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Abstract: The spatiotemporal variation characteristics of the Normalized Difference Vegetation
Index (NDVI) and its climate response patterns are of significance in deepening our understanding
of regional vegetation and climate change. The response of vegetation to climate factors varies
spatially and may have lag periods. In this paper, we studied the spatiotemporal responses of
vegetation to climatic factors on an ecosystem-dependent scale using GIMMS NDVI3g data and
climatic parameters. Pure pixels with a single vegetation type were firstly extracted to reduce the
influence of mixed vegetation types. Then, a lag correlation analysis was used to explore the lag
effects of climatic parameters affecting NDVI. Finally, the stepwise regression method was adopted to
calculate the regression equation for NDVI and meteorological data with the consideration of effect
lag times. The results show that precipitation has significant lag effects on vegetation. Temperature
is the main climatic factor that affects most vegetation types at the start of growing season. At the
end of growing season, the temperate desert, temperate steppe, and temperate desert steppe are
greatly affected by precipitation. Moreover, the alpine steppe, alpine desert, alpine meadow, and
alpine sparse vegetation are greatly affected by temperature. The needleleaf forest, subalpine scrub,
and broadleaf evergreen forest are sensitive to sunshine percentage during almost the whole growing
season. These findings could contribute to a better understanding of the drivers and mechanisms of
vegetation degradation on the Tibetan Plateau.

Keywords: NDVI; ecosystem-dependent scale; lag effect; climate factors; the Tibetan Plateau

1. Introduction

The ecosystems on the Tibetan Plateau are very fragile, and their ability to resist
disturbance and regenerate is weak [1]. The temperature of the Tibetan Plateau has been
constantly increasing due to global warming, and the rate of warming on the Plateau is
higher than in other parts of China [1,2]. The study of the spatial and temporal distribution
characteristics of vegetation, and its climate response, on the Tibetan Plateau is significant
for deepening the understanding of trends in the ecological effects of climate change on
vegetation degradation.

The impact of climate change on vegetation occurs at different spatial and temporal
scales, and it is difficult to meet the requirements for monitoring changes at regional or
global scales with traditional monitoring methods [3]. With its rapid development, remote
sensing technology has realized the long-term monitoring of the dynamic changes in
vegetation cover in certain regions, which has improved data availability for research on
vegetation responses to climate [4]. Based on the fact that chlorophyll absorbs red light,
whereas the mesophyll leaf structure scatters near-infrared light [5,6], the Normalized
Difference Vegetation Index (NDVI) is derived from the red and near-infrared reflectance
captured by the sensor of the satellite: NDVI = (NIR − RED)/(NIR + RED), where NIR
and RED are the red and near-infrared light reflected by vegetation. This index can reflect
the green plant biomass and green leaf area [5], which has a reliable correlation with
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vegetation productivity and is related to the fraction of absorbed photosynthetic radiation
intercepted (fAPAR) [7]. NDVI from the Moderate-Resolution Imaging Spectroradiometer
(MODIS) and Advanced Very High-Resolution Radiometer (AVHRR) are widely used
for the successful assessment, detection, and depiction of landscape conditions and their
responses to climate variations at both global and regional scales [8].

Although NDVI data are strongly related to climatic parameters, these relationships
are ecosystem-dependent, highly site-specific [9,10] and vary widely in different ecosys-
tems, such as soil [11] and vegetation ecosystems [12]. At present, most studies have
examined the relationship between climate and vegetation at different scales. Due to
stratified heterogeneity, considering the property information (i.e., vegetation type, land
cover type, etc.) of each pixel is very useful for understanding the mechanisms of the
effect of climate on vegetation. Therefore, it is important to study the relationship between
vegetation and climate factors at sub-regional scales. Among the many potential spatial
scales for studies, it is the most reasonable to explore climatic effects on different vegetation
ecosystems (i.e., at the vegetation type scale). The response of different grassland systems
to climate change can vary greatly [13]. The same type of vegetation will often have a
similar climatic environment and similar response mechanisms to climatic factors [14,15].

For a long time, temperature and water stress have been the primary considerations
in studies looking at the climate factors affecting vegetation [16]. As research progresses,
an increasing number of climate factors are being considered. Sunlight, i.e., solar radiation,
provides an energy source for vegetative photosynthesis. On the Tibetan Plateau, sunshine
has a more significant impact on vegetation in the south-east region of the Plateau [16]. The
lack of radiation observation sites may be the main reason why the influence of radiation is
rarely considered in studies, but the sunshine percentage may be a feasible replacement.
The relative humidity can reflect the dry and wet conditions of an area to some extent, and
can have interactive effects with vegetation [17]. Minimum temperature resistance can be a
significant influencing factor on vegetation [18,19].

The effect of precipitation on vegetation shows significant lag [3]. Many studies have
been carried out on the effects of lagged precipitation on vegetation growth, indicating
that the lag time of the climate factors that affect vegetation growth varies among different
vegetation ecosystems and growth stages [4,19–22]. In addition to precipitation, some
studies have been conducted on the lag effects of other climate factors on vegetation. Piao
(2003) analyzed the monthly average NDVI variation and found that NDVI in April or
May was significantly correlated with the temperature in February [23]. Wen et al. (2017)
analyzed the regional differences in the lag time of effects at the pixel scale, concluding that
there was regional heterogeneity in the amount of lag in the effects of both precipitation
and temperature [24]. Revealing the lag in the effects of climate factors on vegetation is
significant for understanding the ecological mechanisms of vegetation change.

