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Abstract: The importance of road characteristics has been highlighted, as road characteristics are
fundamental structures established to support many transportation-relevant services. However,
there is still huge room for improvement in terms of types and performance of road characteristics
detection. With the advantage of geographically tiled maps with high update rates, remarkable
accessibility, and increasing availability, this paper proposes a novel simple deep-learning-based
approach, namely joint convolutional neural networks (CNNs) adopting adaptive squares with
combination rules to detect road characteristics from roadmap tiles. The proposed joint CNNs
are responsible for the foreground and background image classification and various types of road
characteristics classification from previous foreground images, raising detection accuracy. The
adaptive squares with combination rules help efficiently focus road characteristics, augmenting the
ability to detect them and provide optimal detection results. Five types of road characteristics—
crossroads, T-junctions, Y-junctions, corners, and curves—are exploited, and experimental results
demonstrate successful outcomes with outstanding performance in reality. The information of
exploited road characteristics with location and type is, thus, converted from human-readable to
machine-readable, the results will benefit many applications like feature point reminders, road
condition reports, or alert detection for users, drivers, and even autonomous vehicles. We believe
this approach will also enable a new path for object detection and geospatial information extraction
from valuable map tiles.

Keywords: road characteristics detection; roadmap tiles; deep learning; CNN; adaptive squares;
combination rules

1. Introduction

Road networks, fundamental infrastructures in a nation, are primarily constructed for
transport purposes such as carrying people or conveying goods from one place to another
one and function as connecters to facilitate social interactions and economic activities
between spatial locations. Because road networks are responsible for transportation,
interconnection, and communication, and are widely used in our daily lives, it is vital to
exploit road characteristics such as various types of road intersections, the road bends, turns,
and corners where, not only are underlying structures established to support relevant traffic
services but also traffic accidents happen often. The importance of road characteristics
has also been highlighted in many studies, and many applications regarding the road
characteristics have been performed in the field of assessment and management of road
design and road safety [1–6] as well as routing planning [7–9].

Road characteristics detection means identifying a road characteristic’s location and
type in the scope of our discussion. Several methods with GPS trajectory or remote
sensing data have been proposed in previous studies. Two groups are distinguished
based on the types of the spatial data models of study materials: vector-driven and raster-
driven. In the vector-driven group, vehicle GPS traces are mainly used, while emerging
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GPS technologies provide up-to-date data and easily construct road networks from point
elements [10–17]. In the literature, road networks with road intersections have been
extracted from GPS traces [11,15] whereas, Wang, Wang [12], Xie and Philips [14], and
Chen, Ding [16] aim at detecting road intersections only. Yang, Tang [13] addressed various
types of intersections such as three-way intersections (e.g., “T” and “Y” junctions), four-
way intersections (crossroads and skewed (X) intersections), and five-way intersections. In
addition to the detection of road intersections, GPS traces have also been used to identify
where traffic lights are and what they are set for, for instance, for vehicles or pedestrians [18].
Moreover, traffic lights, road intersections, and roundabouts are detected using a deep
learning approach [17]. Besides, dominant regional movement patterns are detected
based on a convolutional neural network [7]. In addition to GPS traces, some studies
have conducted road characteristics detection from Lidar data [19,20]. More specifically,
Soilán, Truong-Hong [19] proposed a workflow to extract features such as pavements and
sidewalks and to detect road markings. Jung and Bae [20] performed road detection at lane
and road levels.

In the raster-driven group, aerial or satellite imagery is primarily utilized for road
characteristic detection, while remote sensing images could provide a great amount of rich
information in a large area and update quickly, thus achieving efficient road characteristics
detection and road network constructions. This group is divided into two subgroups based
on the processing approaches adopted: the computer vision approach [21–25] and the
machine learning approach [26–29]. In the computer vision approach, road networks are
constructed [24,25] from satellite images using mathematical morphology techniques [25].
Chiang, Knoblock [23] and Chiang, Knoblock [22] successfully extracted road intersections
from road networks fused with symbols and text on scanned maps. Road networks with
various types of characteristics such as corners, T-shaped intersections (T-junctions), and
two X-shaped intersections have been detected from aerial images [21]. In the machine
learning approach, road networks and background pixels (non-road parts) are detected
using a back-propagation neural network (BNN) based on high-resolution satellite im-
ages [26]. Road intersections such as T-junctions and cross junctions are detected using
an IntersectNet model, a CNN model combined with a long-term recurrent convolutional
network (LRCN), from immersive street-view-like images [27]. Bastani, He [28] used
CNNs to construct road networks (graph structures) from aerial images. Recently, the
extraction of road intersections using Faster R-CNN from historical scanned maps has been
discussed [29]. Besides the above-mentioned studies based on either exclusive vector- or
raster-type materials, one study has used a vector-image conflation method to identify the
points of intersections in road networks [30]. From the above discussion, most previous
studies have tended to focus on the construction of road networks or center point extraction
of road intersections. Few researchers have addressed the issue of road characteristics
detection with certain types such as T-junctions, Y-junctions, crossroads and five-way inter-
sections using GPS traces, and corners, T-junctions, and crossroads using aerial images,
respectively. Hence, there is still a need to detect various types of road characteristics,
including intersections and curvatures in an efficient way and with location simultaneously,
which can then be applied in many fields for much more precise analysis.

