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Abstract: The aims of this study were to determine surface urban heat island (SUHI) effects and to
analyze the land use/land cover (LULC) and land surface temperature (LST) changes for 11 time
periods from the years 2002 to 2020 using Landsat time series images. Bursa, which is the fourth
largest metropolitan city in Turkey, was selected as the study area, and Landsat multi-temporal
images of the summer season were used. Firstly, the normalized difference vegetation index (NDVI),
soil-adjusted vegetation index (SAVI), modified normalized difference water index (MNDWI) and
index-based built-up index (IBI) were created using the bands of Landsat images, and LULC classes
were determined by applying automatic thresholding. The LST values were calculated using thermal
images and SUHI effects were determined. The results show that NDVI, SAVI, MNDWI and IBI
indices can be used effectively for the determination of the urban, vegetation and water LULC classes
for SUHI studies, with overall classification accuracies between 89.60% and 95.90% for the used
images. According to the obtained results, generally the LST values increased for almost all land
cover areas between the years 2002 and 2020. The SUHI magnitudes were computed by using two
methods, and it was found that there was an important increase in the 18-year time period.

Keywords: surface urban heat island (SUHI); normalized difference vegetation index (NDVI); soil-
adjusted vegetation index (SAVI); modified normalized difference water index (MNDWI); index-
based built-up index (IBI); Landsat; Otsu thresholding

1. Introduction

Urbanization, population growth, and industrialization lead to increases in temper-
ature, and this situation adversely affects the world, especially in urban areas. By the
year 2018, about 55% of the world’s population lived in urban areas, and by 2050, this
proportion is expected to increase to up to 68% [1]. Urbanization positively affects the
living population with social and economic welfare but has a negative impact on the
natural environment [2]. Climate change occurs on a local and global scale, particularly
due to the interventions of human beings that have negative consequences for nature. The
average surface temperature of the world has constantly been increasing since the late 19th
century [3–5]. Although the temperature increases are generally seen in all types of land
use/land cover (LULC) areas, the situation is even more serious in built-up areas, such
as industrial, commercial, airport or dense residential areas [6,7]. Especially since the late
1980s, studies have shown that urban areas are generally warmer than rural areas around
them, and this phenomenon is called the urban heat island (UHI) [8–10]. UHI effects
occur in almost all urban areas [11], however the UHI magnitude changes according to the
properties of the cities. In recent years, studies on UHI have increased considerably [12].
The UHI studies can be basically divided into two parts according to the measurement
techniques [13]: (i) studies examining the effect of atmospheric UHIs by using air temper-
ature data [14–18]; and (ii) studies on the effect of SUHIs using thermal remote sensing
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data [19–23]. The use of remote sensing data is advantageous in terms of cost and time,
and it additionally allows dealing with large areas [12,24].

Thermal remote sensing started to be used in 1972 with a study by Rao, who inves-
tigated surface temperature distribution and UHIs [25]. The studies on this subject have
increased with the development of thermal remote sensing technology. Landsat satellite
images are the most commonly used images in SUHI studies, and the usage rate of Landsat
(Landsat TM and ETM+) images in SUHI studies is over 89% [12]. Landsat 8 was launched
in 2013, and by this year, Landsat 8 OLI/TIRS images were already being used in SUHI
studies [26–30].

In the literature, it can be seen that land surface temperature (LST) differences of
different LULC areas can be used in determining SUHI effects [31,32]. There are studies
that have used supervised/unsupervised or object-based classification techniques [33–37],
linear spectral mixture analysis [32,38], or hybrid methods [39,40] for the determination
of LULC areas. Land cover indices are also used to identify LULC areas [12,30,31,41–44].
Normalized difference vegetation index (NDVI) and normalized difference built-up index
(NDBI) are the most commonly used land cover indices for examining UHI [45]. Gallo was
the first who addressed the usability of NDVI data in UHI studies [46,47]. Negative correla-
tions between NDVI and LST were observed in the literature, whereas a positive correlation
between NDBI and LST is dependent on the season [29,38]. Zhang et al. [48] indicated that
both NDVI and NDBI images can be utilized as alternatives to LULC [48]. In addition to
these two indices, there are studies that have used additional indices such as the enhanced
vegetation index (EVI), index-based built-up index (IBI), normalized difference bareness
index (NDBaI), and the normalized difference water index (NDWI) [12,31,38,49,50]. The
main problem using these indices for LULC detection is the determination of the threshold
values. This is due to the fact that, depending on the study areas, different LULC types
can have different ranges of values and it may be difficult to decide these values [12,43]. In
most of the SUHI detection studies performed thus far, these values have been determined
manually or trial and error. To the best of our knowledge, there are only a limited number of
SUHI studies that have determined these values automatically. Generally, in these studies,
the concentration was only on one class. For example, Muzaky and Jaelani [51] applied
Otsu’s thresholding to MNDWI images for determining water areas only, and Sekertekin
and Zadbagher [52] used Otsu’s thresholding method to extract impervious surfaces from
NDBI images. Estoque et al. [44] determined water, impervious surfaces, green spaces and
other land cover areas using spectral indices. However, they used Otsu’s thresholding just
for the water class and determined other classes using manual thresholding. On the other
hand, Zhang et al. used unsupervised classification for finding the appropriate ranges for
detecting LULC classes [48].