In this study, long-term GIMMS (Global Inventory Modelling and Mapping Studies)
NDVI data, as well as the precipitation, average temperature, average minimum tempera-
ture, average maximum temperature, relative humidity and sunshine percentage of the
month were collected to study the spatiotemporal variation patterns of vegetation on the
Tibetan Plateau, and the ecological responses of vegetation to climatic factors from 1985 to
2015. Based on the 1:1,000,000 vegetation type data for China, ten vegetation domain types
and pure pixels for each type of vegetation were selected as the study area to reduce errors
due to the coarse spatial resolution of the NDVI dataset used here. To clarify the ecological
responses of these vegetation types to climate factors, attribution analysis was performed
with the consideration of lag effects. This article is organized as follows: Section 2 gives a
brief introduction of the study area, datasets and methods; Section 3 is the presentation
of the results; a further discussion is shown in Section 4, and the conclusion is given in
Section 5.
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2. Materials and Methods
2.1. Study Area

The Tibetan Plateau (Figure 1) lies in the northwest of China, extending from the
southern edge of the Himalayas to the northern edge of the Kunlun, Altun and Qilian
Mountains (26◦00′~39◦47′ N, 73◦19′~104◦47′ E). Its western border is formed by the Pamir
Plateau and Karakorum Mountains, and its eastern and northeastern areas are connected
with the western Qinling Mountains and the Loess Plateau. The Tibetan Plateau has a large
altitudinal variation from 92 to 7370 m. The climate of the Tibetan Plateau is generally
characterized by strong radiation, high sunshine, low overall temperature, large diurnal
temperature differences, distinct dry and wet seasons, a warm and wet climate in the
southeast and a dry and cold climate in the northwest, as well as a decreasing trend of
precipitation and temperature from the southeast to the northwest.

Figure 1. The location and elevation of the study area. The digital elevation data were downloaded
from the Resource and Environment Data Cloud Platform (http://www.resdc.cn/ accessed on 14
April 2021).

2.2. Data Collection
2.2.1. NDVI Data

Because the NDVI is directly correlated with vegetation productivity, there are many
possible applications of the NDVI for ecological purposes [7]. NDVI data from the AVHRR
dataset have the advantages of a long-time sequence, wide coverage and high accuracy,
which is currently considered as one of the best datasets for long-term NDVI analysis.

The GIMMS3g NDVI has been made publicly available on the Internet (http://www.
noaa.gov accessed on 14 April 2021). We obtained the third-generation dataset recently
released by the GIMMS of the National Aeronautics and Space Administration (NASA)
from the Internet with a data range from 1985 to 2015, with a spatial resolution of 8 × 8 km
and a temporal resolution of 16 days. We converted the original HDF format data to TIFF
format data in MATLAB. To obtain the monthly NDVI data, the 16-day resolution data
were synthesized using the maximum value composites (MVC) method in MATLAB, which
can minimize the influence of clouds and the direction of reflection, reduce the effects of
the sun angle and shadow, and minimize the effects of aerosols and water vapor [25].

http://www.resdc.cn/
http://www.noaa.gov
http://www.noaa.gov
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2.2.2. Climate Data

Meteorological data were collected from 176 meteorological stations in the admin-
istrative region of the Tibetan Plateau. We obtained monthly ground climate data for
China from 1985 to 2015 from the China Meteorological Data Service Centre (CMDC). In
this study, six meteorological factors, namely, average precipitation, average temperature,
average maximum temperature, average minimum temperature, monthly sunshine per-
centage and average relative humidity were considered, and these meteorological data
were interpolated into raster data with the same spatial resolution as the NDVI data for
further correlation analysis.

Kriging and AUNSPLINE interpolation methods were used to interpolate the mete-
orological data. By introducing elevation as a covariable, the interpolation accuracy of
elevation-related meteorological parameters can be improved significantly using AUN-
SPLINE. To test the accuracy of the results of the two methods, we used a cross-validation
method to test the interpolation results and mainly investigated three parameters: mean
absolute error (MAE), mean relative error (MRE), and root mean square error (RMSE).

In the validation method, points were selected three times (groups 1, 2 and 3 in
Figure 2) for cross-validation. Fifteen sample points were randomly selected each time
from 176 samples as verification points, and the other points were used for interpolation.
The interpolation results for 15 sample points were extracted as predicted values, and
relevant data for 45 verification points were ultimately obtained. The accuracy of the two
interpolation results was compared by calculating the three error parameters between the
predicted value and the actual value of the 45 verification points. Meteorological data from
June 1995 were used as the validation data. The analysis of the error results showed that
the accuracy of AUNSPLINE is higher than that of the kriging method for the temperature
interpolation (shown as Table 1). In this paper, the AUNSPLINE interpolation method was
used for the average temperature, average minimum temperature, and average maximum
temperature, and the kriging interpolation method was used for precipitation, sunshine
percentage, and relative humidity.

Figure 2. The distribution of meteorological stations and the selection of verification points (groups
1–3).
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Table 1. Comparison of the interpolation results from the kriging and AUNSPLINE methods.

Parameters MAE MRE RMSE

Kriging AUNSPLINE Kriging AUNSPLINE Kriging AUNSPLINE

Average temperature (◦C) 1.7495 1.2408 0.099 0.0706 2.3381 1.7488
Average minimum temperature (◦C) 1.5332 1.4327 0.1771 0.1655 2.4575 1.9991
Average maximum temperature (◦C) 2.4547 1.6747 0.0847 0.0578 3.2046 2.3257

Sunshine percentage (%) 3.4083 4.1973 0.0721 0.0888 4.4182 5.2567
Relative humidity (%) 2.9504 4.9389 0.047 0.0787 4.5443 6.3366

Precipitation (mm) 23.3299 28.646 0.2275 0.2793 35.2529 40.0954

MAE: mean absolute error; MRE: mean relative error; RMSE: root mean square error.