Since innovative tile map service specification such as a web map tile service (WMTS) [31],
tile map service (TMS) [32], and vector tile service [33–35] were proposed in the past decade,
there has been a rapid rise in the use of both raster tiled web maps and vector tiled web
maps for presenting geographic information. A great number of tile services with rich geo-
graphic information are thus available online and enable us, for example, to add a Basemap
from a tile service to establish a GIS system. A remarkable situation of the provision of
geographic information in the future may turn to publish tiled map services rather than
providing raw data directly because the accessibility of tile services via API through the
internet is much easier than that of standalone GIS datasets and remote sensing datasets.
With the advantages of high accessibility provided by tiled map services, especially because
the accessibility of tile maps is much higher than that of vector data and remote sensing
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imagery, it brings substantial motivation to perform road characteristics detection using
images from tile maps instead of vector-based data and remote sensing data, which are
often used in many previous studies. For example, we can efficiently access tiles from
various countries around the world, but it takes time or is expensive to collect vector-based
road networks, and satellite and aerial images in a country or across countries for road
characteristics detection. From the perspective of efficiency of data collection, using tiles is
much more efficient than using vector data or remote sensing data for this task. While data
is a core in research, the accessibility of data affects the performance of a study.

Machine learning (ML) approaches, especially deep learning, lately have attracted
considerable attention and have been widely applied in many fields for issues such as
object detection [36–38] and classification [39–42]. ML approaches have an outstanding
performance of, especially for image processing. Therefore, in this study, a deep-learning-
based approach is proposed for road characteristics detection from map tiles. Specifically,
it is a joint convolutional neural networks (CNNs) framework composed of a VGG-16 and
InceptionResNetV2 framework with adaptive squares designed by considering spatial
properties of road networks at the street level representation and domain knowledge.
The VGG-16, a powerful binary classification framework, is adopted to design a road
foreground and background (abbreviated as FG and BG) image classification model that is
responsible for distinguishing FG and BG images from the input samples. An FG image
indicates that one of five road characteristics exists, whereas a BG image does not have
any road characteristics. The InceptionResNetV2 framework, an excellent multi-class
classification model, is adopted to design a road characteristics classification model to
detect various types of road characteristics. In this study, five types of road characteristics—
crossroads, T-junctions, Y-junctions, corners, and curves—are focused on because they are
common patterns in road networks. Our proposed approach specifically adopts adaptive
squares with combination rules designed by referring to the mapping criteria and the
properties of road characteristics to carry out optimal detection results. More precisely, the
use of adaptive squares conducts limited sampling and facilitates efficient detection, as
road networks illustrated on a roadmap are represented as a polygonal feature with certain
widths at each map scale. Furthermore, combination rules are used to solve inconsistent
or duplicated initial detection results generated from various detection squares and to
obtain optimal final results. For example, the result of two neighboring T-junctions will be
replaced by an overlapped crossroad, as those two T-junctions are incorrect results caused
by incomplete coverage from a small detection square size.