There are studies that have used LULC images produced from higher resolution
images or land cover data/maps that have different dates from the thermal image [13,48].
However, urban areas grow rapidly, especially in metropolitan cities of developing coun-
tries, and even in short time intervals. Therefore, it is important to obtain LULC data from
the same image or images with the same date as the image from which the LST values
were computed.

SUHIs can be computed using the minimum, maximum or mean LST differences
between urban and rural land cover classes. In the literature, there are studies that have
used urban–vegetation, urban–rural, urban–non-urban, and urban–water land cover classes
to determine the magnitude of SUHIs [31,32]. The SUHIs can also be computed by using
the LST differences of urban areas and buffer zones around the urban areas [26,53–56].

The objectives of this study were to detect the SUHI effects rapidly and efficiently,
using solely the Landsat imageries and to compare the LST, LULC and SUHI results for
the years 2002, 2003, 2004, 2007, 2009, 2011, 2013, 2015, 2016, 2017, and 2020. Initially,
pre-processing was performed on the Landsat imagery. Then, NDVI, SAVI, MNDWI
and IBI images were generated using the multispectral bands of the Landsat imageries,
while the LST image was computed by using the thermal bands of Landsat imageries.
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In the next step, urban, vegetation, water and other areas were extracted automatically
by applying Otsu thresholding to NDVI, SAVI, MNDWI and IBI images. As mentioned
previously, there are studies that have defined land cover classes using indices. However,
for urban extraction, we used IBI, NDVI, MNDWI and SAVI indices together. In addition,
different from the SUHI studies performed thus far, in this study, all land cover classes
were generated automatically by applying Otsu thresholding. Finally, SUHI effects were
determined using two techniques, and the LULC and SUHI changes were analyzed.

2. Materials and Methods

To investigate the SUHI effect of Bursa, Turkey, for 11 time periods from the years
2002 to 2020, multispectral and thermal bands of Landsat images were used. The flowchart
of the proposed methodology is shown in Figure 1.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 3 of 21 
 

 

processing was performed on the Landsat imagery. Then, NDVI, SAVI, MNDWI and IBI 
images were generated using the multispectral bands of the Landsat imageries, while the 
LST image was computed by using the thermal bands of Landsat imageries. In the next 
step, urban, vegetation, water and other areas were extracted automatically by applying 
Otsu thresholding to NDVI, SAVI, MNDWI and IBI images. As mentioned previously, 
there are studies that have defined land cover classes using indices. However, for urban 
extraction, we used IBI, NDVI, MNDWI and SAVI indices together. In addition, different 
from the SUHI studies performed thus far, in this study, all land cover classes were gen-
erated automatically by applying Otsu thresholding. Finally, SUHI effects were deter-
mined using two techniques, and the LULC and SUHI changes were analyzed. 

2. Materials and Methods 
To investigate the SUHI effect of Bursa, Turkey, for 11 time periods from the years 

2002 to 2020, multispectral and thermal bands of Landsat images were used. The flowchart 
of the proposed methodology is shown in Figure 1. 

 
Figure 1. The flowchart of the overall processes. 

2.1. Study Area 
Bursa, which is located in the northwest of Turkey and southeast of the Marmara Sea, 

is the Turkey’s fourth largest city. According to the Turkish Statistical Institute (TUIK), 
the 2002 and 2020 populations were 2,231,582 and 3,101,833, respectively [57]. Bursa is 
situated at an altitude of about 155 m and has a mild climate [58]. However, the climate 
also varies region by region. In the north, there is a mild and warm climate due to the 
Marmara Sea, and in the south, there is a harsh climate around the Uludag Mountain. The 
average annual precipitation is 706 mm, as of the 52-year observation period, and the av-
erage relative humidity in the province is around 69% [58]. Bursa is one of the important 
industrial provinces of Turkey, and there are industrial regions on three urban entrances. 
In addition, a natural gas combined-cycle power plant is located in the northern part of 
Bursa province. As a result, Bursa is developing rapidly, and its annual population growth 
rate was 14.85% for 2019–2020 [57]. Urbanization and industrialization are the most im-
portant triggers of the SUHI effect. Therefore, Bursa was chosen as the study area (Figure 
2). 

Figure 1. The flowchart of the overall processes.