2.2.3. Vegetation Type

The vegetation type data used were the 1:100,000 spatial distribution data on vegeta-
tion types in China (grid data with 1-kilometre spatial resolution), which were provided
by the Resource and Environment Data Cloud Platform (http://www.resdc.cn/ accessed
on 14 April 2021). This dataset reflects the actual distribution of more than 2000 dominant
plant species, as well as the major crops and cash crops in China, and is the authoritative
dataset for vegetation type coverage in China.

2.3. Methods

First, based on the vegetation type data with a higher spatial resolution, we obtained
(as far as possible) pure pixels of NDVI data, in which homogeneous vegetation exists.
Then, we divided the research area into ecosystem-dependent sub-regions. We tested
the variation trend in the NDVI time-series data with Mann–Kendall and Sen’s slope
method. These two methods are nonparametric methods that require only that the data
be independent, regardless of whether the data are normally distributed [26]. Then, the
lag correlation coefficient method was used to calculate the lag time of the vegetation
response to the climate factors. Finally, stepwise regression was used to determine the
factors influencing vegetation change.

2.3.1. Ecosystem-Dependent Sub-Regions

The vegetation type data are the basis of the regional classification in this study. The
study area was divided into sub-regions according to the 1:100,000 vegetation dataset
of China. GIMMS NDVI3g data have a coarse resolution of approximately 8 km. To a
large extent, NDVI pixels are mixed and include a variety of land types or vegetation
types. Therefore, we selected pure pixels as the study area to reduce the errors resulting
from mixed pixels that contain a variety of ground object information. To select these
pure pixels, NDVI data and vegetation raster data with higher resolution were raster-
overlaid, and only those pixels with homogeneous vegetation (the number of pixels of this
vegetation type accounts for more than 80% of the total vegetation pixels within a pixel
of NDVI data) were considered as the study area. In this way, we selected 10 dominant
vegetation types on the Tibetan Plateau (Figure 3 and Table 2), and any other vegetation
occupying smaller areas was ignored. There are dense climate stations in most areas of
Tibetan Plateau (Figure 3). The alpine steppe, alpine desert, temperate desert steppe, and
temperate desert distributed in the western region of the Tibetan Plateau are overlaid with
sparse meteorological stations.

http://www.resdc.cn/
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Figure 3. The spatial distribution of ten dominant vegetation types of Tibetan Plateau overlapped
with meteorological stations.

Table 2. Ten dominant vegetation types with pure pixels, their ecosystems, and the number of pixels.

Parameters Subcategory Number of Pixels

Alpine Steppe Alpine Grass, Carex Steppe 3479
Alpine Meadow Alpine Kobresia spp., Forb Meadow 2401

Alpine Desert Alpine Tussock Dwarf Semishrubby
Desert 177

Temperate Desert Steppe Temperate Dwarf Needlegrass,
Dwarf Semishrubby Desert Steppe 112

Alpine sparse vegetation Alpine sparse vegetation 111

Subalpine Scrub Subalpine Broadleaf Evergreen
Sclerophyllous Scrub 94

Needleleaf Forest Subtropical and Tropical Mountains
Needleleaf Forest 90

Broadleaf Evergreen Forest Subtropical Monsoon Broadleaf
Evergreen forest 73

Temperate Desert Temperate semishrubby and dwarf
semishrubby desert 73

Temperate Steppe Temperate Needlegrass Arid Steppe 63

Due to the difference in the ecosystem distribution over the Tibetan Plateau, the
number of selected pure pixels varies significantly in each vegetation type. The number of
pure pixels in the alpine steppe is 3479, while that of the temperate steppe is 63 (Table 2).
We randomly selected 50, 500, 1000, 2000 pixels from the total pixels (whole region) as
four sub-regions in the alpine steppe, respectively, to explore the effects of imbalance
of input data. Then, the Pearson correlation coefficients between the regional average
variables of the five regions (four sub-regions and the whole region) in June were obtained
(Table 3). The results show that no significant difference exists in different numbers of
pixels. Concerning regional average value, the imbalance of the input data has slight effects
on the statistical results. Therefore, we used the selected pure pixels in Table 2 as input
data for further statistical analysis.



ISPRS Int. J. Geo-Inf. 2021, 10, 394 7 of 21

Table 3. Pearson correlation coefficients between the regional average variables of the five regions (four sub-regions and the
whole region) in June during the study period.

Variables Regions Sub-Region 1 Sub-Region 2 Sub-Region 3 Sub-Region 4 Whole Region

NDVI

Sub-region 1 1.000
Sub-region 2 0.977 1.000
Sub-region 3 0.980 0.998 1.000
Sub-region 4 0.981 0.997 0.999 1.000
Whole region 0.980 0.998 0.999 1.000 1.000

Average
temperature

Sub-region 1 1.000
Sub-region 2 0.468 1.000
Sub-region 3 0.368 0.889 1.000
Sub-region 4 0.456 0.944 0.959 1.000
Whole region 0.440 0.940 0.970 0.990 1.000

Average
maximum

temperature

Sub-region 1 1.000
Sub-region 2 0.987 1.000
Sub-region 3 0.985 0.999 1.000
Sub-region 4 0.986 0.998 0.999 1.000
Whole region 0.986 0.999 0.999 1.000 1.000

Average
minimum

temperature

Sub-region 1 1.000
Sub-region 2 0.977 1.000
Sub-region 3 0.975 0.997 1.000
Sub-region 4 0.974 0.997 0.999 1.000
Whole region 0.976 0.998 0.999 1.000 1.000

Sunshine
percentage

Sub-region 1 1.000
Sub-region 2 0.991 1.000
Sub-region 3 0.990 0.999 1.000
Sub-region 4 0.990 0.999 1.000
Whole region 0.991 0.999 1.000 1.000

Relative
humidity

Sub-region 1 1.000
Sub-region 2 0.989 1.000
Sub-region 3 0.989 0.998 1.000
Sub-region 4 0.989 0.998 1.000 1.000
Whole region 0.989 0.998 1.000 1.000 1.000

precipitation

Sub-region 1 1.000
Sub-region 2 0.982 1.000
Sub-region 3 0.981 0.997 1.000
Sub-region 4 0.982 0.998 0.999 1.000
Whole region 0.983 0.998 0.999 1.000 1.000

Sub-region 1: random 50 pixels from total pixels; sub-region 2: random 500 pixels from total pixels; sub-region 3: random 1000 pixels from
total pixels; sub-region 4: random 2000 pixels from total pixels; whole region: total pixels.

