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Abstract: (1) Background: Human mobility between geographic units is an important way in which
COVID-19 is spread across regions. Due to the pressure of epidemic control and economic recovery,
states in the United States have adopted different policies for mobility limitations. Assessing the
impact of these policies on the spatiotemporal interaction of COVID-19 transmission among counties
in each state is critical to formulating epidemic policies. (2) Methods: We utilized Moran’s I index
and K-means clustering to investigate the time-varying spatial autocorrelation effect of 49 states
(excluding the District of Colombia) with daily new cases at the county level from 22 January 2020 to
20 August 2020. Based on the dynamic spatial lag model (SLM) and the SIR model with unreported
infection rate (SIRu), the integrated SLM-SIRu model was constructed to estimate the inter-county
spatiotemporal interaction coefficient of daily new cases in each state, which was further explored
by Pearson correlation test and stepwise OLS regression with socioeconomic factors. (3) Results:
The K-means clustering divided the time-varying spatial autocorrelation curves of the 49 states into
four types: continuous increasing, fluctuating increasing, weak positive, and weak negative. The
Pearson correlation analysis showed that the spatiotemporal interaction coefficients in each state
estimated by SLM-SIRu were significantly positively correlated with the variables of median age,
population density, and proportions of international immigrants and highly educated population, but
negatively correlated with the birth rate. Further stepwise OLS regression retained only three positive
correlated variables: poverty rate, population density, and highly educated population proportion.
(4) Conclusions: This result suggests that various state policies in the U.S. have imposed different
impacts on COVID-19 transmission among counties. All states should provide more protection and
support for the low-income population; high-density populated states need to strengthen regional
mobility restrictions; and the highly educated population should reduce unnecessary regional
movement and strengthen self-protection.

Keywords: COVID-19; Moran’s I index; K-means clustering; spatiotemporal interaction effects;
spatial lag model; SIR

1. Introduction

COVID-19 is still rampaging around the world [1,2], showing obvious spatial differ-
ences in its global geographic distribution [3]. Countries with low incomes, incomplete
health care capabilities, and demographics with a large proportion of elderly have been fac-
ing the challenges of more serious disease output and health care burdens [4,5]. However,
the United States, as the country with the most developed economy and the highest level
of medical care, has the largest number of infections and shows geographic differences in
COVID-19 transmission, which has become an important global health research issue for
pandemic control.
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The spatial heterogeneity in the spread of infectious diseases comes from the social,
economic, and environmental differences among the geospatial units themselves [6]. Com-
pared with the potential climate correlations implied by some studies [7,8], more studies
indicate that population density [9], health measures, and mobility restrictions [10] have a
greater impact on the spread of COVID-19. Among these, mobility and connectivity [11], in
addition to population density [12], influence pandemic transmission more in terms of the
spatial differences, which is also supported by related research based on U.S. county daily
commute data [13] and mobility data for Boston [14], consistent with research on Italy’s
industrial spatial structure and epidemic distribution [15].

Inter-regional population movement is the main reason for the extensive spread of
COVID-19 across regions [15]. Spatial distancing is considered to be the most effective
prevention method [16,17] and has been verified to be effective in both China [18,19] and
Europe [20,21]. Due to the trade-off of epidemic control and economic recovery, the states
in the United States have adopted different spatial regulatory policies at different stages
to control regional mobility. Assessing the spatiotemporal interaction of the inter-county
spread of COVID-19 in these states could provide valuable insights to understand the
extent to which the inter-regional human flow affects the increase in COVID-19 infections,
which is critical for optimizing epidemic policies that specify different levels of regulatory
measures for open space, public facilities, and resuming production.