2.1. Study Area

Bursa, which is located in the northwest of Turkey and southeast of the Marmara Sea,
is the Turkey’s fourth largest city. According to the Turkish Statistical Institute (TUIK),
the 2002 and 2020 populations were 2,231,582 and 3,101,833, respectively [57]. Bursa is
situated at an altitude of about 155 m and has a mild climate [58]. However, the climate
also varies region by region. In the north, there is a mild and warm climate due to the
Marmara Sea, and in the south, there is a harsh climate around the Uludag Mountain.
The average annual precipitation is 706 mm, as of the 52-year observation period, and the
average relative humidity in the province is around 69% [58]. Bursa is one of the important
industrial provinces of Turkey, and there are industrial regions on three urban entrances. In
addition, a natural gas combined-cycle power plant is located in the northern part of Bursa
province. As a result, Bursa is developing rapidly, and its annual population growth rate
was 14.85% for 2019–2020 [57]. Urbanization and industrialization are the most important
triggers of the SUHI effect. Therefore, Bursa was chosen as the study area (Figure 2).
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Figure 2. The color infrared Landsat 8 OLI imagery (2020) of the study area and its location in Turkey
and Bursa.

2.2. Data Description and Pre-Processing

The only data used in this study were multi-temporal Landsat imageries. MODIS
imageries were used for validation. The Landsat images were first obtained in 1972, and
Landsat Level-1 data products are used to produce high level scientific data such as surface
temperature, water area, snow-covered, and burned areas [59], and they are among the
most commonly used images in remote sensing studies because they can be downloaded
for free. In this study, Landsat 5 TM and Landsat 8 OLI/TIRS images were used. For the
study area, the Landsat images that belonged to the summer season were investigated,
and then the July images that had no clouds were selected. At the end, the Landsat 5 TM
(16 July 2002, 3 July 2003, 21 July 2004, 30 July 2007, 19 July 2009, 9 July 2011) and Landsat
8 OLI/TIRS (30 July 2013, 20 July 2015, 22 July 2016, 25 July 2017, 1 July 2020) images were
downloaded from the USGS Earth Explorer (https://earthexplorer.usgs.gov, accessed on
1 February 2021). Landsat 5 TM images have 6 multispectral and 1 thermal bands, whereas
Landsat 8 images have 8 multispectral, 1 panchromatic and 2 thermal bands. For both
satellite images, the spatial resolution of the multispectral bands was 30 m. The thermal
bands were 120 m and 100 m for Landsat 5 TM and Landsat 8 TIRS, respectively. However,
the thermal bands were resampled to 30 m for the delivery products. The Landsat images
could be rescaled to the top-of-atmosphere (TOA) reflectance, and the thermal constants (K1
and K2) needed to convert thermal band data to TOA brightness temperature are available
in the metadata file [60]. Formulae for these conversions are provided in Section 2.4.

Atmospheric conditions when the images are taken may affect the quality of the LST
estimate. Therefore, atmospheric correction was applied to the images. The DOS1 atmo-
spheric correction module of QGIS open-source software was used for this process. This
module is based on studies performed by Chavez [61], Sobrino et al. [62], Moran et al. [63]
and Congedo [64].

https://earthexplorer.usgs.gov
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2.3. Generation of Land Cover Indices

Using land cover indices together, different land cover classes can be identified [29,31,49].
In this study NDVI, SAVI, MNDWI, and IBI land cover indices were used. The NDVI is
a vegetation index developed by Rouse et al. [65]. SAVI is also a vegetation index, and
is used for cities which have an intense urban texture. When compared with the NDVI,
the SAVI gives more accurate results for detecting less dense vegetation areas. It is useful
for areas that have low vegetation to correct the NDVI for soil brightness influences [66].
The NDVI and SAVI indices are computed using Equations (1) and (2), respectively, and
information about vegetation density is presented in the image. The values of these indices
vary between –1 and 1. The normalized water difference index was modified (MNDWI) by
Xu [67], using GREEN and MIR bands to improve open-water properties (Equation (3)).
This modified version reduces built-up land noises that are frequently correlated with
open water in other indices. The IBI was proposed by Xu [68] for rapidly built-up area
extraction using three thematic indices, NDVI, NDBI and MNDWI. Xu stated that in the
IBI image, the built-up areas are enhanced, whereas the background noise is effectively
suppressed [68]. In this study, the IBI index was calculated using Equation (4), that enabled
the generation of IBI immediately without having to generate the indices [68]. Figure 3
shows the obtained land cover indices for the year 2020.
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The formulae for land cover indices used in this study are:

NDVI =
(NIR − RED)

(NIR + RED)
(1)

SAVI =
(NIR − RED)(1 + l)
(NIR + RED + l)

(2)

MNDWI =
(GREEN − MIR)
(GREEN + MIR)

(3)

IBI =
2MIR/(MIR + NIR)− [NIR/(NIR + RED) + GREEN/(GREEN + MIR)]
2MIR/(MIR + NIR) + [NIR/(NIR + RED) + GREEN/(GREEN + MIR)]

(4)

where GREEN is the green band, RED is the red band, NIR is the near-infrared band, MIR
is the middle-infrared band, and l is the soil-adjusted correction factor (the value is between
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0 and 1: 0 for very dense vegetation; 1 is very sparse vegetation). Generally, this value is
accepted as 0.5.