2.3.2. Sen’s Slope and Mann–Kendall Method

To determine the change trends in the time-series NDVI, a Theil–Sen median trend
analysis was adopted. The method is a robust nonparametric statistical method, and the
formula is:

β = median(
NDVIj−NDVIi

j− i
) (1)

where NDVIi and NDVIj are the NDVI in years i and j (1985 ≤ i, j ≤ 2015). When β < 0,
it indicates that the NDVI increased during this period. When β > 0, it indicates that the
NDVI decreased during this period.

The Mann–Kendall test is a relatively common time-series trend test method that has
been widely used in meteorology and hydrology [27]. It is a nonparametric test method.
The test formulas are listed below:

Q =∑n−1
j=1 ∑n

i=j+1 sign(x i−xj

)
(2)
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sign(x) =


1, s > 0
0, s = 0
−1, s < 0

(3)

Z =


Q−1√
var(Q)

, Q > 0

0, Q = 0
Q−1√
var(Q)

, Q < 0
(4)

where Q is the test statistic, Z is the standardized test statistic, xi and xj are time-series data;
n is the number of samples. When n ≥ 8, the result Q approximately follows a normal
distribution. Its mean and variance are computed using Equations (5) and (6).

E(Q)= 0 (5)

var(Q) =
n(n− 1)(n− 2)

18
(6)

2.3.3. Lag Correlation Coefficient

Based on the understanding that the impact of climate change on vegetation occurs
with a certain time lag, we adopted the lag correlation coefficient method to determine the
lag period for the impact of climate factors on vegetation. Using this method, we calculated
the correlation coefficient between the NDVI and each climate factor in the current month,
as well as each climate factor in the previous 1–3 months. When the correlation coefficient
reaches the maximum, the correlation between the vegetation NDVI and the climate factor
is the strongest, which means that the vegetation had the strongest response to the climate
factor in that month, and the lag time was recorded. The lag correlation coefficient is
computed using Equation (7).

Rm = max (R0, R1, R2, . . . , Rn) (7)

where Rm is the lag correlation coefficient; R1, R2, . . . , and Rn are the current month, the
month before the current month, the month two months before the current month, . . . ,
and the month n months before the current month, respectively; m is the lag time.

2.3.4. Stepwise Regression

Stepwise regression is a method of fitting regression models where variables are con-
sidered one at a time for addition to or subtraction from a set of independent variables
based on some criteria. This regression method can eliminate strong correlations between
variables to some extent and exclude variables that are not statistically significant [28].
Here, NDVI is the dependent variable, and the precipitation, average temperature, aver-
age minimum temperature, average maximum temperature, relative humidity, sunshine
percentage are independent variables. The independent variables are first standardized.
Whether the independent variable is added to the equation is determined by a sequence of
F-tests. The stepwise regression used here performs a forward–backward feature selection
based on the significant test (p-value). And in each step, this model will include a feature if
its p-value less than 0.01 and exclude a feature if its p-value greater than 0.05. Ultimately,
the corresponding variable was added to the regression equation.

3. Results
3.1. The Variation Trends and Spatial Distribution Characteristics of NDVI on the Tibetan Plateau

The annual variation in the monthly average NDVI of most vegetation types on the
Tibetan Plateau showed the same change trend, with only a single peak characteristic
across the 31 years (Figure 4). In most vegetation types, NDVI begins to rise from April
and reaches a maximum value in the period between August and September, which is the
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stage of vegetation growth. Therefore, April to September was used as the analysis period
in this study.

Figure 4. The annual variation of the monthly average NDVI for each vegetation type on the Tibetan
Plateau from 1985 to 2015. The period from April to September is the analysis period in each year.

Mann–Kendall and Sen’s slope estimator were used to analyze the NDVI variation
trends of vegetation on the Tibetan Plateau. The change trend was divided into five
levels: significant increase, slight increase, remaining stable, slight decrease and significant
decrease. A significant increase or decrease indicates that the change trend passes the
significance level test at 0.01, and a slight increase or decrease indicates that the change
trend passes the significance level test at 0.05. The change trend proportion of each type
of vegetation is shown in Figure 5. The bars indicate the proportion of the area that
demonstrated each change trend.

The change trends show significant differences among the different types of vegetation.
The change trends of vegetation were dominated by increasing trends in alpine steppe,
alpine desert, temperate desert steppe, alpine sparse vegetation, temperate desert and
temperate steppe. These vegetation types are mainly distributed in the northwest area of
the Tibetan Plateau. Among them, the increasing trend for NDVI in the alpine desert was
the most obvious. The change trends for vegetation were also dominated by decreasing
trends in alpine meadow, subalpine scrub, needleleaf forest, and broadleaf evergreen
forest. These types of vegetation are mainly distributed in the southeastern area of the
Tibetan Plateau, which is a relatively low-altitude area with sufficient water and hot climate
conditions, and their NDVI values are at a higher level than in other regions (Figure 6). The
NDVI of the broadleaf evergreen forest, which is distributed on the edge of the southeastern
region of the Tibetan Plateau (93◦ E, 28◦ N), shows a more obvious decreasing trend than
other vegetation types in recent years.
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Figure 5. The proportion of the area that demonstrated each change trend on the Tibetan Plateau
from 1985 to 2015. A significant increase or decrease indicates that the data passed the significance
level test at 0.01. A slight increase or decrease indicates that the data passed the significance level test
at 0.05. (I) Alpine steppe, (II) Alpine meadow, (III) Alpine desert, (IV) Temperate desert steppe, (V)
Alpine sparse vegetation, (VI) Subalpine scrub, (VII) Needleleaf forest, (VIII) Broadleaf evergreen
forest, (IX) Temperate desert, (X) Temperate steppe.

