semantic
segmentation scale parameters. The details of the proposed approach are presented in
Table 2.

Table 2. Approach to determine the optimal semantic segmentation scale.

Input: a series of segmentation results with the MRS from the initial scale (6) to the final scale (70)

Procedure:

(1) Calculate the values of the five indicators (WV, MI, JM distance, T, and D).
(2) Identify the scale with an OF value equal to the maximum values of JSM, WM, and ZM.
(3) Determine whether the segmentation results with the scale satisfy the semantic geo-objects;

if the requirements are satisfied, output the result.
(4) If the segmentation results with the scale do not satisfy the semantic geo-objects, and the

MRS result is oversemantic, we consider the scale to be the initial scale; otherwise, the scale
is the final scale. The scale is re-evaluated from the initial scale to the final scale, and the
iterative process is implemented until the target scale parameters pertaining to the semantic
segmentation results are identified.

Output: target scale parameters and corresponding segmentation results
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3. Results
3.1. Experimental Process

The main experimental process to recognize semantic geo-objects is as follows. First, a
series of segmentation results are produced using the MRS method. The analysis of the
segmentation results indicates that the test images are considerably oversegmented and
undersegmented when the scale parameter is set as 6 and 70, respectively; therefore, we
adjust the scale parameter to range from 6 to 70 in increments of 2. Both the compactness
and shape parameters are set as 0.1. Second, to recognize single geo-objects, the PO
methods of Johnson et al. (2015), Wang et al. (2018), and Zhang et al. (2012), i.e., JSM, WM,
and ZM, are adopted to verify the proposed approach [18,22,34]. Traditionally, the JSM,
WM, and ZM assume that the scale with maximum value of the objective function (OF)
corresponds to the optimal segmentation results. Third, we determine whether the first
PO results conform to semantic geo-objects. If the first PO results are in accordance with
the semantic geo-objects, the scale is considered to be the most suitable for segmenting
segment semantic geo-objects. If the result is oversemantic, we consider the scale to be the
initial scale; otherwise, the scale is the final scale. The scale is examined iteratively until the
semantic segmentation requirements are satisfied.

3.2. Results of Scale Parameter Optimization for Single Geo-Objects

To obtain the segmentation scale parameters of single geo-objects, we perform a series
of calculations. We obtain 33 segmentation results by using the MRS method embedded
in the eCognition Developer 9.0 software by varying the scale parameters from 6 to 70 in
steps of 2 (6, 8, 10, 12, etc.). Corresponding to the scale parameters, we obtain 33 OF values
of the three PO methods by calculating the WV, MI, JM distance, T, and D. The values of
OF based on the JSM, WM, and ZM that correspond to the scale parameters are shown in
Figure 3.
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As shown in Figure 3, the curves exhibit a similar trend. Specifically, the OF values
first increase and subsequently decrease with increasing scale. In certain cases, these
values fluctuate. In addition, ZM yields OF values with several large fluctuations for P3,
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which reflects the instability of the method for this image; however, ZM performs stable
segmentation on the other test images. In addition, the scale with the highest OF value is
considered the optimal scale.

The optimal scales and corresponding OF values obtained using the three methods
are listed in Table 3. The maximum OF values for P1–P4, obtained using JSM, WM, and
ZM are 0.6324, 0.5543, and 1.8595; 0.5138, 0.5846, and 1.8071; 0.5727, 0.5978, and 1.9607;
and 0.6432, 0.5730, and 1.9612, respectively. The scale parameters corresponding to the
maximum OF values are considered optimal. Therefore, the first optimal scales of P1–P4
using the JSM, WM, and ZM are 16, 20, and 16; 26, 24, and 16; 18, 20, and 68; and 20, 20,
and 18, respectively. Because the internal indicators of the considered PO methods are
different and ZM adopts different combination methods, we obtain different results for the
first scale optimization.

Table 3. Maximum value of the objective functions obtained using the three PO methods and the
corresponding scales.