2.4. Obtaining LST Values

Different methods have been developed to estimate LST values. Some of these meth-
ods require more than one thermal band (e.g., split window algorithm [27,69,70], multi
angle algorithm [71]). However, some methods can be implemented with a single ther-
mal band, e.g., single-channel algorithm [72,73], mono-window algorithm [74,75], and
methods that are based on Planck’s law [76,77]. The Landsat 5 TM has one thermal band.
Uncertainties were observed in the 11 bands of the Landsat 8 images, and therefore, as
the USGS has suggested, users should work with TIRS Band 10 data as a single spectral
band [60,75]. Thus, in this study, a method that could be applied with a single thermal band
was preferred [76]. The main reason for using this method is that it enables the calculation
of LST by utilizing only emissivity values without the need for atmospheric parameters at
the time of image acquisition.

Firstly, digital numbers (DN) was converted to radiance using Equation (5):

Lb = (Lmin + (Lmax − Lmin))∗DN/QCalMax (5)

where Lb is the spectral radiance at the top of atmosphere in watts/m2*sr*µm, Lmin is the
minimum spectral radiance for the thermal band, Lmax is the maximum spectral radiance
for thermal band, and QCalMax represents the maximum quantized and calibrated standard
product pixel values (DN).

Brightness temperature was calculated using the spectral radiance with Equation (6):

TB =
K2(

ln (K1
Lb

+ 1)
) (6)

where TB is the brightness temperature, and K1 and K2 are band-specific thermal conversion
constants from the metadata; for Landsat 8 TIRS: K1 = 774.89 and K2 = 1321.08, and for
Landsat 5 TM: K1 = 607.76 and K2 = 1260.56.

Then, the surface temperature (TS) was derived using Equation (7) [76,77], and it was
converted to Celsius (TC) with Equation (8).

TS = TB/(1 +
(
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(9) 

where ε  is the emissivity, ε  is the emissivity value of soil surfaces, ε  is the emissiv-
ity value of vegetation surfaces, NDVIs is the NDVI value of soil surfaces, and NDVIv is 
the NDVI value of vegetation surfaces. 

The Pv values in Equation (9) can be calculated using Equation (10) [80]: P = NDVI −  NDVINDVI  − NDVI  
(10) 

where NDVIS = 0.2 and NDVIV = 0.5 [78] 
Moreover, in Equation (9), the εvλ is 0.99 and the εsλ was computed with Equation 

(11): εsλ = 0.98 − 0.042 ∗ RED (11) 

where RED is the red band DN values. 

∗ TS

α

)
∗ ln(ε) (7)

where ε is the emissivity,
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is the average wavelength of the band, and α = 1.438 × 10−2 mK.

TC = TS − 273.5 (8)

The last step was to derive the calculation emissivity [62,78,79]. Emissivity was
calculated with Equation (9):

ελ =


εsλ NDVI < NDVIs
εsλ + (εvλ − εsλ) ∗ Pv NDVIs ≤ NDVI ≤ NDVIv
εvλ NDVI > NDVIv

(9)

where ελ is the emissivity, εsλ is the emissivity value of soil surfaces, εvλ is the emissivity
value of vegetation surfaces, NDVIs is the NDVI value of soil surfaces, and NDVIv is the
NDVI value of vegetation surfaces.

The Pv values in Equation (9) can be calculated using Equation (10) [80]:

Pv =

[
NDVI − NDVIs

NDVIv − NDVIs

]2
(10)
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where NDVIS = 0.2 and NDVIV = 0.5 [78].
Moreover, in Equation (9), the εvλ is 0.99 and the εsλ was computed with Equation (11):

εsλ = 0.98 − 0.042 ∗ RED (11)

where RED is the red band DN values.

2.5. Extracting Land Cover Areas and Detecting SUHIs

Green plants perform photosynthesis using their chlorophyll pigments. Thus, they
use radiation in the red wavelengths of the solar radiation spectrum. Therefore, they
absorb a large part of the radiation in the red wavelengths. However, they reflect almost
all of the radiation in the near-infrared region. As a result, NDVI shows differentiation
between green areas and water surfaces, and gives different values according to the surface
properties of the pixels. Hence, it is possible to mention the specific ranges of NDVI values
for specific surfaces. If the surface of a pixel contains almost no vegetation in the image,
the NDVI value is less than 0.2. When the surface is covered with low-density vegetation
texture, the NDVI value ranges between 0.2 and 0.5, whereas when the surface is covered
with high-density vegetation, the NDVI value varies between 0.5 and 1 [49,79].