Figure 6. The average NDVI trend during the growing season for all types of vegetation from 1985 to
2015. The dashed line indicates that the NDVI of this vegetation type showed a decreasing trend
during the study period. The solid line indicates that the NDVI of this vegetation type showed an
increasing trend.

Based on previous knowledge, we took the alpine desert and broadleaf evergreen
forest as examples of changing vegetation. We analyzed the relationship between the
average monthly NDVI of each year for the two types of vegetation and the climate in
recent years. The NDVI variation in the alpine desert showed a significant increasing trend,
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while that of the broadleaf evergreen forest showed a significant decreasing trend. We
also compared these two types of vegetation with the alpine meadow, where the overall
regional level of NDVI change trend presented a state of equilibrium.

As shown in Figure 7, there are significant differences in the variation trends of cli-
mate factors in different regions, and there are significant differences in the influence on
vegetation due to the comprehensive effects of climate factors. The temperature increased
significantly in all three vegetation types (p < 0.01, indicating that the slope is signifi-
cantly different from zero at 0.01 level) except for the minimum temperature in broadleaf
evergreen forest. The average temperature change rates in the alpine desert, alpine
meadow, and broadleaf evergreen forest regions were 0.059 ◦C year−1, 0.048 ◦C year−1

and 0.021 ◦C year−1, respectively. There have also been differences in local temperature
changes, and the warming rate of the broadleaf evergreen forest area is lower than that of
other regions. This also indicates that the sensitivity to temperature change in different
regions is different, and the temperature increase rate in the low-temperature region is
faster than that in the high-temperature region. This finding can also be obtained from the
change rates of the average minimum or maximum temperature: the change rates of the
average maximum temperature of the three groups are 0.034 ◦C year−1, 0.0405 ◦C year−1,
and 0.055 ◦C year−1, and the change rates of the average minimum temperature of the
three groups are 0.093 ◦C year−1, 0.073 ◦C year−1, and 0.018 ◦C year−1, respectively. We
can see that the average minimum temperature in the cold region is changing at a very
fast rate.

Figure 7. The trends in NDVI during the growing season for the three types of vegetation (a): alpine desert; (b): alpine
meadow; (c): broadleaf evergreen forest) and the corresponding regional climate factors from 1985 to 2015. The average
temperature, average maximum temperature, average minimum temperature, precipitation, relative humidity, and sunshine
percentage are denoted as AT, AMAXT, AMINT, P, RHU, and SP, respectively. The *, **, *** indicate the slope is significantly
different from zero (no trend) at the 0.1, 0.05, 0.01 level, respectively.

In addition to temperature, climate factors such as precipitation, relative humidity,
and monthly sunshine percentage also presented evident change trends. The relative
humidity showed a significant decline (p < 0.01) in all three vegetation types during
the study period. The sunshine percentage also showed a declining trend in the three
vegetation types, among which the sunshine percentage declined the most significantly
in the alpine meadow (p < 0.01), followed by broadleaf evergreen forest (p < 0.1). The
variation trend in the monthly sunshine percentage is −0.0339% year−1, −0.1089% year−1,
and −0.1163% year−1 in the alpine desert, alpine meadow, and broadleaf evergreen forest,
respectively. This finding indicates that the sunshine percentage during the growing season
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on the Tibetan Plateau has decreased in recent years. However, in the broadleaf evergreen
forest zone, the decrease in sunshine percentage did not correspond to an increase in
precipitation. The relative humidity of this region showed a significant decreasing trend
(−0.2144% year−1), indicating that the climate is becoming drier. The precipitation change
trends were ecosystem-specific. The precipitation change rates in the three regions are
0.102 mm year−1 (p < 0.1), 0.143 mm year−1, and −0.427 mm year−1, respectively. The
precipitation in the alpine desert region and the alpine meadow region shows an increasing
change trend. In contrast, the change in precipitation in the broadleaf evergreen forest
region shows a significant decreasing trend.

The variation trends in NDVI for the three types of vegetation are 0.000387 year−1,
-0.0001 year−1 and −0.001406 year−1, respectively. The trend of NDVI of the alpine desert
significantly increased (p < 0.01). The NDVI of the alpine meadow showed a slightly
declining trend. The NDVI of the broadleaf evergreen forest showed a significantly de-
clining trend (p < 0.01). Although the regional air temperature increased significantly, the
percentage of monthly sunshine in the alpine meadow region showed a more significant
decreasing trend. Because the influence of climate factors on NDVI is the result of the
combined action of several factors, the main factor limiting vegetation growth in this region
may be the decrease of sunshine.

As shown in Figure 6, four kinds of vegetation showed high NDVI values on the Ti-
betan Plateau, namely, in order of NDVI value: broadleaf evergreen forest, needleleaf forest,
subalpine scrub, and alpine meadow. Their vegetation activities all showed a decreasing
trend, and the decrease rates were, in order, broadleaf evergreen forest, needleleaf forest,
subalpine scrub, and alpine meadow. The higher the NDVI value of the vegetation, the
faster the rate of NDVI reduction, which indicates that the reduction of sunlight affects the
growth of these vegetation types, to some extent. The other vegetation types with lower
NDVI values showed increasing trends in each year. Compared with sunshine duration,
temperature becomes the dominant parameter for vegetation growth on these vegetation
types, and significantly increased temperature may be more related to the increased NDVI
of these vegetation types.

