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Abstract: Points-of-interest (POIs) are an important carriers of location text information in smart
cities and have been widely used to extract and identify urban functional regions. However, it is
difficult to model the relationship between POIs and urban functional types using existing methods
due to insufficient POIs information mining. In this study, we propose a Global Vectors (GloVe)-based,
POI type embedding model (GPTEM) to extract and identify urban functional regions at the scale of
traffic analysis zones (TAZs) by integrating the co-occurrence information and spatial context of POIs.
This method has three main steps. First, we utilize buffer zones centered on each POI to construct
the urban functional corpus. Second, we use the constructed corpus and GPTEM to train POI type
vectors. Third, we cluster the TAZs and annotate the urban functional types in clustered regions
by calculating enrichment factors. The results are evaluated by comparing them against manual
annotations and food takeout delivery data, showing that the overall identification accuracy of the
proposed method (78.44%) is significantly higher than that of a baseline method based on word2vec.
Our work can assist urban planners to efficiently evaluate the development of and changes in the
functions of various urban regions.

Keywords: urban functional regions; geo-text mining; points-of-interest; GloVe

1. Introduction

As cities develop, various types of functional regions that support residents in their
daily life, and work, form gradually. The functional type of a region is determined by
various factors, such as human economic activities, infrastructure, and human mobility
trends [1]. Monitoring how functional regions and land use evolve across a city is of great
practical significance to urban planners, and can be achieved by efficiently and accurately
extracting and identifying the functional types of regions [2,3]. Remote sensing images
with high spatial resolution have become a widely used data source for extracting urban
functional regions because they accurately reflect the physical features of the land surface,
such as its shape, texture, and spectral characteristics [4–6]. In addition to these natural
attributes, however, the function of an urban region is strongly influenced by human social
and economic activities, the characteristics of which cannot be adequately extracted from
remote sensing images.

To overcome this limitation, urban computing studies have used various types of
geospatial data with social and economic attributes, such as points of interest (POIs), social
media data, smartphone signal data, and taxi trajectory data [3,7–11]. Of these geospatial
data sources, the easy accessibility of POIs makes them advantageous for studying the
structure and function of urban spaces [12–14]. However, although most existing methods
for extracting and identifying urban functional regions based on POIs utilize either POI

ISPRS Int. J. Geo-Inf. 2021, 10, 372. https://doi.org/10.3390/ijgi10060372 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-6341-1403
https://orcid.org/0000-0001-9322-0149
https://doi.org/10.3390/ijgi10060372
https://doi.org/10.3390/ijgi10060372
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10060372
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10060372?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2021, 10, 372 2 of 21

statistics [12,14] or their relative spatial relationships [15], these play equally important
roles in defining the functional type of a given local space [16]. For example, both the
relationship between shopping malls and restaurants in local space and the co-occurrence
information in global space are important when defining commercial regions.

In the process of rapid urban development, the human–land relationship (e.g., the
spatial distribution of human activities, the intensity of land use) is constantly changing.
In the era of big data, POIs have the beneficial characteristics of being lightweight and
easy to access. Furthermore, human activities usually take place in POIs [12]. Therefore,
POIs play an important role in the effective and accurate simulation and prediction of
changing trends in the human–land relationship. With the objective of extracting and
identifying urban functional regions, we propose a POI information mining method that
takes into account both the global co-occurrence frequency of POIs and their geographical
relevance in a specific geographic window, thus integrating POI statistics with spatial
semantic features to construct a Global Vectors (GloVe)-based POI type embedding model
(GPTEM), in which POI type vectors can more accurately express the role of POIs in urban
spaces. The main contributions of this paper are as follows:

• Based on the advantages of existing topic model-based and neural network-based
methods, the method outlined in this paper takes the global statistical information
and the spatial context of POIs into account, and accurately captures the co-occurrence
information and spatial semantic features of POI types using the POI type embed-
ding model. The proposed method more accurately extracts large-scale and spatial
feature information from POI datasets, thus improving on existing POI information
mining methods.

• Based on the obtained POI type embedding, this method can capture sufficient human–
land interaction information for each study unit in the extraction and identification of
urban functional regions. Compared with the baseline method, it therefore enables
more efficient and accurate modeling of the relationship among POIs, human activities,
and urban functional types. Moreover, we qualitatively and quantitatively verify the
results by comparing them to manual annotations and food takeout delivery data.

With the ever-changing trends in human–land relationships, the method proposed
in our study can produce rapid and effective scientific simulations and predictions of
urban spatial functions by collecting related data. This presents a great opportunity for city
managers to promote future urban planning and smart governance in defining future cities.

2. Related Work

In the field of urban computing, topic model-based methods can be used to mine
information hidden in data with socioeconomic attributes. Conventionally, physical char-
acteristics of land surfaces extracted from remote sensing images have been widely used to
classify land use type and extract urban functional regions [17,18]. However, the functional
types of regions in a city are strongly influenced by the interaction between humans and
the surface [19,20]. Hence, solutions that analogize data with socioeconomic attributes,
such as POIs, social media data, and taxi trajectory data, to natural language are essential
for mining the latent features of urban spaces.