There are two main obstacles in the measurement of spatiotemporal interaction: an
appropriate spatiotemporal model and data depression. The most popular Susceptible–
Infective–Removal (SIR) model merely considers the initial transmission parameters, which
could not reflect the impact of spatial neighborhood effects, while spatial interaction is often
estimated by a variety of models, such as Geographic Weighted Regression (GWR) [22],
Geographically Weighted Principal Component Analysis (GWPCA) [23], and Spatial Panel
Models (SPM), which include the Spatial Lag Model (SLM), Spatial Error Model (SEM), and
Spatial Dubin Model (SDM) [24]. Previous studies often explored the spatial interaction
effect of COVID-19 transmission based on such static models with cross-sectional data [25],
while ignoring the long-time effects on spatial interactions. Moreover, such SPMs mainly
focus on the correlation between infection and socioeconomic data [26], which neglects the
fact that the changes in infections are mainly driven by the infections during the previous
time state; this is captured in the traditional Susceptible–Infective–Removal model (SIR).
An approach integrating the SIR model and a spatial interaction model may thus capture
the spatiotemporal effect.

Data suppression is another critical issue in the application of the spatial correlation
models and SIR models [27]. The officially released COVID-19 infection data may be biased
due to potential unreported infectives [28–30]. Studies have shown that asymptomatic
infections and mildly infected people may not be fully reported, resulting in an underesti-
mate of infection data [31–33]. More importantly, the county-level data in the United States
are not released, which may limit the reliability of the traditional SIR model. An SIR model
integrated with the unreported infection rate (SIRu) was recently proposed, providing an
effective supplement to miscalculated data [34].

In this paper, we thus propose an integrated model of SLM and SIRu (SLM-SIRu) to
calculate the inter-county spatial interaction effect of daily new cases in each state based on
the county-level U.S. COVID-19 data. As the uneven spatial correlation may derive from
inequity in the spatial units in terms of socioeconomic features [35,36], the connections be-
tween spatial effects and socioeconomic elements in each state, such as population density,
income, and political elements, was further explored. The spatiotemporal correlation was
also tested by Morans’ I index, which was further used to identify spatial clusters before
the application of the SLM-SIRu model.

This study provides an integrated model to capture the spatiotemporal interaction ef-
fect, which may help assess the impact of cross-regional mobility on epidemic transmission
and assist the government in optimizing COVID-19 control policy.
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2. Materials and Methods

The workflow can be divided into three parts: (1) spatial autocorrelation analysis of
daily new infections; (2) spatial effect exploration based on the SIRu model and Spatial Lag
Model; and (3) correlation analysis of spatial effects and socio-economic factors (Figure 1).

Figure 1. Research workflow. The research workflow can be divided into three parts: (1) data, including epidemiological,
spatial, and socioeconomic data; (2) methods and results, including the mapping, estimation, and correlation exploration of
spatiotemporal interaction effects; and (3) models, including Moran’s I, K-means clustering, SIR, SLM, and OLS.

The research workflow explains the data, methods, and models used in the article.
Moran’s I and K-means clustering were introduced to capture the spatiotemporal features
of COVID-19 daily new case changes in the U.S., then the spatial lag effect underlying the
SIR model was further estimated via the SLM-SIRu model and further used for correlation
tests with socio-economic variables.

2.1. Global Moran’s I Index and K-Means Clustering

Except for extremely strict spatial restriction policies, any potential inter-county hu-
man movement between neighboring counties in a certain state may increase the contact
chance and thus affect the number of daily new infections in each geographic unit. Such a
pattern of spatial interaction in the state could be defined as spatial autocorrelation, which
could be calculated using the global Moran’s I index based on spatial weights. The value
of Moran’s I ranges from −1 to 1, where −1 represents a negative spatial correlation, 0 is
random, and 1 is a positive correlation.

For a certain attribute x of geographic units, the general formula of global Moran’s I is

I =
n
W
·
∑n

i=1 ∑n
j=1 wi,j(xi − x)

(
xj − x

)
∑n

i=1(xi − x)2 (1)

wherein xi is the attribute value of the ith county in a state and x is the mean of all xi values
in the state; xj represents the value of the jth county near to the ith county; n is the total
number of counties; and W is the sum of spatial weights wij.

The spatial weight W can be calculated via a pre-defined neighboring pattern such
as Queen, Rook, K-nearest, or inverse distances. The first two contiguity models rely on
natural boundaries, while the latter only depends on a distance matrix.