3.2. Correlation Analysis between the NDVI in Different Vegetation Types and Climatic Factors

The lag effect of the response of vegetation growth to climate has been demonstrated
in many studies. According to the results of this study, the response of vegetation to various
climate factors is significantly different in different vegetation types and growth stages.

On the whole, the response of NDVIs to temperature is more significant than that
to other factors, and the lag period varies greatly due to the different growth stages and
vegetation types, namely, alpine meadow, alpine desert, temperate desert steppe, alpine
sparse vegetation and temperate desert. The hysteresis correlation coefficient indicates
that the lag in the response of NDVIs to the average temperature and average maximum
temperature is not obvious, while the lag in the response of NDVIs to the average minimum
temperature is 1 or 2 months (Figure 8).

The NDVI of the alpine steppe, alpine desert, temperate desert steppe, alpine sparse
vegetation, temperate desert and temperate steppe shows a more significant response
to precipitation than to other climate factors. Desert vegetation is the most sensitive to
precipitation, followed by grassland vegetation, and finally shrub and tree vegetation. For
most types of vegetation, there is little correlation between NDVIs and precipitation at
the start of the growing season. The correlation between NDVIs and precipitation tends
to show a single peak during the growing season. This correlation increases gradually
and reaches a peak in July or August and then decreases gradually, which is related to the
change in the water utilization rate of vegetation. In particular, the correlation between
the NDVI of the temperate desert and precipitation gradually increased during the whole
growing season. Therefore, precipitation may be the main factor affecting the end of the
growing season, and it is also the limiting parameter for the whole growing season of
this vegetation type. In terms of lag, the influence of precipitation on NDVIs generally
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occurs with a lag period of 1 or 2 months. The correlation coefficients showed that the
precipitation in May and June had the greatest impact on the NDVI of the alpine steppe,
alpine sparse vegetation, and temperate desert vegetation types, and the precipitation in
June and July had a greater impact on the NDVI of the alpine desert, temperate desert and
temperate steppe.

Figure 8. Correlation coefficient and lag time for each vegetation type during the growing season (i.e.,
from April to September). The dash lines are at the statistical significance of 0.05. (I) Alpine steppe,
(II) Alpine meadow, (III) Alpine desert, (IV) Temperate desert steppe, (V) Alpine sparse vegetation,
(VI) Subalpine scrub, (VII) Needleleaf forest, (VIII) Broadleaf evergreen forest, (IX) Temperate desert,
(X) Temperate steppe.

The subalpine scrub, needle leaf forest and broadleaf evergreen forest were most sen-
sitive to sunshine percentage with a lag period of 0 months, indicating that the vegetation
response to sunshine within 1 month. Compared with temperature and precipitation, the
effect of sunlight on vegetation growth for these vegetation types was more significant.

Figure 9 shows the spatial distribution of the lag effects of NDVIs to average tempera-
ture, precipitation, relative humidity and sunshine percentage. The response of NDVIs to
average temperature exhibits 1, 2, 3 months lag in February, May and June, respectively, in
the western region of the Tibetan Plateau, indicating that the temperature in March can
highly affect the vegetation growth at the early stage of the growing season. In August
and September, the vegetation is mainly affected by the average temperature of July. The
result shows that the precipitation had the greatest influence on vegetation growth in May
and June in the western regions of the Tibetan Plateau, which mainly distribute temper-
ate desert steppe and alpine steppe. The relative humidity affects vegetation growth in
September with a 0-month lag period in most regions of the Tibetan Plateau; that is, the
relative humidity in September had significant effects on vegetation.
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Figure 9. Spatial distribution of the response lag time of the NDVI to average temperature, precipitation, relative humidity
and sunshine percentage in different growth stages (from April to September) over the Tibetan Plateau.

In April, sunshine percentage had a direct influence on the vegetation in the eastern
part of the Tibetan Plateau. However, there were different degrees of lag response of NDVIs
to sunshine in the western regions of the Tibetan Plateau.

3.3. Interpretation of NDVI Variation with Climatic Factors

The stepwise regression was adopted to calculate the main factors affecting the NDVIs
with the consideration of lag effects. The results were shown in Figure 10. The sunshine per-
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centage greatly influences the needleleaf forest, broadleaf evergreen forest, and subalpine
scrub during the growing season. Previous studies have shown that approximately 13–19%
of global regions have experienced changes in growing season length, and approximately
30% of the changes occurred in the northern alpine biome in the northern hemisphere [29].
Therefore, it is of significance to study the main climatic factors that affect vegetation
at the start and end of growing season: The initial growth period (i.e., in April) for the
needleleaf forest, broadleaf evergreen forest, and subalpine scrub is greatly influenced by
the sunshine percentage, where the three vegetation types are located in the southeastern
Tibetan Plateau with a lower altitude than the western region. These three vegetation types
are also affected by sunshine percentage during the whole growing season. The alpine
steppe located in the western Tibetan Plateau is greatly affected by sunshine percentage in
April and September. The temperate desert, temperate steppe, alpine desert, temperate
desert steppe, and alpine meadow were mainly affected by air temperature in April. In
September, we can see the temperate desert, temperate steppe, and temperate desert steppe
are precipitation-dominated vegetation; alpine steppe, alpine desert, alpine meadow, and
alpine sparse vegetation are temperature-dominated vegetation.