Yuan et al. [14] applied the topic model and natural language processing (NLP) to
analogize urban regions to documents, urban functions to topics, POI types to metadata,
and human movement patterns to words; in doing so, they identified urban functional
regions by combining POI and taxi trajectory data. In cities, however, highly precise
dynamic mobility data are difficult to obtain. Gao et al. [12] extracted urban functional
regions by analyzing POI co-occurrence patterns after combining social media check-in
data with POIs and integrating the data into the latent Dirichlet allocation (LDA) model.
LDA, a topic model in the field of NLP, is typically used to distinguish words by mining the
topic of the document and classifying the words into different topics [21], and to estimate
the continuous representation of words in vector space. When applied to large geospatial
datasets, LDA has the disadvantages of high computational cost and low efficiency [22].
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Moreover, topic models such as LDA often ignore the linear relationship of words in vector
space; that is, similar words should be closer to each other in vector space [23]. In addition,
according to Tobler’s first law of geography, closer geographical elements have stronger
correlations. The contextual information of geospatial data is thus essential to a spatial
semantic understanding. However, when using a topic model to extract urban functional
regions, a large amount of spatial contextual information is lost [23].

With advances in machine learning, neural network-based methods are increasingly
used to explore the relationships among POIs or other data with socioeconomic attributes
in geographic space. Mikolov et al. [23,24] proposed the word2vec algorithm composed of
two architectures, namely, CBOW and Skip-gram. This algorithm considers trained model
parameters as vectorized representations of the input words and embeds each word in the
document as a low-dimensional dense vector. Neural network-based approaches, such
as word2vec, overcome the problem of a loss of spatial contextual information, which is
encountered when using topic models.

Recently, urban computing researchers have used word2vec to extract the semantic
features of data with socioeconomic attributes and to examine the urban spatial distribution
pattern. For example, Yan et al. [25] proposed a method to capture the semantic information
of place types by measuring similarities and relations between them. They achieved this
by enhancing the spatial context to learn the word embedding of the place types. Using
a word embedding model, Liu et al. [26] used POI data to examine the niche pattern of
locations in a city, with the set of locations co-occurring with a central location defined as
the niche of the central location, and quantitatively analyzed regional variability. Trajectory
data [27], Twitter data [28] and user review data on travel websites [29] have also been
combined with word embedding models to extract urban spatial features.

The aforementioned works have focused on examining the spatial features of cities
at a micro level. However, as urban functional regions are the result of the interaction
between humans and the land surface and the spatial accumulation of social and economic
features in cities [3,30], the features of a single place type cannot completely describe the
functional types of an urban region. Yao et al. [15] modeled the relationship between
spatial distributions of POIs and land use types based on word2vec. Following the work
of Yan et al. [25], Zhai et al. [31] identified functional types in various regions of a city
by combining place2vec with POI data and clustering the POI feature vectors at the
neighborhood area (NA) scale. Aside from neighborhood area, traffic analysis zones (TAZs)
generated from OpenStreetMap road network data provide an alternative scale for applying
POIs to the field of urban studies [32,33]. TAZs are also used to divide the urban space in
this study. Different from the work of Wang et al. [33], which regard POIs as the basis for
analyzing land use intensity, we extract and identify urban functional regions based on
the information mined from POI. In addition, place2vec, proposed by Yan et al. [25], as an
improvement on word2vec, performs well in word analogy tasks and better retains the
contextual information of geospatial data. However, word2vec and its improved methods
(e.g., place2vec) ignore the statistical information, such as global co-occurrence frequency,
in geospatial data, which is not ideal for urban computing applications [16]. Co-occurrence
patterns are crucial pieces of spatial feature information in urban regions. For example, if
shopping malls and restaurants appear more frequently in a region, then it is likely to be
annotated as a commercial region.

To solve the this drawback of word2vec, Pennington et al. [16] proposed a word
embedding model named Global Vectors (GloVe) that integrates the global statistical
information on the basis of the local context window-based method, thus combining the
advantages of both topic models and neural network-based models. Jeawak et al. [34]
combined Flickr (a photo sharing website) tag data and traditional structured data (e.g.,
temperature, land use) to embed geographical locations into vectors, verifying that GloVe
is more effective than are traditional bag-of-words models in ecology-related tasks (e.g.,
predicting species distribution, soil types, and land cover). To the best of our knowledge,



ISPRS Int. J. Geo-Inf. 2021, 10, 372 4 of 21

the feasibility of applying the GloVe model to urban computing remains to be proven. In
this work, we use the architecture of the GloVe model to train POI type vectors.

3. Methodology

The method proposed in this study consists of the following sections: Construction
of the urban functional corpus, Embedding the POI type in vector space, Identifying the
urban functional type, and Evaluating the accuracy of the urban functional label.

3.1. Construction of the Urban Functional Corpus

In NLP, a corpus is a large number of processed text collections in a predetermined
format [35], typically containing documents that can be used to simulate natural language
on a large scale. Specifically, the contextual relationship between words in each document
can be used to simulate the contextual relationship of words in real-world human languages.
The distribution of POIs in cities is similar to the distribution of word frequencies in natural
language corpora, both of which follow the power law distribution [25]. Therefore, the
semantic relationship of POIs in urban space can be obtained using a word embedding
model. Inspired by this concept, in this work, we analogize the study area to a corpus in
natural language and call it the urban functional corpus. We then analogize the collection
of POIs in the buffers centered on each POI to documents in natural language.

First, we allow the word embedding model to learn the contextual relationship be-
tween adjacent POI types within a certain range. In addition, we make the POI types
that are closer to each other co-occur more frequently; this allows us to account for the
proximity of geographic space in the model, enabling it to distinguish the relationships
between POI types with different spatial distance. Each document contains an indefinite
number of POIs to be analogized to words in natural language. We use the POI dataset
on Gaode Map as the research object. To capture semantic information in richer detail
when training POI type vectors, we include third-level POI types in the dataset in addition
to both first- and second-level POI types. Table 1 shows examples of urban functional
corpus. We can find that the POI types in the collection have similar effects on shaping the
urban function types, and POIs of similar types (e.g., government agencies and township-level
governments and institutions) co-occur frequently.