Due to irregular administrative boundaries in some states, some counties may only
have 1–2 neighborhood units, for which the popular Queen algorithm is applied. Thus, in
order to ensure a relatively comparable neighborhood impact, the K-nearest model was
selected, which calculates spatial weights with several nearest counties. The number k can
be neither too small nor too large to characterize the local spatial interaction effect, so k
was defined with a maximum value of 4—the same number for the Rook contiguity model.
As there is only one unit in the District of Columbia, the spatial weight calculation could
not be applied.

If the total number of infections or daily new infections of a state was zero, making
the calculation of Equation (1) unapplicable, a value of zero was designated as the Moran’s
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I value of the corresponding state. Such a situation was also applied when the p-value of
the Moran’s I calculation result was not significant (p > 0.05).

2.2. K-Means Clustering Algorithm

At different stages of COVID-19 transmission, the population movement among
adjacent spatial units may change with the states’ control policies or the epidemic situation,
resulting in Moran’s I index varying over time. The characteristics of the time series of
Moran’s I index may reflect the spatial homogeneity and heterogeneity among the states in
the United States, which could be explored by clustering algorithms.

The K-means clustering algorithm was applied as it can generate the guaranteed
convergence and is relatively simple to implement compared to other clustering models
such as DBSCAN or GMM. The optimal group number was determined by the minimum
value of the AIC.

2.3. SIR with Unreported Infections

In the classic SIR model, the number of daily new infections (In) can be expressed as the
product of the infected population (I), the susceptible population (S), the total population
(N), and the transmission rate (β):

In = βSI/N (2)

However, the official data cannot be directly used, as there may be unreported infec-
tions. Moreover, the actual population of recovered patients has not been released in the
county-level data, so the parameter I in Equation (2) could not be calculated directly. An
SIR model integrated with unreported infections (SIRu) was proposed [37] by adding two
more parameters, ϕ and τ, where ϕ is the average unreported/reported rate of infections
(UIR) and τ is the recovery/death rate (RDR). Equation (2) could then be revised to

ϕIn = β(N − ϕIc)(ϕIc − τRd)/N (3)

where In, Ic, and Rd are the official released COVID-19 data of daily new infections, cumula-
tive infections, and deaths, respectively; therefore, ϕIn, ϕIc, and τRd are the corresponding
factual data.

A furthermore simplification of Equation (3) can be rewritten as

In = βIc −
βτ

ϕ
Rd − βϕ

Ic
2

N
+ βτ

IcRd
N

(4)

Such an equation could be seen as a linear regression of the variables In, Ic, Rd, Ic
2/N,

and IcRd/N.

2.4. Dynamic Spatial Lag Model

Although the dynamic spatial panel models include the Spatial Lag Model (SLM),
Spatial Error Model (SEM), and Spatial Dubin Model (SDM), the SLM was adapted to
capture the spatial effect of the SIRu model, which focuses the impact of the new infections
in surrounding counties on the increasing infection in a certain county. The SLM model only
needs to add one variable, In, in Equation (3). If the SEM or SDM was applied, Equation (3)
would become quite complicated by the addition of three other variables of neighboring
units, which would also make Equation (4) inapplicable.

The classic SLM model could be described as

y = λWy′ + ax + ε (5)

wherein y is the dependent variable of a certain geographic unit, y′ represents the values of
the adjacent geographic units, and x denotes the corresponding explanatory variables. W
is the spatial weight, and λ is the spatial lag coefficient.
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The SLM and SIRu models can be combined by substituting Equation (4) into Equation (5):

In = λWIn
′ + βIc −

βτ

ϕ
Rd − βϕ

Ic
2

N
+ βτ

IcRd
N

(6)

In
′ denotes the daily new infections of surrounding counties. Compared to Equation (4),

only one variable, In
′, is added in Equation (6). Based on the COVID-19 data at the county

level and the corresponding spatial weights, the spatial interaction coefficient λ of each
state can be calculated and used as a dependent variable for further correlation exploration
with socioeconomic data.