Figure 10. Selected climatic variables and regression coefficients of these variables to the NDVI of
each vegetation type in each month during the growing season (April to September). Note that there
is no significant influencing variable in some growing stages of some vegetation types.
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4. Discussion
4.1. Change Trends of Climate Factors and NDVI on the Tibetan Plateau

Based on the GIMMS NDVI3g data, the NDVI variation trend on the Tibetan Plateau
in the last 31 years presents strong heterogeneity in different vegetation ecosystems
(Figure 5), but increases dominate the overall change trend. Generally, vegetation types
(subalpine scrub, needleleaf forest and broadleaf evergreen forest) with a large proportion
of decreasing NDVIs were distributed in the southeastern region of the Tibetan Plateau
(Figures 3 and 5). In particular, a large area (about 23% of total pixels) of NDVI decline also
exists in alpine meadow. Due to drastic changes in the environment, large areas of grass-
land degradation had appeared on the Tibetan Plateau before the 1980s, and the alpine
grassland and alpine marsh meadow vegetation in the Maduo and Tuotuo river areas
had been degraded on a large scale. A study has shown that the enhanced precipitation
reduced the microbial diversity in alpine grassland soils, and the alpine steppe could be
more resistant to environmental changes than the alpine meadow [30]. Considering that
the NDVI in degraded grasslands will not be significantly increased with the improve-
ment of climate conditions over a short period, this may also be the main reason that the
NDVI of alpine grassland did not increase significantly, especially in alpine meadow. The
GIMMS3g data underestimated the greening trend on the Tibetan Plateau [31] mainly
because of the impacts of sensor shifts and degradation, especially at the break point of
sensor shifts [32,33]. According to the research results of [13], the GIMMS NDVI data from
2000 to 2006 showed an inconsistent trend with the SPOT-VGT data and MODIS data
from the same period, showing a significant decrease in NDVIs, especially on the western
Tibetan Plateau. Therefore, the overall NDVI-increase area on the Tibetan Plateau may be
larger than that indicated by this paper.

The increased temperature and decreased sunshine percentage dominate the whole
region of the Tibetan Plateau during the study period. As shown in Figure 7, the percentage
of monthly sunshine on the Tibetan Plateau is decreasing in all three vegetation types.
You et al. (2010) also found that the mean annual sunshine duration showed a significant
decrease from 1983 to 2005 [34]. Generally, sunshine duration is mainly influenced by cloud
cover or aerosols, and an increase in cloud cover or in the aerosol concentration emitted
by humans results in a decrease in the sunshine duration [35]. Moreover, some studies
also show that the monsoon intensification of the Indian summer monsoon may result
in increasing cloud coverage in the southeastern Tibetan Plateau, reducing the sunshine
duration [16,36]. Of the entire degraded grassland, 56.74% has been proven to be due
to climate change from 2001 to 2013 on the Tibetan Plateau, with radiation being more
related to climate-induced grassland degradation than other climate parameters [37]. The
results in this paper also show that the vegetation types with a decreasing NDVI in the
southeastern Tibetan Plateau are greatly affected by sunshine percentage (the needleleaf
forest, broadleaf evergreen forest, and subalpine scrub in Figure 10). Most vegetation types
in the western regions have seen an increasing NDVI, where these regions have seen more
rapid warming than the southeastern Tibetan Plateau.

4.2. Lag in the NDVI Response to Precipitation and Temperature

Studies have confirmed that the influence of precipitation on vegetation shows a
certain hysteresis. Precipitation is first converted to soil water before it can be absorbed
by plants for transpiration, which is the driving force behind water and nutrient uptake
by vegetation. The process by which precipitation is converted into water available for
vegetation is related to the soil type, land cover, physiological characteristics of the vegeta-
tion, climate conditions and so on [38]. Due to the different soil types and topography, the
soil water holding capacity is different in different areas. Some soils can retain water for
a long time after rainfall, which has a lasting impact on vegetation growth. In addition,
deep-rooted plants may have a longer “memory” for precipitation [22,39]. Many woody
plant species utilized only cold season rain for growth [40]. The results (Figure 8) also
showed no significant relationship between the NDVI of the needleleaf forest, subalpine
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scrub, and broadleaf evergreen forest and precipitation during the growing season. The
correlation coefficients between NDVIs of the needleleaf forest, broadleaf evergreen forest,
and precipitation reached the peak in April.

As shown in Figure 9, the temperature in March greatly influenced vegetation growth
at the initial stage of growing season over western regions of the Tibetan Plateau. The lag
effects were evident in these regions. Some possible arguments are that the temperature
can affect soil microbial activities, then have lasting effects on vegetation growth [41];
additionally, temperature affects the melting of glaciers and permafrost at high altitudes,
increasing runoff in some river systems [37,42].

4.3. Possible Mechanisms of Climate Influences on Vegetation

Precipitation rarely affects NDVIs at the start of growing season, as shown in Figure 10
in April. According to the research of Yang and Piao (2006), in the low-temperature environ-
ment of the Tibetan Plateau at the beginning of growing season, precipitation can promote
the growth of vegetation only after microorganisms regulate the N and P cycles [41]. The
activity of microorganisms is highly correlated with both the air temperature and soil
temperature, which are related to radiation. This conclusion is a good explanation for why
the rainfall and NDVIs in the early stage of growing season are hardly correlated.