Test Method OF Scale

P1
JSM 0.6324 16
WM
ZM

0.5543
1.8595

20
16

P2
JSM 0.5138 26
WM
ZM

0.5846
1.8071

24
16

P3
JSM 0.5727 18
WM
ZM

0.5978
1.9607

20
68

P4
JSM 0.6432 20
WM
ZM

0.5730
1.9212

20
18

Subsets of the segmentation results are shown in Figure 4 to enable a visual compar-
ison with the results of the first scale optimization performed using the JSM, WM, and
ZM. For clear observation of the effect, partial regions of the four test images are shown.
Figure 4 indicates that the JSM, WM, and ZM can effectively segment small and medium
single geo-objects. For example, in Figure 4a–c, the small rooftops are well segmented. In
Figure 4g–i, different rooftop shapes are well segmented. Figure 4m,n exhibit a satisfactory
segmentation of small and medium rooftops and a grass path. In the middle parts of
Figure 4s–u, three medium nature geo-objects are well segmented. However, oversegmen-
tation occurs for several large single geo-objects and semantic geo-objects. For example,
in Figure 4j–i, the rooftops of large factories are oversegmented. Figure 4d–f show the
occurrence oversegmentation for forests. In Figure 4p,q, the semantic areas of unused land
are segmented into small fragments. In addition, grass on the side of the houses is also
oversegmented in Figure 4s–u. Figure 4v–x show that a piece of unused land containing
vegetation is segmented into fragmented segments. In addition to Figure 4o,r, other subsets
of the segmentation results in Figure 4 clearly demonstrate that the semantic geo-objects
are not well recognized. In several remote sensing applications, because a larger area must
be considered, certain semantic geo-objects are more meaningful than a single geo-object.
For example, in a certain study, we may need to obtain the scope of a residential area on
the remote sensing image, because different types of buildings are present in the residential
area along with small green belts and other geo-objects. In this scenario, we must consider
a way to directly segment the scope of the residential area, as a more effective strategy.
Specifically, we must develop an approach to recognize semantic geo-objects. Because the
first scale optimization does not yield satisfactory semantic segmentation results, the pro-
posed approach searches for suitable scale parameters to obtain the semantic segmentation
results, as described in the following sections.
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3.3. Results of Scale Parameter Optimization for Semantic Geo-Objects

The iterative process of searching for the scale parameter that can optimally segment
semantic geo-objects is shown in Table 4. For P1, the three PO methods include four stages
of scale parameter optimization, and the semantic segmentation results are generated in
the fourth stage of the optimized scale determination. After the scale parameter optimal
selection by the ZM, we obtain the maximum scale parameter of the undersegmented
results in the fourth stage; therefore, it is inferred that the target scale parameter of the ZM
corresponds to the third stage. Thus, the scale parameters of the JSM, WM, and ZM are
set as 52, 58, and 48 for P1, P2, and P4, respectively, considering the three stages of scale
parameter optimization, and the segmentation results are generated in the third stage. The
optimized scale parameters of the JSM, WM, and ZM are set as 60, 64, and 66 for P2 and
48, 54, and 48 for P4, respectively. For P3, both the JSM and WM implement four stages
of scale parameter optimization, and we use ZM to optimize the scale parameters after
two stages. The optimized scale parameters of the JSM, WM, and ZM are set as 44, 52, and
68 for P3, respectively. In addition, the scale parameters produced by the four-stage scale
parameter optimization are not larger than those produced by the three-stage optimization
in certain cases for different remote sensing images.

To further validate the proposed approach, Figure 5 shows the segmentation results
with the scales produced using the proposed approach. To observe the overall effect, we
show the entire area of the four test images.
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Table 4. Process of semantic scale parameter optimization.

First Scale
Optimization

(JSM, WM, ZM)

Second Scale
Optimization

(JSM, WM, ZM)

Third Scale
Optimization

(JSM, WM, ZM)

Fourth Scale
Optimization

(JSM, WM, ZM)

P1 16, 20, 16 30, 36, 26 48, 50, 48 52, 58, 70

P2 26, 24, 16 42, 48, 42 60, 64, 66 —, —, —

P3 18, 20, 68 40, 36, 68 44, 46, — 44, 52, —

P4 20, 20, 18 36, 34, 30 48, 54, 48 —, —, —
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As shown in Figure 5, most semantic geo-objects are well recognized. In Figure 5a–c,
several residential areas containing different types of single geo-objects are effectively
identified. Figure 5d–f exhibit satisfactory semantic segmentation for large homogenous
rooftops, large yards, and vegetation belts. In the upper-middle part of Figure 5h,i, a
residential zone, which is a semantic geo-object with different spectral features that contain
houses, a green belt, and pools, is well segmented. In the upper-right area, Figure 5h,i
show the effective delineation of the unused land containing different types of geo-objects.
Figure 5g displays a slightly inferior result. Figure 5j–l show the successful identification
of a long channel in the image range; this type of artificial channel is a typical semantic
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geo-object in reality. In Figure 5a–c, small rooftops with notable spectral features in the test
images are separated from the surrounding geo-objects, and a large rooftop is not fully
recognized in Figure 5d–f, because of the large spectral contrast. These cases correspond
to unavoidable situations in the current experiments because effective segmentation is
difficult when the spectral contrast is extremely high on the surface of a large single geo-
object or between two adjacent geo-objects [42]. Although minor imperfections are noted
for the JSM, WM, and ZM, satisfactory semantic segmentation can be realized using the
optimized target scale parameters in the four test images.