Google Maps [43], one of the common web mapping services developed based on
tile services, provides rich geographic information. Recently, using vector tiles (also called
vector maps) has become more and more popular because vector tiles make maps quickly
and allow for customized maps with suitable styles for further applications. For example,
one may create a map with road networks only that excludes extraneous marks such
as text or symbols for road characteristic detection. Another common tiled mapping
service, which has garnered attention and had a great amount of collaborative editing, is
OpenStreetMap (OSM) [44]. OSM has assisted in the construction and improvement of road
networks [45–47] and is used in many road-based applications [48–51]. However, the total
number of users of Google Maps is more than that of OSM. Besides, a critical concern with
OSM is the data quality [52–54]. Google Maps is a more stable source of quality data than
OSM. Thus, a roadmap in Google Maps is employed in this study. With the advantages of
vector tiles of Google maps and the rich road networks which are provided, tiles retrieved
from the roadmap of Google Maps are thus selected as study materials. It is a novel
idea to exploit road characteristics with location information from raster-based popular
roadmap tiles. Originally, those types of road characteristics presented on the map are
mostly human-readable. Locations with one type of road characteristics where information
can be converted from human-readable to machine-readable. Thus, the results can be
widely used in many road-network-based applications such as feature point reminders
or road condition reports in route planning, early warning, or alert detection systems for
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users and drivers when approaching those road characteristics. Based on the proposed
approach, our experiments are conducted in Taipei, Taiwan, which encompasses the most
diverse road network structures in the nation. The experimental results demonstrate that
we have found an innovative solution for road characteristics detection, and our approach
is able to be applied in other areas and nations, especially where there are insufficient raw
GIS dataset supplies for road-based analysis. In this paper, we also compare the proposed
approach with a prevalent deep framework, Faster R-CNN [55], for objection detection in
the evaluation section. The contribution of this paper is fourfold:

1. A simple joint deep framework including binary classification and multi-class classifi-
cation for detection with high accuracy of various types of road characteristics from
popular roadmap tiles with high accessibility and availability is proposed.

2. Adaptive squares and combination rules are proposed with reference to mapping
criteria and geometric patterns of road characteristics in the roadmap to efficiently
find optimal detection results.

3. Five common road characteristics, crossroads, T-junctions, Y-junctions, curves, and
corners are successfully detected with outstanding performance.

4. Locations with one type of road characteristic where the information originally pre-
sented on maps is elaborately exploited and converted from human-readable to
machine-readable, which has the potential to benefit many road-network-based appli-
cations with user-friendly programs.

The remainder of this paper is organized as follows. Section 2 presents the method,
including a workflow of the road characteristics detection, the structure of two deep
frameworks, the discussion of adaptive squares, and combination rules to yield optimal
final detection results using various sizes of detection squares. Section 3 provides the
experimental results, discussion, and evaluation of our implementation. The conclusions
and future work are laid out in Section 4.

2. Methods

This work proposes a deep-learning-based approach with adaptive detection squares
involving combination rules for detecting road characteristics from a digital roadmap.
Figure 1 depicts the workflow, comprising six steps: 1. A filtered map tile retrieved from a
comprehensive roadmap via Google Maps API [56] with style setting [57] is taken as the
input to make the detection more efficient. As the road features are clearly presented at
zoom level 16, the target zoom level of tiles is set at 16. 2. The detection is conducted by
scanning with a row-major order, a moving step, and three various detection sizes on a tile.
Three sizes of squares, small, medium, and large, are adopted for the detection based on
the properties of the road network structure. The medium one is the main size, as it is able
to capture most road characteristics. 3. The road FG and BG image classification model (a
pre-trained model) is applied to identify FG and BG images; an FG image indicates that
one of the five road characteristics exists in that image, whereas a BG image does not have
any road characteristics. 4. The road characteristics classification model (a pre-trained
model) is applied to identify road characteristics from FG images. 5. Initial detection results
for the three sizes of detection squares are acquired after the two models are performed.
6. The process steps with combination rules are conducted to eliminate duplicate and
inconsistent results so that the final results are obtained. More details of the proposed
methods, including setting sizes of squares, two pre-trained models, and combination rules,
are presented in the following sections.
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Figure 1. Workflow of the road characteristics detection.

2.1. Setting Sizes of Squares

After filtered map tiles are retrieved, the goals are exploiting the location of a road
characteristic with a fitting spatial range and determining a type for that road characteristic
within a tile. Although the road networks are represented as polygonal features with
various widths, they can be re-categorized to some fixed widths depending on their road
levels, such as primary roads or non-primary roads, to make the detection efficient. Thus,
the following discussion focuses on how to determine an appropriate shape and size
for efficient processing. Based on the properties of road networks, having the shape
of a square is better rather than of a rectangle because of the former’s finiteness and
rotation-insensitivity: 1. Finiteness: possible cases of squares are much fewer than those of
rectangles, while rectangles are constructed with flexible widths or heights that generate
excessive combinations, reducing the efficiency of detection. For example, there is only one
case of a square with an edge of 16 pixels, but there could be many cases of rectangles with
a width of 16 pixels and various heights from 1 to 256 pixels, and vice versa. 2. Rotation-
insensitivity: while roads tend to spread in arbitrary directions in road networks, a square
is insensitive to rotation, whereas the size of a rectangle changes along with the orientation
of roads.