Sunshine can affect vegetation in a variety of ways. Sunlight is also a major fac-
tor causing vegetation degradation on the Tibetan Plateau, contributing to large areas
of climate-induced vegetation degradation [37]. According to Graham et al. (2003), the
changes in solar radiation caused by clouds and aerosols mainly affect the growth of plants
by affecting the absorption of carbon dioxide by vegetation [35]. Moreover, radiation can
affect turbulent surface energy flux, part of which provides the driving force for evapo-
transpiration [43]. In this way, radiation can affect vegetation transpiration in coordination
with soil moisture in real time. In the needleleaf forest, subalpine scrub, and broadleaf
evergreen forest ecosystems, which are heat- and water-abundant regions, vegetation is
greatly affected by sunshine duration, as shown in Figure 10. These vegetation types
mainly distributed in the southeastern Tibetan Plateau, which is consistent with the result
of the previous study [16,44], and one argument for the high sensitivity of the needleleaf
forest and shrub to sunshine may be that the southeastern Tibetan Plateau receives less
solar energy and shorter sunshine duration than other areas [16]. Decreasing precipitation
and sunshine percentage and increasing temperature in these regions interactively make
it drier than before [16], affecting vegetation growth. At the same time, the warming rate
in the southwestern part is slower than in western regions, as shown in the comparison
of the three vegetation types in Figure 7. Therefore, the temperature may play a limited
role in NDVI variation in the southwestern region. Conversely, the significantly increasing
trend makes temperature the main factor affecting the NDVI of most vegetation types in
the western and northeastern Tibetan Plateau. It is worth noting that the alpine steppe
is also sensitive to sunshine percentage in April, as shown in Figure 10. The sunshine
percentage may affect the growth of the alpine steppe in the early growing season in the
following ways: sunlight can provide energy to soil and raise soil temperature, promoting
the regulation of N and P cycles in the soil [41]. Moreover, warming soil causes snowmelt
and affects glaciers melting process in high-elevation regions, providing more water for
the alpine steppe [16,45].

Precipitation is not a significant parameter for the alpine meadow during the whole
growing season. We can see from Figure 7b, the average monthly precipitation in the alpine
meadow region was 60–80 mm. One possible argument is that vegetation would not be
affected by precipitation when the precipitation exceeds a certain threshold [20,21], which
is abundant for the alpine meadow. The alpine meadow has seen significantly decreasing
relative humidity and sunshine percentage, as shown in Figure 7b. Simultaneously, the
relative humidity and average minimum temperature have significant positive effects on
alpine meadow vegetation in September, according to the regression results shown in
Figure 10. The alpine meadow is widely distributed in the Tibetan Plateau, mainly in the
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central and eastern regions. Some regions receive shorter sunshine duration than other
parts of the Tibetan Plateau. Relative humidity can affect the transpiration of vegetation
and nutrient migration by influencing the atmospheric water potential. Moreover, lower
humidity can cause stomatal closure, which prevents carbon dioxide from being absorbed
by the vegetation, reducing photosynthesis activities, thus affecting NDVIs. Therefore, for
alpine meadows, sunshine percentage and humidity may be the principal climatic factors
affecting this type of vegetation. The reduction in humidity and sunshine percentage
caused a slight decrease in the NDVI of alpine vegetation even though the temperature
increased significantly.

Although some uncertainty exists in vegetation type change due to the limitations in
the dataset (there is only one period of vegetation type dataset) during such an extended
study period, pure pixels can reduce the probability of the shift of dominant vegetation
type to some extent because there is only a single vegetation type in these pixels. Therefore,
the regression results can reflect the effects of climate factors on each vegetation ecosystem.
However, there are also some limitations in this study. The interpolation results of climate
parameters may have larger errors in the western region (mainly including the alpine
steppe, alpine desert, temperate desert steppe, and temperate desert) of the Tibetan Plateau
with sparse meteorological stations than in eastern parts. Therefore, more auxiliary data
need to be introduced to improve the interpolation accuracy of meteorological parame-
ters in further study. One feasible idea is to find a more suitable covariable for climate
parameters interpolation. Moreover, sun-sensor geometry, such as Solar-to-sensor angle,
can significantly affect NDVIs, mainly due to the visibility of shadows [46–48], especially
in winter in evergreen conifer systems and dryland vegetation systems. Therefore, annual
NDVI variation may be partly induced by sun-sensor geometry in the broadleaf evergreen
forest, needleleaf forest, temperate desert and alpine desert. Correcting remote sensing
data for sun-sensor geometry effects is important to isolate the response of vegetation to
climate factors, which is a target for further research.

5. Conclusions

The interannual NDVI for the Tibetan Plateau shows an overall increasing trend, but
there is strong spatial heterogeneity. The NDVI of the alpine desert increased the most
significantly of all studied vegetation types. The NDVI values of four types of vegetation,
namely, alpine meadow, subalpine scrub, needleleaf forest and broadleaf evergreen forest,
showed a decreasing trend, and their NDVI values were typically larger than those of the
other vegetation types.

The responses of vegetation to temperature, precipitation and relative humidity have
certain lag periods. The alpine meadow, alpine desert, temperate desert steppe and
temperate desert respond more significantly to temperature than to other climate factors,
and the length of the lag period varies greatly in different vegetation ecosystems and
growth stages. The desert vegetation is the most sensitive to precipitation, followed by
grassland vegetation and finally shrubs. The response of NDVIs to precipitation generally
occurs with a lag period of 1 or 2 months. During the whole growing season, the correlation
between NDVIs and precipitation first increased to reach a peak and then decreased.

At the start of the growing season, temperature is the main climatic factor that affects
the NDVI of most vegetation types. After that, precipitation begins to have an effect on
vegetation. The sunshine duration has a relatively significant impact on the NDVI of the
subalpine scrub, needleleaf forest, and broadleaf evergreen forest with a short lag period
(within one month) during almost the whole growing season. At the end of the growing
season, the temperate desert, temperate steppe, and temperate desert steppe are greatly
affected by precipitation; alpine steppe, alpine desert, alpine meadow, and alpine sparse
vegetation are greatly affected by temperature, especially for alpine steppe and alpine
meadow affected by monthly minimum temperature.

This study mainly provided an overview of how different climate parameters affect
domain types of vegetation on the Tibetan Plateau. These findings will provide a better
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understanding of the climate change trends and contribute to the general knowledge of the
drivers and mechanisms of ecosystem-dependent vegetation degradation on the Tibetan
Plateau. For further study, high spatial and temporal resolution data are required for more
accurate analyses of the lag effects and ecological mechanisms.
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