To reflect the distribution features of POIs in geographic space and preserve the
positional relationship between adjacent POIs, we need to make the geographically adjacent
POIs relatively close to each other when constructing the documents. However, POIs are
distributed nonuniformly in urban space. In other words, the number of words in each
document is uncertain, and the distribution of POIs is relatively dense in some regions. If
documents are constructed based on the principle of global optimization, the time cost is
extremely high, rendering the method unfeasible. Therefore, we refer to the shortest-path
method proposed by Yao et al. [15] when constructing documents. We build buffer-based
documents based on the greedy algorithm, which integrates a series of POIs in the buffer
into documents that have actual geographic spatial meanings and can reflect the positional
relationships between POIs to some extent. The algorithm flow is as follows:

(1) We assume that the set of n POIs in a buffer is A = {P1, P2, . . . , Pn}. First, we calculate
the distance between all POI pairs in the buffer. We then take the farthest POI pair as
the end points of the path, namely Ps and Pe (e.g., frontage courtyard and township-level
governments and institutions in the first item of Table 1). We record the path length as l
(e.g., in the first item of Table 1, l is the spatial distance between frontage courtyard and
township-level governments and institutions in the current step). The remaining POIs in
the buffer are included in the set of wait-to-insert. At this time, the set composed of the
starting and ending points of the current path is L = {Ps, Pe} and the wait-to-insert
set is W = {Pw|Pw ∈ A− L}.

(2) In this step, all POIs to be inserted are traversed. For each POI Pi in W, we calculate
the distance l of the path after Pi is inserted into any segment in L (e.g., in the first item
of Table 1, in the first traversal, there is only one segment between frontage courtyard
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and township-level governments and institutions; in the next traversal, when government
agencies is inserted into L, there are two segments between frontage courtyard and
government agencies, government agencies and township-level governments and institutions).
This traversal is to ensure that POI Pi (where Pi can be any POI in wait-to-insert set
W) is inserted into the proper position. Here, the “proper position” means that if Pi is
inserted into the position between Px and Py in the path, the total length l (i.e., the
sum of spatial distances between the POI pairs calculated in the order in L: in the first
item of Table 1, in the first traversal, the total length l is the sum of spatial distances
between frontage courtyard and Pi, and between Pi and township-level governments and
institutions) of the set L =

{
Ps, . . . , Px, Pi, Py, . . . , Pe

}
after insertion is the shortest

among all possible options.
(3) The previous step is repeated until the wait-to-insert set W is empty. The resulting

shortest-path sequence is the buffer-based document.

Table 1. Examples of urban functional corpus.

Collections of POIs in the Buffers (Original Data) The full Name of POI Corresponding to the Index

Jie Fu Xiang Fu Fu Fu Xiang Xiang Xiang Xiang Jian Zhi Jian
Fu Xiang

Jie: Frontage courtyard; Fu: Government agencies; Xiang:
Township-level governments and institutions; Jian: Public
prosecutors’ office; Zhi: Social security organization; Ti:
Sporting Goods Store; Gao: Pastry shop; Si: Company; Er:
Children’s Store; Wang: Internet technology; Shou: Mobile
phone sales; Wei: Repair site; Bin: Hotel; Chao: Supermarket; Ju:
Home building materials market; A: Furniture mall; Tian:
Dessert shop; Yu: Entertainment venues; Z: KTV; Zhong:
Chinese restaurant; Xi: Place for bathing and massage; Te:
Specialty/Local restaurant; Bu: Fabric market; Kuai: Fast-food
restaurant; Chu: Kitchen and bathroom market; Niao: Flower,
bird, fish and insect market; Hui: Flower market; Xue: School;
You: Kindergarten

Ti Ti Gao Jian Zhi Si Er Wang Shou Wei Bin Chao Ju A Tian Yu Z
Zhong Bin Ti Xi Te Bu Kuai Xi Chao Ju Chu Niao Hui Xi Fu

Xue You

Note: We replaced the Chinese characters in the original data with their corresponding Chinese phonetic alphabet.

3.2. Embedding the POI Type in Vector Space

In NLP, word embedding—first proposed by Bengio et al. [36]—is a language feature
extraction technology that transforms words into numerical representations in a high-
dimensional vector space [37]. The biggest advantage of word embedding models is
that they do not require manually labelled data; instead, these models can quickly train
unlabeled data using unsupervised methods at a low computing cost [23,24,38]. In contrast
to word2vec and other word embedding models trained on local context windows, GloVe
trains word embedding on the basis of the number of global word co-occurrences, making
it possible to directly capture global statistical information in the corpus and to represent
the semantics of words as vectors [16]. In addition, GloVe optimally uses the available
computing resources, making it easy to train large datasets quickly to efficiently obtain the
semantic features of urban spaces. As described earlier, we analogize the urban space in
our study area to a corpus in natural language, called an urban functional corpus, which
contains a large number of POIs. The co-occurrence pattern of various types of POIs is of
great significance to understanding the semantics in urban spaces. For example, Table
2 shows some statistical indexes of POI collections in the urban functional corpus. It is
noted that the length of “sentences” (i.e., POI collections) in urban functional corpus differs
greatly. For the long sentence (e.g., the POI collection with maximum length), GloVe can
capture the global co-occurrence information for the whole sentence. Inspired by GloVe,
this paper presents a GloVe-based POI type embedding model (GPTEM).
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Table 2. Statistical indexes of POI collections in the urban functional corpus.