In addition to the shape, the other crucial issue is to specify a suitable size for a
square to achieve efficient detection. From our observations and measurements, roads
with various widths at a specific zoom level are able to be classified into three categories
by referring to the mapping criteria of the roadmap of Google Maps. Consequently, three
sizes of squares, small, medium (the main size), and large are adopted rather than 256 sizes.
Three sizes, 10 × 10 pixels, 16 × 16 pixels, and 24 × 24 pixels, are adopted at zoom level
16, and 16 × 16 pixels is the main size, as it is able to capture most road characteristics.
Figure 2 gives samples to demonstrate that three sizes of squares are able to encompass
most sizes of road characteristics. In Figure 2, a label noted as X_Y_Z encoded by the tile
specification indicates the location and zoom level of the tile.
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2.2. Joint Convolutional Neural Networks

To recognize what type of road characteristic a target image is, a CNN-based approach,
joint convolutional neural networks, that is composed of two models, a road FG and BG
image classification model and a road characteristics classification model, are proposed. The
former model aims at FG and BG image classification (a binary classification), and the latter
model focuses on five types of road characteristics classification (a multi-class classification).
Both models are pre-trained on sufficient datasets and are applied sequentially, such that
the FG images are identified first and classified second in the road characteristics detection
application. More details about the two models are presented in the following sections.

2.2.1. Road Foreground and Background (FG and BG) Image Classification Model

The model based on a deep learning approach, that is, a convolutional neural network
(CNN), is proposed to distinguish FG and BG images from input target images. The pro-
posed model is built based on the visual geometry group network-16 (VGG-16) framework
because the VGG-16 performs especially well on binary classification [58]. To fit in the
architecture of VGG-16, several operations and parameters regarding the model are set
as follows: 1. FG and BG images are manually labeled as training datasets at the main
size, 16 × 16 pixels. 2. Input images are resized to 224 × 224 pixels, consistent with the re-
quirements of the fully convolutional network (FCN) process. 3. The loss function adopted
in the model is binary cross-entropy, while the FG and BG images classification task is a
binary classification problem. The bottom part in Figure 3 illustrates the architecture of the
road FG and BG image classification model.

2.2.2. Road Characteristics Classification Model

The other underlying model is a road characteristics classification model proposed to
distinguish the type of road characteristics from an FG image obtained from the previous
model. This model is also a pre-trained model that takes representative sample images in
terms of types of road characteristics and BG images for the training. While a crossroad is
defined as “a place of intersection of two or more roads” by Merriam-Webster dictionary, in
order to address the difference between crossroads and intersections and to obtain precise
results of road characteristics detection, intersections are reclassified into three types, that is,
crossroad, T-junction, and Y-junction, according to their shape. In this study, we specifically
define that a crossroad indicates a junction connected by over three ways. Consequently,
five types of road characteristics, crossroads, T-junctions, Y-junctions, corners, and curves,
are targeted for identification because they are the most common features and principal
structures in road networks. Figure 4 presents the sample images of five road characteristics
retrieved from the filtered roadmap of Google Maps. t
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Like the concept of the road FG and BG image classification model, to distinguish
road characteristics from images, the road characteristics classification model is built
based on CNN architecture with the InceptionResNetV2 model for identifying five road
characteristics, while the InceptionResNetV2 model has better performance than others on
multi-class classification [59]. Regarding the parameters set in this model, in addition to
the difference of the core of CNN between the road FG and BG image classification model
and the road characteristics classification model, five types of road characteristics images
and BG images are manually labelled as a training dataset which is at 16 × 16 pixels as
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well, and the loss function adopted in the model is categorical cross-entropy. The upper
part in Figure 3 illustrates the architecture of the road characteristics classification model.