In this study, the threshold values of land cover indices were determined by using
the Otsu thresholding method [81]. Then, using these threshold values, urban, vegetation,
water and other areas were extracted. For NDVI images, two different threshold values
(lower: THR1NDVI, and higher: THR2NDVI) were found by using the “multithresh” function
of MATLAB R2019a programming language, which is used for determining multilevel
image thresholds using Otsu’s method. The vegetation areas were defined from the NDVI
images using the higher threshold value (DNNDVI > THR2NDVI). On the other hand, for IBI,
MNDWI and SAVI images, a single threshold value was computed for each image, again
using Otsu’s method. The IBI (DNIBI > THRIBI) MNDWI (DNMNDWI < THRMNDWI), NDVI
(DNNDVI < THR1NDVI) and SAVI (DNSAVI < THRSAVI) images were used to determine
urban areas. In addition, water areas were determined using MNDWI images (DNMNDWI
> THRMNDWI). The conditions and automatically found threshold values which were used
to determine the LULC classes in this study are given in Tables 1 and 2, respectively.

Table 1. The conditions to determine the land cover classes for Landsat 8 OLI images.

Land Cover Conditions

Urban DNIBI > THRIBI and DNNDVI < THR1NDVI and DNMNDWI < THRMNDWI and DNSAVI < THRSAVI
Vegetation DNNDVI > THR2NDVI

Water DNMNDWI > THRMNDWI

Table 2. The obtained threshold values using Otsu’s method for each of the Landsat imageries to determine LULC classes.

Landsat Image
Acquisition Date THR1NDVI–THR2NDVI THRIBI THRSAVI THRMNDWI

16 July 2002 0.14, 0.44 −0.15 0.21 0.16
3 July 2003 0.14, 0.43 −0.15 0.23 0.19

21 July 2004 0.14, 0.44 −0.13 0.21 0.06
30 July 2007 0.13, 0.42 −0.12 0.22 0.08
19 July 2009 0.14, 0.42 −0.13 0.22 0.14
9 July 2011 0.16, 0.47 −0.15 0.23 0.08

30 July 2013 0.12, 0.31 −0.09 0.15 −0.01
20 July 2015 0.13, 0.34 −0.11 0.16 −0.01
22 July 2016 0.12, 0.34 −0.10 0.17 −0.03
25 July 2017 0.12, 0.33 −0.15 0.15 −0.02
1 July 2020 0.21, 0.53 −0.19 0.22 0.12
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After obtaining the land cover classes, morphological operations and sieve filters were
used as post-processing. Dilation morphological operation was used for the detected urban
areas to remove small holes, and the kernel size was determined as 3. Then, the sieve filter
was applied to the whole land cover image to remove isolated class pixels.

In this study, the sizes of SUHIs for Bursa were calculated using two methods:
(1) SUHIUrban–Vegetation: computing mean LST differences of urban and vegetation areas;
(2) SUHIUrban–Buffer: calculating the mean LST differences of urban and surrounding buffer
areas. The buffers were generated with 1 km intervals. In this method, four buffer rings
were created that had 0—1 km, 1—2 km, 2—3 km, 3—4 km distances from urban areas.

3. Results

The results of this study were examined in three parts: (i) land cover detection; (ii)
LST values and variations; and (iii) SUHI detection.

3.1. Land Cover Detection

The obtained land cover images are displayed in Figure 4. To denote the quality and
usability of the produced land cover images and to assess the accuracies, test pixels were
collected, and error matrices were generated (Table 3). The determination of test pixel size
is important during the classification accuracy assessment. Congalton [82] proposed using
a minimum of 50 test samples for each land use category and stated that the minimum
sample size should be increased to 75 or 100 samples per class if the area is large. Therefore,
500 testing pixels per class were collected in this study.

The land cover areas were successfully identified when the results were analyzed both
visually and quantitatively. The overall accuracies were computed as between 89.60% and
95.90% for the 11 time periods between the years 2002 and 2020 (Table 3). These results
indicate the quality and usability of the resultant images in SUHI detection studies. When
the producer’s and user’s accuracy values were analyzed, it can be stated that the urban,
vegetation and water classes which could be used for SUHI computation are quite high.
As expected, the water class was determined most accurately, while the vegetation class
was the second most accurately determined.

Table 3. The obtained producer’s accuracy (PA), user’s accuracy (UA), and overall accuracy values
for the years 2002, 2003, 2004, 2007, 2009, 2011, 2013, 2015, 2016, 2017 and 2020.