Maximum Length Minimum Length Average Length

782 1 65.73

Assuming that the co-occurrence matrix of POIs is X and that the element Xij in X
represents the number of occurrences of POI type j in the context of POI type i, Xi = ∑k Xik
represents the number of occurrences of any POI type in the context of POI type i, and

Pij = P(j|i) =
Xij
Xi

represents the probability that POI type j appears in the context of
POI type i. When training POI type vectors based on urban functional corpora, the ratio
of the co-occurrence probabilities of the POI types is more useful for identifying highly
spatially related POI types than the co-occurrence probability itself. As examples, we
take the following third-level POI types on Gaode Map: College and University, Research
Institution, Government and Institution below the Township Level, Other Agriculture, Forestry,
Animal Husbandry and Fishing Base, Logistics Express, and Securities Company. We assume
that i = College and University, j = Government and Institution below the Township Level,
and k is the other types of POI to be compared. In cities, Research Institution is usually
spatially related to College and University, whereas its correlation with Government and
Institution below the Township Level in urban space is relatively weak. In other words, when
k = Research Institution, we expect Pik to be much larger than Pjk and therefore Pik

Pjk
to

be very large; conversely, when k = Other Agriculture, Forestry, Animal Husbandry and
Fishing Base, we expect this ratio is very small. In addition, for Logistics Express types that
are spatially related or for the Securities Company unrelated to College and University and
Government and Institution below the Township Level, for which the values of Pik and Pjk are
very close, the co-occurrence probability ratios are close to 1. Therefore, compared with the
co-occurrence probability itself, the ratio of the co-occurrence probabilities is more helpful
in distinguishing different types of POIs, and thus in more accurately obtaining the spatial
semantic features of POIs in cities.

Moreover, the co-occurrence pattern of POIs in our study is symmetrical—that is, the
roles of the POI type i and its contextual POI type j in the training process are interchange-
able. In addition, considering that the vector space is linear and the final loss function
should be as simple as possible, the generalized form of the model is as follows:

G((vi − vj)
Tw̃k) =

Pik
Pjk

=
G(wT

i w̃k)

G(wT
j w̃k)

(1)

In Equation (1), vi and vj refer to the vectors of POI type i and j, respectively, w̃k
represents the vector of POI type k in the context; and G represents a function of vi, vj, and
w̃k. Setting G = exp, to keep our model symmetrical, we introduce a deviation term b and
obtain the following formula:

vT
i w̃k + b = log(Xik) (2)

Clearly, the co-occurrence matrix we obtain is sparse. To limit the value of our loss
function when Xik = 0 and to ensure that POI types overly small or large co-occurrence
frequencies are not overrepresented [16], we define the loss function of the model as follows:

L =
V

∑
i=1

V

∑
j=1

f (Xij)(vT
i w̃k + b− log(Xij))

2
(3)

In Equation (3), V refers to the total number of POI types in the urban functional
corpus, and the weight function f (Xij) is defined as follows [16]:

f (x) =

{( x
100
)0.75 i f x < 100

1 otherwise
(4)
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The number of dimensions of the embedding vectors is an important parameter of the
GPTEM. Considering that the total number of POIs in the dataset is not as rich as natural
language vocabulary, we set the dimensions of the POI type vectors to 70, which has been
proven to be effective in related studies [25,31].

To visually analyze the spatial distribution features of the 70-dimensional POI type
vectors, we apply the data dimensionality reduction technique for mining information
from high-dimensional data [39,40]. The dimensionality reduction method used in this
study is t-distributed stochastic neighbor embedding (t-SNE), which is a widely used
unsupervised machine learning algorithm for dimensionality reduction [41]. Compared
with other dimensionality reduction methods (e.g., principal component analysis), t-SNE
better maintains the local structure, meaning that it can better map POI type vectors
that are closer in high-dimensional vector space into the adjacent low-dimensional vector
space [42].

3.3. Identifying the Urban Functional Type

We obtain all POI type vectors using the GloVe-based POI type embedding model. In
related studies, the features of documents have usually been described by calculating the
weighted average of words in the documents. In this study, the urban space study area
is divided into a series of TAZs based on its administrative area boundaries and the first
three levels of the road network. The functional features of a TAZ are then represented by
the weighted average of all POI type vectors it contains, as follows:

TAZveci =
∑N

j=1 type(pi,j)

N
(5)

where TAZveci represents the feature vector of the i-th TAZ, type(pi,j) refers to the vector
of POI type j in the i-th TAZ, and N represents the total number of POIs in the i-th TAZ.

The TAZ feature vectors calculated using the above formula are very high-dimensional.
K-means is an algorithm widely used in high-dimensional data clustering and has the
advantages of fast convergence and strong interpretability. However, in the original
K-means algorithm, the initial clustering center needs to be determined manually, and
different clustering centers may yield completely different clustering results. To solve this
problem, this paper selects K-means++, an improved clustering algorithm, to extract the
urban functional clusters based on TAZs. The basic principle of the K-means++ algorithm
is to select the initial clustering center such that the distance between clusters is as far
as possible and the final clustering result is as close as possible to the global optimal
solution [43].