2.5. Data

The data used in this article include COVID-19 data, geographic boundary data, and
socioeconomic data, as follows:

(1) COVID-19 data of all counties in the United States from 22 January 2020 to 20 August
2020, including daily new infections, cumulative infections, deaths, and total popula-
tion. The data were acquired from the GitHub repository of Johns Hopkins University
(https://github.com/CSSEGISandData/COVID-19, accessed on 21August 2020).

(2) Administrative boundary data at the state and county levels in the United States.
These data are available in the Harvard Dataverse (https://dataverse.harvard.edu/
dataverse/cdl_dataverse, accessed on 21August 2020).

(3) Socioeconomic data of all states in the United States in 2019, including factors such
as birth rate, death rate, international immigration rate, poverty rate, median age,
average education level (high school graduation rate, undergraduate graduation rate,
advanced education rate), and population density. Such data are available on the U.S.
Census website (https://www.census.gov, accessed on 30 August 2020). Trump’s
vote rate in the 2016 U.S. presidential election in the states was also included in the
correlation analysis as a potential political variable of residents.

3. Results
3.1. Time Series of Moran’s I

The time series of Moran’s I index for each state was calculated from the daily new
cases and spatial weights at the county level for 22 January 2020 to 20 August 2020; these
time series indicated that most states showed significant changes in terms of Moran’s I
index (Figure 2). The spatial correlation within each state showed substantial differences
over time; for example, New York maintained a restricted state after the first wave, while
Georgia and Illinois were still increasing, and Florida had just passed the peak. Such time
series of Moran’s I may reflect the real effects of spatial restriction policies.

https://github.com/CSSEGISandData/COVID-19
https://dataverse.harvard.edu/dataverse/cdl_dataverse
https://dataverse.harvard.edu/dataverse/cdl_dataverse
https://www.census.gov
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Figure 2. Time series of the Moran’s I index of each state in the United States. The x-axis and y-axis indicate the time in days
and Moran’s I value, correspondingly, and the red curve represents the fitted value with a 95% confidence interval. Obvious
changes from around the 50th day can be observed, displaying several patterns of temporal changes in spatial effects, such
as a reversed U-shape or N-shape. There were zero values in the numbers of daily new infections for Rhode Island, which
caused the Moran’s I curve to swing back and forth from 0 to negative values.
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3.2. K-Means Clustering of Time Series of Moran’s I

The K-means clustering algorithm was further performed based on the time series of
Moran’s I index. The results showed that the optimal group number was four (Figure 3a),
and the four groups could be roughly defined as fluctuating growth, continuous growth,
weak positive correlation, and weak negative correlation (Figure 3b). Figure 3c displays
the Moran’s I values of each group, wherein the overall fluctuation range in Cluster 1 was
−0.1 to 0.4, while the fitting curves and the 95% confidence interval were concentrated
between −0.1 and 0.2, indicating a state of weakly positive spatial autocorrelation. Cluster
2, with a value ranging from −0.2 to 0.1, showed a feature of weakly negative spatial
autocorrelation. Both Cluster 3 and Cluster 4 exhibited increasing trends, while the former
was in a resurging status after the first wave and the latter was in a continuous increasing
mode with a relatively lower value of Moran’s I. Figure 3d illustrates the clusters on the
map, where the spatial agglomeration can also be observed.

Figure 3. Cont.
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Figure 3. Time series of Moran’s I index for each state in the United States. The time series of the Moran’s I value from the
50th day were used for K-means clustering, as the values of most states were zero before the 50th day. (a) The AIC of the
clustering algorithm achieved the minimum value when the number of clusters was four. (b) The four curves with grey
ribbons represent the corresponding values and 95% CIs of the fitted lines of the four clusters. (c) The upper images show
the original curves of the Moran’s I value, and the lower ones show the fitted trends and 95% CIs. (d) Most of the states
belonged to Cluster 1, while Cluster 2 was mainly located in the middle. Although the states in Cluster 3 were dispersed,
Cluster 4 displayed a pattern of spatial aggregation.