Urban Vegetation Water Other

PA UA PA UA PA UA PA UA Overall acc.
(%)

2002 0.85 1.00 1.00 0.99 1.00 1.00 0.99 0.87 95.90
2003 0.86 0.94 0.89 0.98 0.98 1.00 0.94 0.79 91.85
2004 0.88 1.00 0.95 0.98 1.00 1.00 0.98 0.85 95.15
2007 0.88 0.95 0.89 0.98 0.94 1.00 0.96 0.78 91.70
2009 0.93 0.91 0.92 0.98 1.00 1.00 0.92 0.88 94.15
2011 0.92 0.83 0.85 0.94 1.00 1.00 0.81 0.82 89.60
2013 0.92 0.78 0.92 0.97 1.00 1.00 0.78 0.87 90.25
2015 0.92 0.92 0.90 0.99 1.00 1.00 0.92 0.85 93.45
2016 0.92 0.81 0.91 1.00 1.00 1.00 0.81 0.85 91.10
2017 0.91 0.87 0.90 0.98 0.95 1.00 0.87 0.79 90.50
2020 0.96 0.81 0.90 0.94 0.95 1.00 0.81 0.88 90.45
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The areas of LULC classes and changes are given in Table 4. For the 18-year time
period, it can be observed that the urban and vegetation areas have increased significantly.
In contrast, the other areas have decreased considerably. In this time period, the water
areas hardly ever changed. The urban areas were found to expand over 93.14 km2 in
2002, whereas the extent was 210.86 km2 in 2020. The vegetation area was computed
as 383.42 km2 and 572.44 km2 for 2002, and 2020, respectively. On the other hand, the
water area was calculated as 3.23 km2 for the year 2002 and 3.28 km2 for the year 2020.
The increases in urban, vegetation and water areas were 117.72 km2, 189.02 km2 and
0.05 km2, respectively, from 2002 to 2020. On the other hand, the decrease in other areas
was 306.79 km2. These values and visual inspection indicated that, over time, the urban
area has expanded into the surrounding areas.

Table 4. The land cover areas and changes for the years 2002 to 2020.

Image Years Urban Area
(km2)

Vegetation Area
(km2)

Water Area
(km2)

Other Area
(km2)

2002 93.14 383.42 3.23 695.48
2003 96.21 357.65 2.81 718.60
2004 112.21 420.72 3.13 639.21
2007 125.04 361.18 1.79 687.26
2009 151.07 433.81 3.24 587.16
2011 167.24 420.47 3.64 583.91
2013 187.72 423.21 2.76 561.59
2015 183.71 382.51 3.92 605.14
2016 196.13 357.14 3.59 618.41
2017 185.14 350.82 3.01 636.30
2020 210.86 572.44 3.28 388.69

Change 2020–2002 (∆) 117.72 189.02 0.05 −306.79

3.2. LST Values and Variations

The produced LST images of the study area for 11 time periods from the years 2002 to
2020 are given in Figure 5; the LST graphics that show the mean LST values of urban, vege-
tation and water classes are given in Figure 6a; for the urban class, minimum, maximum
and mean values are given in Figure 6b. When the LST values and maps were analyzed, it
can be stated that in general there was an increasing trend for LST values of all classes as
well as for the whole study area. However, unexpectedly, there was an extreme increase in
2003, and another unexpected slight increase in 2013.

According to the obtained results, it was observed that Bursa urban areas are warmer
than vegetation and water areas in the summer season for all years. The LST values were
lowest in water areas, because the daytime images were used. In 2002, the mean LST
values of Bursa urban, vegetation and water areas were computed as 32.61 ◦C, 26.84 ◦C and
25.42 ◦C, respectively. In 2020, the mean LST value of the Bursa urban area was computed
as 36.79 ◦C, while LST value of vegetation area was computed as 29.29 ◦C, and water areas
were computed as 26.73 ◦C. The mean LST values generally increased for urban, vegetation
and water areas from 2002 to 2020, and the changes in mean LST values between these
years are 4.18 ◦C for urban areas, 2.45 ◦C for vegetation areas, and 1.31 ◦C for water areas.
When the urban area was analyzed in detail, it could be seen generally that minimum,
maximum and mean LST values increased from 2002 to 2020.
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The validity of the obtained LST values was assessed by using MODIS LST/Emissivity
data, and the values of MODIS LST were acquired using the (0.02) rescaled factor [83].
The correlation values between the generated Landsat LST and MODIS LST/Emissivity
images were calculated using the mean values of the urban, vegetation and water areas.
The correlation values were obtained as quite high: 0.89, 0.85, 0.84, 0.94, 0.91, 0.95, 0.97,
0.94, 0.94, 0.95 and 0.94 for 2002, 2003, 2004, 2007, 2009, 2011, 2013, 2015, 2016, 2017 and
2020 images, respectively.

3.3. SUHI Detection

The SUHI values were computed by using mean LST values of urban and vegetation
classes and obtained to be 5.77 ◦C for 2002 and 7.50 ◦C for 2020 (Table 5). When the changes
in the SUHIUrban–Vegetation results were analyzed, there was an important increase over the
18-year time period (1.73 ◦C).

Table 5. SUHI magnitude values.