In the K-means++ algorithm, the choice of the number of clusters (K) strongly affects
the quality of the clustering. Recent studies have used the silhouette coefficient to evaluate
the clustering results [12,15]. This coefficient evaluates whether a data point is accurately
classified by measuring its similarity to the category to which it belongs. To make the
clustering results more objective and accurate than the methods of selecting the number of
clusters based on experience or expertise, we evaluate the accuracy of the clustering by
calculating the average silhouette coefficient for all data samples.

After obtaining the clustering results, actual spatial meanings must be assigned to each
cluster to identify the urban functional regions; that is, the clusters must be annotated with
urban function labels. Previous studies have typically annotated urban functions based on
indicators related to the occurrence frequency (or density) of POI types (e.g., composition
ratio, density) [15]. However, in urban spaces, some types of POIs may appear frequently,
meaning that this frequency- or density-based approach may produce large errors. To
avoid this problem, we evaluate the urban functions of the clustering regions by calculating
the enrichment factors (EF) of the POI types in each clustering region, as follows:

EFj
i = (N j

i /Ni)/(N j/N) (6)
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where EFj
i refers to the EF of POI type j in the i-th cluster region, N j

i represents the number
of POI type j in the i-th cluster region, Ni represents the total number of POIs in the i-th
cluster region, N j represents the total number of POI type j in the city, and N represents
the total number of POIs in the city.

3.4. Evaluating the Accuracy of the Urban Functional Label

To quantitatively verify the accuracy of our identification of urban functional regions,
we need data with urban functional labels for each TAZ; that is, the accuracy of unsuper-
vised clustering needs to be evaluated through a supervised task. Accordingly, to label
the data as accurately as possible, with the urban land use plan issued by the government,
10 volunteers graduate students and experts with background knowledge of urban plan-
ning were invited to annotate the urban functional types in each TAZ according to the list
of urban functional types identified by the proposed method.

Assigning some TAZs to a single urban functional type may be difficult, as different
volunteers could judge the urban functional type of the same TAZ differently. Therefore, the
volunteers were asked to annotate the urban functional types in each TAZ as two different
urban functions, thus eliminating subjective interpretations as much as possible. Assuming
that the first and second annotation by the i-th volunteer for the j-th TAZ are Fi[TAZj

1] and

Fi[TAZj
2], respectively, we calculate the manual labeling output of the urban functional

type in the j-th TAZ as follows:

Functionj = Mode
{

w1Fi[TAZj
1], w2Fi[TAZj

2], . . . , w1F10[TAZj
1], w2F10[TAZj

2]
}

(7)

In Equation (7), Functionj represents the final result of the manually annotated urban
functional type, Mode represents the weighted mode of the urban functional type, and
w1 +w2 = 1. Considering that Zhai et al. [31] demonstrated that the first manual annotation
of an urban functional type is much more important than the second, we set w1 = 0.8 and
w2 = 0.2.

To qualitatively evaluate our identification of urban functional regions, we use food
takeout origin–destination (OD) data for the main urban area of our study area. Here,
“takeout” refers to services that deliver food from restaurants to areas such as residential
buildings, schools, and workplaces. The reason why we use food takeout OD data is that
food takeout OD data can be a kind of supplementary data to verify the identification
results from the side. Specifically, because takeout OD data show the start (origin) and
end (destination) points of takeout deliveries ordered by residents, they can reflect the
distribution of different urban functional types of regions in a city to some extent. These
data can then be used to evaluate the accuracy of identification of residential regions, public
service regions, daily life service regions, and other similar urban functional region types.
In this study, the spatial distribution of the origins and destinations of takeout food are
expressed through kernel density estimation, a nonparametric method used to estimate the
probability density function. This is an effective means to estimate the density distribution
of any discrete points and does not depend on the scale of the space division [44]. Thus,
the kernel density estimation of takeout OD data can reveal the regions where takeout
orders are concentrated to a certain extent, which is helpful when evaluating the results of
identification of urban functional regions.

3.5. Overall Architecture

Figure 1 depicts the overall flowchart of the proposed method in the study, in which
we perform the following four-stage extraction and identification method:

(1) We construct an urban functional corpus based on the greedy algorithm using POI
data and the buffer centered on each POI.

(2) Based on the urban functional corpus, we obtain POI type vectors using the GPTEM
and visualize the configuration pattern of the POI type vectors.
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(3) We cluster the TAZ feature vectors calculated using the POI type vectors and calculate
the enrichment factor of each POI type in the clustered regions to extract the urban
functional type of each region in the study area.

(4) Finally, we quantitatively and qualitatively evaluate the identification results by
comparing them to the urban functional labels of each TAZ annotated by volunteers
and the takeout OD data.

Figure 1. Flowchart of the proposed method in the study.

4. Study Area and Dataset

The study area is the main urban area of Hangzhou in Zhejiang province, southeastern
China. Hangzhou is the political, economic, and cultural center of Zhejiang, and the
central city in the southern part of the Yangtze River Delta. With the rapid development
of the city over recent years, the urban functions of the main urban area have become
highly heterogeneous and mixed. Considering the distribution of public activities, we
take the eight major districts of Hangzhou, namely West Lake, Gongshu, Jianggan, Xiacheng,
Shangcheng, Binjiang, Xiaoshan, and Yuhang, as our study area.