2.3. Process Steps and Combination Rules

After two pre-trained models are built, three sizes of initial detection results can be
obtained by applying the two models. However, there could be several candidates which
are spatially overlapping with identical results (called type I duplicated detection results)
or nonidentical results (called type I inconsistent detection results) from the detection in
each size as a row-major ordering scanning with a moving step is conducted. Besides,
type II duplicated results or type II inconsistent detection results to a certain characteristic
may appear because various detection sizes are used. To eliminate the above-mentioned
duplicated or inconsistent detection results and to obtain optimal detection results, in
this step, the following process steps and combination rules are proposed to efficiently
integrate three sizes of detection results. As the process is oriented, the one taken from two
detection results being compared is called the subject and the other is called the object in
the following explanation. Table 1 presents five combination rules in various colors used
for cases of five types of road characteristics with three sizes of detection squares, and
Figure 5 depicts the flowchart of the process.

1. Process step 1 (for the same type of road characteristic at each size): the process
begins at the cases of the same type of road characteristics. The purpose of this step
is to remove the type I duplicated detection results that occurred for each size of
initial detection results by scanning with a moving step. A non-maximum suppression
(NMS) algorithm [60] is adopted to select the best candidate for the process afterwards.

2. Process step 2 (for various types of road characteristics at each size): after the process
of step 1, there still could be multiple results with various types of road characteristics
detected for a target location at each size. This is called a type I inconsistent detection
result. To remove it, Rule I with an IoU threshold determined by a heuristic approach
based on a street-level representation, zoom level 16, is applied, and the following
comparison order is conducted according to the accuracy of those road characteristics.
The comparison order is set as crossroad > T-junction > Y-junction > corner (in
decreasing priority from left to right according to their accuracy and the evaluation
metrics of model 2). A T-junction has higher priority than a Y-junction because the
former has higher precision than the latter in the validation report. Each type is
compared against the other types. To avoid duplicate comparison, the types of objects
for crossroad are T-junction, Y-junction, corner, and curve; the types of objects for
T-junction are Y-junction, corner, and curve; the types of objects for Y-junction are
curve and corner; the type of objects for the corner is the curve.

• Rule I: if two detection results have a qualified intersection determined by their
IoU, such as an IoU equal to or greater than a threshold T1, the subject or the
object with lower confidence is removed. When the subject and the object have
the same confidence scores, the subject is preserved, and the object is removed.

3. Process step 3 (for adding supplementary detection results from large and small
squares): the medium square is taken as the main size of detection to obtain basically
much more precise results than others. However, deficient specific cases such as
insufficient detection squares for a wide road or oversized detection squares among
roads in dense areas leading to incorrect detection results may appear in the medium
size. To improve this situation, in this step, supplementary detection results from
large and small squares will be added by applying Rule II.

• Rule II: if two detection results, that is, the subject is from a medium size, and the
object is either from a large or a small size, do not have a qualified intersection,
for example, the distance between their centers is greater than a threshold T2 × L,
where T2 indicates a scaling factor and L indicates the side of the larger detection
results, the object is added. That means two objects are valid detection results at
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various locations. The distance between the centers of two detection results is
measured and used to determine whether one of the two results is duplicated as
the process is located at various sizes of detection results and the measurement is
more efficient and more stable than the IoU method. In short, the result of using
the IoU method is affected by the area of the two detection results, but not in our
method. Next, when two objects found through large and small detection region
squares have a qualified intersection, one of the two objects must be removed
through comparison to avoid a type II duplicated case that occurs since the
same detection results regarding a type of road characteristic for the same target
location are generated by two sizes of squares. If the confidence scores of the
two objects are the same, the detection result from the large size is preserved,
and the other is removed because the large one encompasses a wider range with
more certain information than the small one. Otherwise, the one with the lower
confidence score is removed.

4. Process step 4 (for crossroads): after supplementing from other sizes of detection
results, the type II inconsistent detection results caused by incomplete coverage of
medium size may still occur. For example, a location may be detected as a T-junction
at medium size but a crossroad at large size due to insufficient detection size of the
medium square. This step aims at utilizing large-sized crossroads to solve type II
inconsistent detection results. Then, Rule III is conducted. In such cases, only large-
sized crossroads containing no medium-sized crossroads are processed because a
large-sized crossroad containing a medium-sized crossroad is not possible via process
step 3. However, after applying Rule III, there could be cases of large-sized and
medium-sized crossroads or large-sized and small-sized crossroads existing, leading
to type II duplicated cases for a target location. Then Rule IV is conducted to remove
duplicated crossroads.