Years
SUHI Magnitudes (◦C)

Buffer 1 Buffer 2 Buffer 3 Buffer 4 Urban–Vegetation

2002 1.43 2.40 3.08 3.91 5.77
2003 1.15 2.59 4.20 5.15 7.30
2004 0.94 1.74 3.07 4.07 6.36
2007 1.07 2.45 3.63 4.22 6.36
2009 1.96 3.59 4.41 5.26 6.66
2011 2.15 4.45 5.65 7.02 7.22
2013 2.44 3.78 5.51 7.49 6.70
2015 2.91 5.04 6.71 7.56 7.40
2016 2.57 4.83 6.98 8.75 8.10
2017 2.63 4.66 6.41 7.60 7.66
2020 3.65 6.26 7.90 9.49 7.50

Change 2020–2002 (∆) 2.22 3.86 4.82 5.58 1.73
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The SUHI values computed by using mean LST values of urban and buffer areas
are given in Table 5. The used buffer areas are shown in Figure 7a, and the graphic that
compares SUHIs computed using four buffer areas is given in Figure 7b. The obtained
results indicate that, generally, there is an increasing trend in SUHI magnitudes from the
years 2002 to 2020. Additionally, it can be stated that the computed SUHI magnitudes
increases when the buffer ring area is further away from the urban area, and vice versa.
These results can be explained by the possibility that areas farther from the city are more
rural, and therefore have lower LST values. For Buffer 1 (0–1 km), Buffer 2 (1–2 km), Buffer
3 (2–3 km) and Buffer 4 (3–4 km), the SUHI magnitudes were computed to be in the ranges
of 0.94–3.65, 1.74–6.26, 3.07–7.90 and 3.91–9.49, respectively.
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At the end of the study, instead of directly comparing images from different years,
the LST was normalized and compared in order to minimize the effect of land use change
and different atmospheric conditions between years. SUHI maps were created using
normalized LST values using Equation (12). There are studies in the literature which have
considered regions with normalized LST values greater than 1.5 ◦C or greater than 2 ◦C as
SUHI areas [84,85].

SUHI = (LST − LSTmean)/std (12)

where LST is the pixel LST value, LSTmean is the mean LST of the study area, and std is
the standard deviation [85].

When the created SUHI maps were examined, it was seen that the normalized LST
values of the urban area increased from 2002 to 2020. The SUHI sizes of some parts of
the city and the impermeable surfaces near the city were higher in 2002, whereas SUHI
values were higher in the urban area and its immediate surroundings after 2011. The
SUHI phenomenon, which was weaker in 2002, strengthened considerably in 2020, and the
thermal conditions of the city of Bursa have changed substantially with the growth of the
city. It can clearly be seen that the values higher than 1.5 ◦C correspond to the urban heat
island areas in the 2020 SUHI map (Figure 8).
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4. Discussion

When the obtained LST values for the whole study area were analyzed, it could be
stated that almost all of the LST values increased from the year 2002 to 2020. On the other
hand, as can be seen in the LST images (Figure 5) and graphics (Figure 6), the 2003 LST
values are extremely high. This situation may give rise to thought that the obtained results
are erroneous. However, when the previous temperatures and heat waves were explored,
it could be evaluated that the heat wave of 2003 in Europe may have caused these results.
The 2003 summer was reported to be the hottest summer since 1500 [86–88]. It was said
that the sweltering temperatures in summer 2003 had many negative effects, causing the
extra deaths of thousands of people [88]. Therefore, according to our evaluation, it is very
possible that this heat wave in Europe also affected Bursa. In addition, the 2013 LST values
are also relatively high, and it could be because of a 2013 heatwave that affected Europe.

The relationships between LST and IBI and LST and NDVI images for the whole
study area were analyzed, and the correlation coefficient values are presented in Table 6.
The obtained correlation coefficient values indicate that LST presented a strong positive
relationship with the IBI image in every situation, with correlation coefficient values higher
than 0.75. Conversely, LST and NDVI images had strong negative relationships, and the
correlation coefficient values were computed as between –0.69 and –0.80. Guha et al. [89]
studied the relationships of NDVI, NDWI, NDBI, and normalized multiband drought index
(NMDI) with LST in 11 images from the same year and four different seasons. They found
that regardless of the season, LST had negative relationships with NDVI and NMDI, but
positive relationships with NDWI and NDBI. These results are similar to our findings.

Table 6. Correlation coefficient values for LST–IBI and LST–NDVI relationships.

LST-IBI LST-NDVI

2002 0.75 −0.75
2003 0.79 −0.76
2004 0.76 −0.72
2007 0.81 −0.77
2009 0.81 −0.78
2011 0.81 −0.78
2013 0.76 −0.69
2015 0.80 −0.74
2016 0.77 −0.71
2017 0.78 −0.73
2020 0.82 −0.80

LST generated using thermal remote sensing techniques is widely used in environ-
mental studies. Although in this study quite high correlation values were found with the
produced Landsat LST images and MODIS LST images, it should be noted that there are
sources of error (such as error source due to atmospheric effects and emissivity uncertainty)
when LST is retrieved from remote sensing data [90].