In this study, the POI dataset is obtained through the API (https://restapi.amap.com/
(accessed on 1 June 2020)) of the Gaode Map Service in 1 June 2020, one of the most widely
used map service providers in China. An example request example submitted to this service
is https://restapi.amap.com/v3/place/text?key=myKey&extensions=all&keywords=&
types=010100&city=myCity&citylimit=true&offset=25&page=1&output=json (accessed on
1 June 2020) (where “myKey” and “myCity” are replaced according to actual needs. We
accessed the service in 1 June 2020). This dataset contains more than 300,000 POI records
with multiple category levels. Figure 2 shows a data sample of Gaode POIs. From the first-
level POI types, we remove Address Information (which has negligible influence on urban
function) and Vehicle (there are few POIs under Vehicle, and this does not affect evaluation
of the accuracy of identification of urban functional regions). We include third-level POI
types in the dataset because they reflect the nuances of urban functions more than the first
and second-level POI types. For example, Internet Technology and Metallurgy & Chemical
Industry are third-level POI types under the second-level POI type Company, which in turn
is under the first-level POI type Company & Enterprise. The constructed POI dataset has
17 first-level POI types—Catering Service, Road Ancillary Facilities, Famous Tourist Sites, Public
Utilities, Company & Enterprise, Shopping Service, Transportation Facilities Service, Financial
Insurance Service, Science Education and Cultural Services, Business Residence, Life Service, Event
& Activity, Sports and Leisure Service, Access Facilities, Healthcare Service, Government Agency

https://restapi.amap.com/
https://restapi.amap.com/v3/place/text?key=myKey&extensions=all&keywords=&types=010100&city=myCity&citylimit=true&offset=25&page=1&output=json
https://restapi.amap.com/v3/place/text?key=myKey&extensions=all&keywords=&types=010100&city=myCity&citylimit=true&offset=25&page=1&output=json
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& Social Group, and Accommodation Service—115 second-level POI types, and more than
400 third-level POI types.

Figure 2. A data sample of Gaode POIs.

Furthermore, by merging the administrative area boundary data with data on the first
three levels of the road network, the study area is divided into 997 TAZs. To improve the
validity and reliability of the results, small patches of area less than 500,000 square meters
and TAZs without any POIs are merged into their neighboring TAZs.

5. Experiments and Results
5.1. Training and Visualizing POI Type Vectors

In our study area, 357,990 POIs are distributed across 997 TAZs. To avoid confusion
between the POI types, we establish an index table giving each POI type a corresponding
unique index value to replace the role of the POI type in the remainder of the analysis.
Table 3 presents examples of this index table.

To construct the urban functional corpus, the buffer zone radius is set to 50 m. Before
training the POI type vectors using the proposed model, we set the number of POI type
vector dimensions to 70, window size to 10, and epoch to 10. Thus, 476 third-level POI
types are converted into POI type vectors that indicate the spatial context relationship.
Table 4 presents examples of POI type vectors.

Table 3. Example entries in the index table.

Index Value POI Type

Zhong Chinese Restaurant
Gong Factory

W Residential Area
Note: We replaced the Chinese characters in the original data with their corresponding Chinese phonetic alphabet.

Through the dimensionality reduction method of t-SNE, all POI type vectors are
mapped into three-dimensional semantic space, as shown in Figure 3. In the semantic
space after dimensionality reduction, POI types with similar or related spatial semantics
tend to be close to each other. For example, the subplot (a) of Figure 3 includes several
types of financial POIs (e.g., HUAXIA Bank, ICBC, and Hang Seng Bank ATM), all of which
play a similar role in urban space; hence, these POIs are relatively close to each other in
the semantic space. Of note is that some of the closer POIs in the subplot (b) of Figure
3 belong to different first-level POI types. For example, Cinema belongs to Sports and
Leisure Service, Infant Room belongs to Public Utilities, and Yungui Restaurant belongs to
Catering Service. However, they usually appear together as they all meet people’s daily
leisure and entertainment needs. These accurate and nuanced results demonstrate the
rationality of choosing third-level POI types in addition to first- and second-level types to
construct the urban functional corpus.
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Figure 3. POI type vectors in three-dimensional semantic space, with example local types that are
close to each other (a,b).

5.2. Clustering the Urban Regions

The feature vectors of TAZs are obtained by calculating the weighted average of the
POI type vectors in any given TAZ. While clustering TAZ feature vectors using K-Means++,
we experimentally determine the optimal K value (i.e., the number of clusters, which is the
most influential parameter) by varying K from 4 to 15; the resulting TAZ feature vectors
are clustered using K-Means++ and the corresponding silhouette coefficients calculated.
Figure 4 shows that the silhouette score is highest when K = 7. Therefore, we set K = 7,
with the resulting clustering shown in Figure 5.

Figure 4. Silhouette score (y-axis) as a function of the number of clusters, K (x-axis).
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Figure 5. Clustering results for the study area (Hangzhou) obtained at K = 7.

5.3. Annotating the Urban Functional Type

To identify the urban functions of each cluster, from among the 476 three-level POI
types, we list the top 20 POI types by EF in each cluster in Table 5:

Table 4. Examples of POI type vectors.

POI Type POI Type Vector (Dimension = 70)

Middle School (0.00137245, 0.00350524, . . . , 0.00271256)
Bar (0.00526796, 0.00108780, . . . , 0.00437424)

International Organization Office (0.00494723, 0.00629526, . . . , −0.00390901)

Cluster 1: Agriculture, Forestry, Animal Husbandry, Fishing, and Industrial Regions.
The EFs of the POI types of agriculture, forestry, animal husbandry, and fishery (e.g.,
Pasture = 188.27, Farm = 51.35, Fishing Park = 15.37) and industry (e.g., Factory = 14.01,
Industrial Park = 10.62) are relatively high (see Table 5). In addition, the TAZs covered in
this cluster area are mainly distributed away from downtown, indicating that the urban
functions of this clustering area are mainly agriculture, forestry, animal husbandry, fishing,
and industry.