• Rule III (for large-sized crossroads and medium-sized T-junctions or Y-junctions):
if two detection results (the subject is a T-junction or a Y-junction from a medium
size, and the object is a crossroad from large size) have a qualified intersection, for
example, the distance between their centers is equal to or smaller than threshold
T2 × L, which are the same as described in Rule II, the object is preserved, and
the subject is removed.

• Rule IV (for large-sized and medium-sized crossroads, large-sized and small
sized-crossroads): when two detection results are crossroads, if the subject de-
tected from the medium-size square and the object detected from the large-size
square have a qualified intersection, for example, the same as described in Rule
III, the subject is preserved, and the object is removed because the subject is the
main size. In addition, if the subject detected from the large-size square and
the object detected from the small-size square have a qualified intersection, the
subject is preserved, and the object is removed because the subject encompasses
larger coverage with more extensive investigation than the object.

5. Process step 5 (optional for curves): the shape of the curve is much more diverse than
other types, while roads may frequently bend based on topography or other practical
demands. For example, a curve could be a sharp turn in a mountain area or a smooth
turn like an arc in a flat area. To avoid generating too many discrete curves, especially
for a curve with a huge curvature radius, this step aims at merging adjacent curves
into a curve. The combination process is conducted by Rule V. This is an optional
process step, as many discrete curves detected but not merged are also allowed.

• Rule V: If two detection results have a qualified intersection, for example, the dis-
tance between their centers is equal to or smaller than a threshold T3 × L, where
T3 indicates a scaling factor, a new spatial range for the location of the curve type
is reconstructed based on the maximum extents of the subject and object.
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Table 1. Combination rules.

Subject

Object 10 × 10 Pixels (Small) 16 × 16 Pixels (Medium) 24 × 24 Pixels (Large)

A B C D E A B C D E A B C D E

10 × 10
pixels
(small)

A / / / / / / / / / /
B / / / / / / / / / / / / / /
C / / / / / / / / / /
D / / / / / / / / / / / / / /
E / / / / / / / / / /

16 × 16
pixels

(medium)

A
B / / / /
C
D / / / /
E

24 × 24
pixels
(large)

A / / / / /
B / / / / / / / / /
C / / / / /
D / / / / / / / / /
E / / / / /

A: crossroad, B: curve, C: corner, D: T-junction, E: Y-junction. /: Non-processed. Rule I:
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3. Implementation

This section presents the selected study area with study materials, experiments, results,
and discussion with evaluation and comparison.

3.1. Study Area and Study Materials

The study area shown as a red rectangle area in Figure 6a at around 540 km2, is located
mostly in the middle of Taipei city, which is the most modern city in Taiwan and has the
highest population density, at around 9700/km2, extensive road networks, advanced traffic
construction, a great amount of mobility and busy social activities, and is located partly
in New Taipei City. This area simultaneously contains urban, rural, river, and mountain
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regions. We thus retrieve a training set and validation set to provide representative samples
of road characteristics to build two pre-trained models for road characteristics detection.ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 12 of 21 
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Figure 6. The study area is located in Taipei, Taiwan. (a) Comprehensive roadmap with a large red
rectangle where the study area is located; (b) filtered roadmap with six sample tiles indicated in small
red squares and by letters a through f.

As discussed earlier, roadmap tiles fetched from Google Maps are chosen as study
materials because Google Maps are mapped based on a vector tile service that provides
road networks with a high update frequency and flexible functionalities that enable not only
easy generation of customized maps, but also easy accessibility. Study materials shown in
Figure 6b are thus, collected from filtered roadmap by adopting a customized style testing
in an online styling wizard [61] at the zoom level 16, a street-level representation. Each
collected map tile is at the size of 256 × 256 pixels. The numbers of images of training,
validation, and test sets for two pre-trained models are shown in Table 2.

Table 2. The numbers of images of training, validation and test sets for the experiments.

Data Set

Model Model 1 Model 2

BG FG BG Crossroad T-Junction Y-Junction Corner Curve

Training set 2550 2550 510 510 510 510 510 510

Validation set 1275 1275 250 255 255 255 255 255

Test set 425 425 80 85 85 85 85 85
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3.2. Experiments and Results

Experiments of the road FG and BG image classification model and the road charac-
teristics classification model are conducted by utilizing the dataset listed in Table 2. The
road FG and BG image classification model is built based on a VGG-16 framework with
190 epochs, whereas the road characteristics classification model is built based on the
InceptionResNetV2 framework with 150 epochs. Tables 3 and 4 present the classification
report of the two models including, the accuracy of the validation set and test set and the
overall precision, recall, and F1-Score, respectively.