3.3. SIRu Integrated with the Spatial Lag Model

The combined SLM-SIRu model was tested with the spatial matrix and epidemic data
of all the counties from 22 January 2020 to 20 August 2020. The results of all the states
displayed high significance, verifying the feasibility of the SLM-SIRu model (Table 1). The
parameter λ ranged from −0.08 to 0.56, showing a normal distribution (Figure 4). The
SLM-SIRu model also showed high R2 values, most of which had a value larger than 0.5. In
terms of fitness, the comparison between SIRu and SLM-SIRu indicated that the coefficient
of spatial lag in SLM-SIRu improved the fitness of the original SIRu model (Figure 5).

Table 1. Summary of spatial lag coefficients in the SLM-SIRu model.

State Spatial Lag Coefficient Stand Error t-Value p-Value

Alabama 0.2297 *** 0.0084 27.2015 <0.001
Alaska −0.081 *** 0.0126 −6.4374 <0.001

Arizona 0.09 *** 0.0124 7.2636 <0.001
Arkansas 0.2168 *** 0.0099 21.8995 <0.001
California 0.1472 *** 0.0098 14.9829 <0.001
Colorado 0.4275 *** 0.0083 51.6714 <0.001

Connecticut 0.3625 *** 0.0233 15.5821 <0.001
Delaware 0.278 *** 0.0310 8.9794 <0.001

Florida 0.2826 *** 0.0081 34.6982 <0.001
Georgia 0.2395 *** 0.0051 47.2483 <0.001
Hawaii −0.0489 ** 0.0197 −2.4883 0.0128
Idaho 0.1117 *** 0.0088 12.7027 <0.001
Illinois 0.1661 *** 0.0066 25.0248 <0.001
Indiana 0.2052 *** 0.0084 24.3700 <0.001

Iowa 0.1312 *** 0.0087 15.0073 <0.001
Kansas 0.0773 *** 0.0081 9.5291 <0.001

Kentucky 0.1032 *** 0.0078 13.237 <0.001
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Table 1. Cont.

State Spatial Lag Coefficient Stand Error t-Value p-Value

Louisiana 0.3791 *** 0.0086 44.0066 <0.001
Maine 0.1497 *** 0.0214 7.004 <0.001

Maryland 0.1864 *** 0.0149 12.5354 <0.001
Massachusetts 0.5202 *** 0.0111 46.704 <0.001

Michigan 0.3771 *** 0.0075 50.2282 <0.001
Minnesota 0.2892 *** 0.0073 39.4947 <0.001
Mississippi 0.3353 *** 0.0081 41.2161 <0.001

Missouri 0.3031 *** 0.0065 46.2933 <0.001
Montana 0.0859 *** 0.0107 8.0393 <0.001
Nebraska 0.1004 *** 0.0085 11.7588 <0.001
Nevada −0.0036 ** 0.0168 −0.2142 * 0.0184

New Hampshire 0.1856 *** 0.0265 7.0142 <0.001
New Jersey 0.5621 *** 0.0114 49.3291 <0.001

New Mexico 0.2381 *** 0.0128 18.5421 <0.001
New York 0.2663 *** 0.0090 29.7591 <0.001

North Carolina 0.1598 *** 0.0071 22.449 <0.001
North Dakota 0.0348 ** 0.0112 3.1114 ** 0.0019

Ohio 0.0812 *** 0.0090 9.0392 <0.001
Oklahoma 0.1172 *** 0.0075 15.6807 <0.001

Oregon 0.1709 *** 0.0126 13.5983 <0.001
Pennsylvania 0.3031 *** 0.0088 34.2476 <0.001
Rhode Island 0.1400 *** 0.0371 3.7685 <0.001

South Carolina 0.2134 *** 0.0095 22.4236 <0.001
South Dakota 0.0560 *** 0.0117 4.8008 <0.001

Tennessee 0.1216 *** 0.0079 15.3701 <0.001
Texas 0.0376 *** 0.0052 7.2084 <0.001
Utah 0.0377 *** 0.0089 4.2494 <0.001

Vermont 0.1746 *** 0.0243 7.1958 <0.001
Virginia 0.2374 *** 0.0063 37.9368 <0.001

Washington 0.2351 *** 0.0126 18.6703 <0.001
West Virginia 0.1351 *** 0.0119 11.3082 <0.001

Wisconsin 0.1627 *** 0.0078 20.7673 <0.001
Wyoming 0.1288 *** 0.0188 6.8477 <0.001

Notes: ***, ** and * means correlation significant at the level of 0.001, 0.01 and 0.05, respectively.