Cluster 2: Commercial Regions. We define this cluster as commercial because it is
concentrated in the most central and prosperous areas of the city. More importantly, POIs
with high EFs in this clustering area are mainly commercial banks (e.g., Citibank = 4.18)
and insurance firms (e.g., Xinhua Life Insurance Company = 4.18).

Cluster 3: Scenic, Daily Life Service, and Residential Regions. The TAZs of this cluster
area are mainly distributed in the scenic areas of the West Lake (the most famous tourist
attraction in the study area) and its surroundings. This cluster is annotated as a mixed
urban functional area with scenic, daily life service, and residential features because the area
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shows a mixed POI distribution pattern, covering scenic spots (e.g., National Attraction)
and POIs closely related to people’s everyday lives (e.g., Tea House, or Service Center).

Cluster 4: Public Service, Agriculture, Forestry, Animal Husbandry, and Fishing
Regions. Similar to Cluster 1, most of the TAZs in this cluster area are located on the
outskirts of the city. Unlike Cluster 1, however, this cluster area covers one of the most
important transportation hubs in the study area—the Hangzhou Xiaoshan International
Airport—and related infrastructure providing public services. Some of the POI types with
high EF rankings are similar to those in Cluster 1 (e.g., Fruit Base). However, several types
of infrastructural POIs related to airports, transportation, and other public services (e.g.,
Waiting Room) are evident in the EF ranking table (see Table 5).

Cluster 5: Daily Life Service and Public Service Regions. The TAZs in this clustering
area are mainly distributed in the areas surrounding the city center and contain colleges
(e.g., Yuquan Campus, Zhejiang University, Zhejiang Provincial Institute of Socialism),
railway stations (e.g., Hangzhou North Railway Station), and places of daily life and
leisure (e.g., Qingzhiwu). In this clustering area, the EFs for POIs of daily life service (e.g.,
Walmart) and public service (e.g., Vehicle Pass Office = 3.27) are relatively high.

Cluster 6: Commercial and Daily Life Service Regions. Similar to Cluster 2, most of
the TAZs in this cluster area are located in the city center. However, in addition to covering
business and office premises (e.g., law firms, and banks), this cluster also contains facilities
for dining, leisure, and other life services (e.g., Hangzhou World Trade Plaza), as reflected
in Table 5. Specifically, the EFs of commercial categories (e.g., Audit Firm, and NCB) and
POIs related to people’s daily life (e.g., Carrefour, Fujian Restaurant, and Watsons) are
relatively high.

Cluster 7: Residential and Daily Life Service Regions. This cluster area contains
only two TAZs, mainly covering residential regions and daily life service facilities (e.g.,
Zijingang Community). Table 5 verifies the presence of such urban functional types in this
area, as residential POIs and those related to people’s daily lives, such as Furniture Mall,
Flower Market, GOME, and Korean Restaurant, have relatively high EFs.

5.4. Evaluating Identification Accuracy

To verify the reliability of the results, we invited volunteers with background knowl-
edge of urban planning to manually annotate each TAZ with its urban functional types on
the basis of urban land use planning data (see Figure 6c). As described in Section 3.5, we
take the mode of their labels as the final urban functional labels.

For this evaluation, word2vec is used as the baseline method. To eliminate the inter-
ference of other factors (e.g., the effects of different POI type vector dimensions on training
speed) in the result to the greatest extent possible, when training POI type vectors using
word2vec, the hyperparameter values are kept consistent with those set in Section 5.1.
Figure 6a,b present the extraction and identification results obtained using GPTEM and
word2vec, respectively. According to the calculation results of the enrichment factor in
Table 5, each cluster area may contain more than one urban functional type, consistent with
a real-world city containing highly heterogeneous and mixed function types. However, as
described in Section 3.4, the volunteers manually labelled each TAZ with a single urban
functional type, leading to inconsistent legends in Figure 6a–c. For a cluster region that
contains more than one urban functional type, we assume that the composition ratio of each
urban functional type is the same when calculating the confusion matrix. Tables 6 and 7
illustrates the confusion matrixes of the identification results based on word2vec and
GPTEM. To demonstrate the advantages of our GloVe-based method over word2vec, we
compare the two models in terms of model training time and overall accuracy (Table 8).
The training time with GPTEM is more than seven times shorter than with word2vec. In
terms of overall accuracy, GloVe accounts for the relative co-occurrence patterns between
POIs in the urban space, and its trained POI type vectors capture urban spatial semantic
information more accurately, resulting in the higher overall accuracy of GPTEM. Clearly,
the GloVe-based method outperforms the word2vec-based method.
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Figure 6. Functional regions identified using different GPTEM (a), word2vec (b), and (c) manually labelled regions. Note:
the legend used is different in each panel.
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Table 5. Top 20 POI types by EF in each cluster.