Although the 2003 LST values were computed to be exceptionally higher than all of the
other years, for SUHI magnitudes, the situation was different. The calculated 2003 SUHI
magnitudes were higher than the years 2002 and 2004, although lower than other years.
This situation reveals that although sudden decreases and rises in temperatures can be
observed in some years due to climatic effects, the increase in SUHI effects will continue to
increase unless necessary precautions are taken, and the temperature differences between
urban and rural areas are increasing.

The obtained SUHI maps show that the highest magnitudes were obtained for urban
areas. In this study, residential, industrial and commercial areas were generally defined as
urban areas. For detailed information and comparison of different parts of urban areas,
zoning was necessary. In Figure 9, the 2020 color-infrared compositions of Landsat imagery
and 2020 SUHI map are displayed. Examining these areas more closely with Google Earth
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images, it could be observed that the SUHI magnitudes of industrial areas had highest
values (Figure 9). It was seen that especially Bursa, Demirtas, and Hasanaga organized
industrial sites had the highest values.
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of the study area: 1. Bursa organized industrial site; 2. Nilufer small industrial site; 3. Hasanaga organized industrial site;
4. Demirtas organized industrial site; 5. Kestel organized industrial site.

Considering that SUHI is computed by differencing the mean LST values of urban
and rural areas, the correct determination of urban and rural areas in these studies is a very
important step that directly affects the results. The classification processes require a lot of
time for this stage. The obtained results indicate that with the proposed method used in
this study, urban, vegetation and water areas can be obtained quite rapidly and accurately.
However, defining rural areas and determining their boundaries is more difficult than
urban areas. For this reason, it can be seen that in some studies, the mean LST values of
urban–vegetation, urban–water, and urban–non-urban areas are used, whereas in some
other studies, urban–buffer areas around the urban area are used. There is no general
consent on buffer distances to the urban area. Hence, we used four different buffer rings
(0–1 km, 1–2 km, 2–3 km, 3–4 km). The obtained results indicate that the computed SUHI
magnitudes were quite different from each other, and the SUHI magnitudes increased
when the distance of the buffer ring to the urban area increased. Although the SUHIs were
generated by using urban–buffer ring areas, it can be stated that the 3–4 km buffer to the
urban area gave the most similar results to SUHIs generated by using the urban–vegetation
areas. As a result, the detection of rural areas in SUHI studies is an important issue that
should be addressed in future studies. For future work, we are also planning to consider
seasonality, using images taken in different seasons.

5. Conclusions

The aims of this study were to determine SUHIs effect easily, efficiently, and rapidly,
and to analyze the land cover and land surface temperature (LST) changes, solely using
Landsat time series images for 11 time periods from 2002 to 2020. The proposed approach
was implemented in Bursa metropolitan city, which is the fourth largest city in Turkey, using
the summer season images of the years 2002, 2003, 2004, 2007, 2009, 2011, 2013, 2015, 2016,
2017, 2020; the LULC, LST and SUHI changes were analyzed in this 18-year time period.
For this purpose, firstly, the images for these years were obtained, pre-processed, and made
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suitable for analysis. Then, NDVI, SAVI, MNDWI and IBI indices were produced, and LST
data were generated using only Landsat images. Subsequently, the LULC classes were
extracted by applying an automatic thresholding technique. Finally, the SUHI magnitudes
were calculated using: (i) urban–vegetation LST differences; and (ii) urban–buffer area
LST differences.

The LULC detection results were good enough to be used in SUHI extraction purposes,
with overall accuracy values between 89.60% and 95.90% for the used images. When the
results of the study are examined, it can be seen that the urban area has increased signif-
icantly in the 18-year time period. Within this time period, the LST values increased for
almost all land cover areas. The obtained LST values indicate that the Bursa metropolitan
city is affected by urban warming due to the urbanization process, and probably also by
the increase in heatwaves due to climate change. The SUHI magnitudes were computed
using urban–vegetation mean LST differences and urban–buffer mean LST differences. The
obtained SUHI magnitude values were computed as between 5.77 and 8.10 for the used
years when urban–vegetation mean LST differences were used. On the other hand, when
urban–buffer mean LST differences were used, the values were computed as between 0.94
and 10.6, and the values increased when the buffer ring area was farther away from the
urban area. It was also found that there were significant changes in SUHI magnitudes from
2002 to 2020. Bursa is an industrial city and is developing very rapidly. The obtained results
indicate that the urban expansion and LST increase noticeably even in just an 18-year time
period, and this situation reveals the importance of considering the climate properties and
taking timely precautions during urban planning processes. To mitigate the ongoing in-
crease in the UHI effect over the years, using green/cool roofs, cool pavements, increasing
the numbers of trees, and designing efficient landscape areas in urban environments could
be solutions.
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