Table 3. The accuracy of the two models.

Model Validation Set Test Set

Model 1 0.962 0.960

Model 2 0.962 0.969

Table 4. The precision and recall of the two models of the test dataset.

Model with Types
Measures

Precision Recall F1-Score

Model 1
BG 0.951 0.969 0.960

FG 0.969 0.952 0.960

Model 2

BG 0.998 0.993 0.995

crossroad 1 1 1

T-junction 0.941 0.941 0.941

Y-junction 0.941 0.941 0.941

corner 0.965 0.901 0.932

curve 0.859 0.948 0.901

After the two pre-trained models are built, experiments for road characteristics detec-
tion are conducted by the proposed workflow presented in Section 2. Target images for
detection are retrieved from a map tile by a row-major ordering scanning with a moving
step, for example, two pixels, from the top left corner to the bottom right corner. In the
experiments, the confidence score is set at 0.85 and 0.98 for model 1 and model 2, respec-
tively, which indicates that only target images with a confidence score equal to or greater
than 0.85 in model 1, and those equal to or greater than 0.98 in model 2 become FG images
for the road characteristics detection task, otherwise they are BG images. Further, the
threshold for the IoU of NMS to eliminate type I duplicated detection results is 0.3, that for
the IoU of Rule I to remove type II duplicated detection results is 0.3(T1) as well, that for the
combination process in Rule II, Rule III and Rule IV is 0.4(T2), and that for the combination
process of curves in Rule V is 0.5(T3).

Due to limited space, six sample tiles, shown in Figure 7(a1)–(f1), are taken as ex-
amples with a comprehensive discussion to demonstrate the feasibility of our approach.
These tiles encompass simple and complex road networks from the perspective of road
network structure; rural, mountain, and city from the perspective of urbanization; and
specific road networks such as bridges or highways from the perspective of road network
construction. The XYZ encoding presented on the tiles shown in Figure 7(a1)–(f1) is noted
as X_Y_Z, which indicates the location and zoom level of tiles. Figure 7 shows the road
characteristics detection results, including results of three selected squares, small size
(10 × 10 pixels) (Figure 7(a2)–(f2)), medium size (16 × 16 pixels) (Figure 7(a3)–(f3)), large
size (24 × 24 pixels) (Figure 7(a4)–(f4)), and the final results (Figure 7(a5)–(f5)).
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from three sizes of initial results adopting combination rules.
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3.3. Discussion and Evaluation

Remarkably, in model 1 and model 2, nearly 96% accuracy is achieved, and over 90%
precision and recall are reached in most types of classification, except curves. Tests shown
in Figure 7 reveal impressive results. Figure 8a–f shows our detection results overlaying
ground truth results marked manually with color-filled areas. In all, five types of road
characteristics are detected very well. Our experiments confirm the advantages of applying
three sizes of detection squares to various widths and types of road networks. More
specifically, in Figure 7(a5) and Figure 8a, it is interesting to note that the medium size
performs general road detection well, while the large and small sizes handle a curve with
a large radius of curvature and small road detection well, respectively. In Figure 7(b5)
and Figure 8b, it is notable that bodies of water are detected as background features with
perfect results, and roads are detected extremely successfully as well. Besides, one curve
and one crossroad shown near a star sign (*) in Figure 8b are not marked in the ground
truth results because they are not easily recognized by humans. Nevertheless, the two road
characteristics can still be detected successfully using a large square by our methods. A
striking result to emerge from Figure 7(c5) and Figure 8c is that a roundabout is detected
as several Y-junctions. In Figure 7(d5) and Figure 8d, it is worth mentioning that large
crossroads are detected in the middle of the main road with yellow (near a star sign (*)
in Figure 8d) because T-junctions detected from the medium-sized square are replaced
by applying Rule IV, which solves spatial coverage issues. In addition, a small T-junction
successfully taken as supplementary is marked near multiple medium crossroads in a
dense area (near a pound sign (#) in Figure 8d). In Figure 7(e5) and Figure 8e at the bottom,
several T-junctions are correctly detected among local plane roads because there is a viaduct
highway across. It is worth mentioning that two curves are detected successfully near
two star signs (*) in Figure 8e even though they are not easily recognized by humans and
thus not marked in the ground truth results. Most of the detection results perform well
except for a Y-junction near an exclamation sign (!) in Figure 8e because a dashed line
leads to an incorrect detection. In Figure 7(f5) and Figure 8f, because a freeway system
interchange consisted of several lanes and loops with huge curvature radius, those lanes
and loops are detected by several curves, not just one (shown near two star signs (*)). This
is an expected limitation caused by the use of three fixed detection sizes in this study. That
is, a low rate of recall may occur with all types of road characteristics for large objects
because of unsupported detection sizes. In addition, several curves shown near a pound
sign (#) can be successfully detected with three sizes of squares even though they are not
easily recognized by humans. However, a few incorrect detections appear on the border
between freeways and general roads, such as a T-junction near an exclamation sign (!) in
Figure 8f. We are aware of the above limitation and conclude the following reasons for the
incorrect detection.