Figure 4. Histogram and density plot of spatial correlation coefficient λ. The grey bars in Figure 4 show the frequency of λ
values, and the red line is the Probability Density Function (PDF) curve of the λ values.
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Figure 5. Fitness comparison of SLM-SIRu and SIRu. The R2 range of the original SIRu was 0.1490–0.9250 (mean = 0.5894),
while that of SLM-SIRu was 0.2399–0.9303 (mean = 0.6443); thus, the percentage of R2 improvement was 0.35%–62.72% with
a mean of 11.54%.

Based on the mapping of the spatial autocorrelation coefficient λ with the four levels,
it can be seen that only Alaska, Nevada, and Hawaii showed small negative values, while
most of the central states had lower positive values, except for Colorado and New Mexico
(Figure 6). The states in the southeast had similarly high values, among which Louisiana’s
was the largest. In the north, Michigan, Massachusetts, Connecticut, and New Jersey also
had relatively high spatial autocorrelation coefficients, indicating that the inter-county
human flow in such states remains high.

Figure 6. The choropleth map of spatial correlation coefficient λ. For the choropleth map of the spatial correlation coefficient
λ, shown in Figure 6, we used the Jerkens breakpoints with four levels.

3.4. Correlation and Regression with Socioeconomic Variables

To explore the correlations between the social, economic, and political factors and
spatial correlation coefficients, the Pearson correlation test was applied (Figure 7). The
result showed a significant negative relationship with the birth rate and an obvious positive
correlation with the proportion of international immigrants, median age, higher education
rate, and population density. In terms of the political factor, President Trump’s support
rate in the 2016 U.S. election showed a weak negative correlation (90% CI).
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Figure 7. The correlation tests between λ and socioeconomic variables. The left part under the diagonal line in Figure 7
shows the scatter point plots, and the numbers are the correlation coefficients. The diagrams along the diagonal line are the
histograms. Notes: ***, **, *, and · mean that correlation is significant at the 0.001, 0.01, 0.05, and 0.1 levels, correspondingly.

A further stepwise OLS review retained five variables, among which only three of
the variables were significant: population density, poverty rate, and bachelor’s degree rate
(Table 2). Among them, the population density and poverty rate were more significant,
indicating that the intrastate population flow caused by population density and poverty
was still dominant, and an increase in the highly educated population ratio would also
increase the risk of inter-regional human flows.

Table 2. Summary of stepwise OLS regression.

Estimate Std. Error t-Value p-Value VIF

Intercept 0.0000 0.1093 0.000 1.0000
BirthR −0.2419 0.1214 −1.992 0.0525 1.208749

VoT 0.2669 0.1752 1.523 0.1349 2.518246
Poverty 0.4468 ** 0.1589 2.810 0.0073 2.072469
Bachelor 0.5706 * 0.2292 2.489 0.0166 4.310079
PopDen 0.4089 ** 0.1371 2.983 0.0046 1.541248

Multiple R2 0.4633
Adjusted R2 0.4023

p-value 0.00003247
Notes: **, and * mean that correlation is significant at the 0.01, and 0.05 levels, correspondingly.