4. Discussion

Image segmentation is a crucial task because it can provide objects for GEOBIA. Effec-
tive segmentation must be ensured to enable subsequent image interpretation. Intuitively,
it is meaningful to obtain target objects, such as roads, houses, and transportation [43–46].
Hence, scale parameter optimization is a key step in achieving the desirable segments.
In general, the segmentation result obtained using the PO method can be quantitatively
evaluated using discrepancy measurement methods. Many discrepancy measurement
approaches have been successfully applied to quantitatively evaluate single geo-objects
produced by PO methods, as described in Section 2.2.2 [29,47–56]. However, only a few
studies have quantitatively evaluated semantic segmentation results because the under-
standing of semantic geo-objects is subjective, and experts often differ in their opinions
regarding the definition of semantic geo-objects. Currently, it is difficult to quantitatively
evaluate the results of semantic segmentation based on a single criterion. Therefore, we
used a visual evaluation method in this paper. Future research can be aimed at establishing
a quantitative evaluation method for semantic segmentation.

In certain cases, to recognize semantic geo-objects, a weakened spectral difference is
required within a semantic geo-object. From this perspective, low and medium-spatial-
resolution images may be more suitable for segmenting semantic geo-objects. However,
the geo-objects in cities are often relatively small, and high spatial resolution images can
provide abundant and detailed geo-object information. In such cases, low- and medium-
spatial-resolution images are suboptimal for segmenting single geo-objects. For example,
images with a high spatial resolution can help identify small urban geo-objects, although
this identification cannot be realized through images with a low spatial resolution. In
practical applications, the combination of single and semantic geo-objects is most useful.
For example, if the objective is to visit a building in a park, the location of the park is first
identified. When we arrive at the park, our focus shifts to the building. Future work will
be focused on the recognition and union of single and semantic geo-objects.

Our results (Table 4) show that most of the optimal scales were obtained in the third or
fourth stage of the PO. Thus, generally, semantic geo-objects can be effectively segmented
after three iterative stages of PO. In addition, most of the scales identified in the previous
stages caused the oversegmentation of semantic geo-objects and slight undersegmentation.
Thus, the scale obtained in the first optimization was used as the initial scale in most cases.
However, when using the ZM for optimization, the scales recognized in the first stage
produced larger segments than the semantic criterion for one image. In such cases, it
is necessary to reset the final scale of the scale range and optimize the parameter again.
In addition, this paper only assessed three PO methods. In future research, more PO
methods can be considered to validate the proposed approach and enhance the method of
recognizing semantic geo-objects.

A widespread phenomenon in remote sensing images is that the semantic geo-objects
considered in this paper, such as a park, may have different types of geo-objects, although
the features of the park are general and manifest as a certain homogeneity in the types of
geo-objects in a park. This issue can be observed in real scenes, in which many features in
parks exhibit similarities. This information is a realistic theoretical basis for exploring the
feasibility of the proposed technique. A semantic geo-object is often formed by a series of
single geo-objects, e.g., a semantic area contains several geo-objects with a common shape,
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texture, and color. These common features are a manifestation of the homogeneity of a
semantic geo-object. Future work will be aimed at techniques to investigate the internal
homogeneity of a semantic geo-object and to enhance the heterogeneity of a semantic
geo-object relative to its surroundings to more accurately recognize semantic geo-objects.

The key objective of this study was to establish a technique to search for the suitable
scale parameter of semantic geo-objects in high spatial resolution images. In this paper,
three scale parameter optimization methods were used to evaluate the feasibility of the
proposed approach. After the first PO, the optimized scale parameters of single geo-objects
were obtained. Based on these optimized scales, the optimization was iteratively per-
formed. Finally, satisfactory semantic segmentation results were obtained for four test
images. However, at present, no comparable techniques are available for the proposed
exploratory approach. We believe that this study can provide a concept for further re-
search and encourage other researchers to provide a similar strategy for comparison. The
proposed approach was developed by considering actual research and applications to
obtain the spatial scope of a region in a real scene and is thus believed to be of signifi-
cance for application. We hope that this paper can provide references for future semantic
segmentation research.

5. Conclusions

An approach to search for the optimal scale parameters of semantic segmentation was
developed. The scales were searched through iterative PO by continuously reducing the
range of optimization. This paper used the MRS algorithm as the segmentation method
and considered three PO methods (JSM, WM, and ZM) to validate the proposed approach.
GF-1 images were used as the test images, and the visual experiments demonstrated the
efficiency of the proposed approach in determining the scale that can generate satisfactory
semantic geo-objects. Future work will be aimed at enhancing semantic segmentation scale
parameter determination and evaluation methods.
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