1. The types of corner and curve have lower precision and lower recall than other types
because of misclassification between these two types. Although a corner is defined
as a road characteristic type shaped like a 90-degree geometric pattern, a curve is
sometimes classified as a corner because its curvature is nearly 90 degrees. This is
why the curve type has only 86% precision.

2. The detection of the types T-junction and Y-junction has shown good performance.
However, false-positive cases of T-junctions may be caused when two nearly straight
lanes are connected, or a curve is connected with a lane from three lanes of a Y-junction.
In addition, the cases may be caused by vague images on the border between freeways
and general roads as well. So it may be solved by including more training datasets.

3. Using adaptive squares for road characteristics detection has performed an outstand-
ing job. However, a few incorrect detection results are mostly caused by insufficient
coverage in the squares. For example, crossroads or T-junctions with large widths are
not detected. Thus, this is a limitation identified in this study.
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Faster R-CNN, a dominant deep-learning approach for object detection with excellent
performance, is taken as a comparison. Faster R-CNN is a joint model composed of a region
proposal network (RPN), and an R-CNN structure which takes tiles with label information
to build a model, thus, 330 tiles (115 from urban areas, 95 from mountain areas, and
120 from areas with specific objects such highways or bridges) are selected as training data
and labeled using the Labeling Script tool [62]. The total number of crossroads, T-junction,
Y-junction, corner, and the curve are 4582, 8442, 509, 855, and 1371. The model is built
completely with 500k steps. Sequentially, the model is applied for the road characteristics
detection. Figure 9a–f shows the detection results of Faster R-CNN with a confidence score,
0.9, and Figure 10a–f shows the detection results overlaying ground truth results marked as
color-filled areas. Overall, types of crossroad, T-junction, Y-junction, and corner achieved
high precision but low recall. Based on the experimental results, we can claim that our
method performs better than the Faster R-CNN as the amount of the training set used
in the Faster R-CNN method is higher than that of training set used in our method, and
outstanding results are shown in our method.
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4. Conclusions and Future Work

Road characteristics such as intersections, irregular bends, and corners are not only
substantial structures constructed in road networks to support transportation services
but also crucial features widely used to assist with traffic-relevant analyses. This paper
has proposed a deep-learning-based approach to detect five types of road characteristics,
namely crossroads, T-junctions, Y-junctions, corners, and curves, from a currently popular
geospatial tile service using a roadmap. The proposed approach, comprising two convo-
lutional neural networks with adaptive squares, is simple and outperforms other deep
frameworks because the joint frameworks responsible for binary classification and multi-
class classification contribute to the high accuracy of classification results. Further, adopting
three sizes of rotation-insensitive squares makes detection focused and much more efficient.
Besides, combination rules are adopted to obtain optimal final results from three sizes of
initial results. Our experimental results have demonstrated successful outcomes in reality
and have been evaluated by ground truth results. The evaluation results show that our
method provides a promising solution for the road characteristics detection and performs
much better than a dominant deep-learning approach, the Faster R-CNN method. With
the proposed method, the information of detected road characteristics with location and
type is converted from human-readable to machine-readable. The study yields significant
improvements in types of road characteristics, accuracy, and efficiency. Furthermore, it will
potentially benefit many road-network-based applications such as feature point reminders,
road condition reports, and early warning systems or alert detection for users, drivers,
and even autonomous vehicles. We believe the simple deep-learning-based approach will
provide a new method for object detection and geospatial information extraction from map
tiles. Further research might explore more fully detailed road characteristics considering
various degrees of curvature such as sharp curves and terrain factors such as uphill and
downhill gradients to much more closely match our real-life usage cases. In addition,
data fusion based on roadmaps and remote sensing imagery for a more robust solution is
potentially interesting.
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