4. Discussion

The initial objective of this project was to measure the inter-county spatiotemporal
interaction effect of COVID-19 transmission in the United States and explore the correlations
between the spatiotemporal interaction coefficients and socioeconomic features. The results
of this study indicate that the inter-county spatial effects in these states are changing with
time, displaying four types of spatial correlation trends: continuous increasing, fluctuating
increasing, weak positive, and weak negative. The clustering of time series of the COVID-
19 Moran’s I index, never previously reported, could be explained by the heterogeneity in
the social and spatial peripheries [38].
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The fitness of the SIRu models in all states had an average value above 0.75, indicating
that the model can explain the epidemic dynamics of COVID-19 transmission in the
United States. The SLM-SIRu model showed better fitness than the SIRu model with
statistical significance, further verifying the hypothesis of spatial heterogeneity in epidemic
dynamics [39]. The result indicates that the eastern states have a relatively high spatial
interaction coefficient, showing a high possibility of inter-county flow.

In terms of socioeconomic features, the spatiotemporal interaction coefficients in
each state were found to be positively correlated with the proportion of international
immigrants, median age, proportion of highly educated population, and population density,
but negatively correlated with the birth rate. The correlation in the two variables of median
age and international immigrant ratio indicated that there is more cross-regional mobility
to obtain living or medical equipment in those states with large ethnic minority populations
and elderly populations, which verified that those residents in inequitable living, working,
and environmental conditions may face a greater risk of COVID-19 infection [40]. What
is interesting is that the vote rate for Donald Trump in the 2016 U.S. presidential election
showed a weak negative correlation, which implies that political factors may also have
some impact on the inter-county flow in the states [41].

The results of stepwise OLS regression suggested that the poverty rate, population
density, and proportion of highly educated population are the three main positive correlated
variables. Among these, the population density and poverty rate have been considered to
be highly correlated to the COVID-19 transmission rate in previous studies [42,43], while
our result implies that more inter-county flow may also occur in those states with higher
population density or with low income in the United States. Such a result may support a
study in Europe that proposed that high-population-density states appear to benefit more
from their Shelter-in-Place Orders [44]. Of course, the cross-regional movement of highly
educated people is also noteworthy, as these groups have better medical resources, better
epidemic prevention knowledge, and lower infection rates [45], so the possible infection
risk is relatively low and their mobility is thus less affected by policies of movement
regularity. However, their unrestricted movement may bring risks to other vulnerable
groups via direct or indirect disease contact. Low-income groups with worse protective
equipment endure greater exposure risk when commuting between counties in search of
reliable living and medical supplies [40]. The results of eliminating the political variable
imply that although political factors are potentially related to the spread of epidemics,
the dominant factors affecting infections between regions are still socioeconomic and
demographic variables rather than political factors.

The spatiotemporal dynamic model established in this research still has many defi-
ciencies in terms of spatial weight calculation and model optimization. On the one hand,
for simplification, the spatial weights were calculated by the K-nearest algorithm based
on counties in each state, while neglecting the inter-state spatial interaction, as COVID-19
transmission in each state not only occurs in adjacent counties but also emerges among
different states. Future research can further calculate and compare spatial weight models
such as the Queen neighbor algorithm and the inverse distance model based on travel
network data, such as Twitter location data. On the other hand, the relevance was explored
by spatial interaction effect measurement and OLS regression separately, which may be
improved by a combined regression model. Moreover, the SLM model was chosen in this
study due to the parameter limits; SDM and SEM may need further exploration. More
models such as spatial dynamic SIR models or Neural network models could be tested
in future. The SIRu model, adopted to adjust the impact of data depression, can also be
further optimized in terms of accuracy.

5. Conclusions

This study proposes that inter-county movement within states has an impact on
disease transmission, displaying obvious spatial heterogeneity that is potentially related
to the social and economic factors of each state. This result suggests that governments
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should deploy targeted strategies in each state based on the estimation of spatiotemporal
interaction effects; in particular, the states with greater estimated effects should strengthen
regulations on human mobility. All states should provide more protection and support for
the low-income population; high-population-density states need to strengthen regional
mobility restrictions; and the highly educated group should reduce unnecessary regional
movement and strengthen self-protection. In terms of vaccines and funds, it is suggested
that the governments give priority to accelerating vaccination in cities with higher popula-
tion density and increase the proportion of aid funds for low-income groups, rather than
the current average implementation strategy.
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