POI in
Cluster 1 EF POI in

Cluster 2 EF POI in
Cluster 3 EF POI in

Cluster 4 EF POI in
Cluster 5 EF POI in

Cluster 6 EF POI in
Cluster 7 EF

Pasture 188.27 Citibank 4.18
International
Organization

Office
126.83 Fishing

Ground 4.89 Hubei
Restaurant 3.27 World

Heritage 4.46 Foreign
Institution 10.77

Freight Port 62.76 HSBC 4.18 Youth Hostel 37.3 Vegetable Base 4.89 Reebok Store 3.27 British
Restaurant 4.46 Furniture Mall 10.34

Poultry
Breeding Base 53.79 DBS 4.18 Tea House 34.1 Funeral Parlor 4.89 Shuttle Station 3.27 XiabuXiabu-

Restaurant 4.46 Shanghai
Bank 9.42

Farm 51.35 Citibank ATM 4.18
Park

Attraction
Ticket Office

33.82 Brazilian
Restaurant 4.89 Vehicle Pass

Office 3.27
Facilities
inside the

Park
4.46 BMH Market 9.29

Other AFAHF
Base 49.4 HSBC ATM 4.18 National

Attraction 31.71 Racetrack 4.89 Border
Crossing 3.27 Carrefour 4.46 HBM Market 8.85

Fruit Base 47.07 HK DBS Bank
ATM 4.18 Famous

Tourist Site 25.14 Waiting Room 4.89 Entrance 3.22 ENT Hospital 3.34 K&B Market 7.77

Famous
Enterprise 34.86 Rugby Field 4.18

Upper
First-Class
Hospital

22.62 Airport Depar-
ture/Arrival 4.89 Exit 3 NCB ATM 2.97 Shanghai

Bank ATM 6.85

Provincial
Attraction 31.38 Brain Hospital 4.18 Viewpoint 21.14 Baggage

Inquiry 4.89 Train Station 2.62 Other Asian
Restaurant 2.67 Eye Hospital 5.26

Picking
Garden 26.27 National Tax

Authority 4.18 Provincial
Attraction 21.14 Campground 4.19 Walmart 2.46

Photographic
Equipment

Store
2.55 Flower Market 5.24

Highway
Service Area 17.12 CDB 4.18 Botanical

Garden 19.51 Fishing Park 3.99 Change Office 2.46 Fujian
Restaurant 2.55 L&P Market 4.95

Cemetery 17.12 BEA 4.18 Foreign
Institution 18.12 Cemetery 3.87 Platform 2.41 Wanning

Supermarket 2.43 Video Shop 4.71

Fishing Park 15.37 Foreign
Embassy 4.18

Chinese
Vegetarian
Restaurant

18.12 Resort 3.78 Zoo 2.18 Psychiatric
Hospital 2.23 FBFI Market 4.7

Leisure Place 14.34 EIBC 4.18 Campground 18.12 Toll Station 3.7 Freight Port 2.18 Mediterranean
Restaurant 2.23 Chaozhou

Restaurant 4.43

Toll Station 14.24 HK HSB 4.18
French
Cuisine

Restaurant
15.85 Fruit Base 3.67 Refund 2.18 Audit Firm 2.23

Vehicle
Management

Agency
4.19
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Table 5. Cont.

POI in
Cluster 1 EF POI in

Cluster 2 EF POI in
Cluster 3 EF POI in

Cluster 4 EF POI in
Cluster 5 EF POI in

Cluster 6 EF POI in
Cluster 7 EF

Factory 14.01 HK HSB ATM 4.18 Service Center 15.47 Airport 3.67 PBC 2.18 Mosque 2.23 Football Field 4.04
Outdoor
Fitness
Facility

11.17 BEA ATM 4.18 Port 15.14
Traffic Law

Enforcement
Station

3.6 Hualian
Supermarket 2.1 NCB 2.23 Tennis Court 3.68

Industrial
Park 10.62

Taikang Life
Insurance
Company

4.18 Ferry 14.63 Farm 3.56 Ticket Office 1.96 Watsons 1.99 GOME 3.43

Resort 9.91 Heliport 4.18 Memorial 14.59 Aquatic
Center 3.56 Commodity

Market 1.86 Puma Store 1.98 Korean
Restaurant 3.08

Machinery &
Electronics 9

Xinhua Life
Insurance
Company

4.18 Ticket Office 14.23 Picking
Garden 3.53 Ticketing 1.82 Italian

Restaurant 1.96 Yungui
Restaurant 3.02

Metallurgy &
Chemical
Industry

8.19 Chest
Hospital 3.34 Temple&

Taoist Temple 13.88 Poultry
Breeding Base 3.49 PingAn 1.77 Shanghai

Restaurant 1.91 CEB ATM 2.9

Other AFAHF Base: Other Agriculture, forestry, animal husbandry, and fishing base; HSBC: The Hong Kong and Shanghai Banking Corporation Limited; DBS: Development Bank of Singapore; CDB: China
Development Bank; BEA: The Bank of East Asia; EIBC: Export–Import Bank of China; PBC: People’s Bank of China; PingAn: Ping An Insurance (Group) Company of China; NCB: Nanyang Commercial Bank;
BMH Market: Building material hardware market; HBM Market: Home building materials market; K&B Market: Kitchen and bathroom market; L&P Market: Lamps and porcelain market; FBFI Market:
Flower, bird, fish, and insect market; CEB: China Everbright Bank.
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Table 6. Confusion matrix of identification result based on word2vec.

Public
Service
Regions

AFAHF
Regions

Commercial
Regions

Residential
Regions

Industrial
Regions

Scenic
Regions

Daily Life
Service
Regions

Public Service Regions 0.153 0.416 0.000 0.000 0.416 0.007 0.008
AFAHF Regions 0.002 0.972 0.000 0.000 0.000 0.012 0.014

Commercial Regions 0.140 0.140 0.560 0.000 0.060 0.020 0.080
Residential Regions 0.274 0.226 0.021 0.021 0.211 0.005 0.242
Industrial Regions 0.256 0.226 0.000 0.000 0.476 0.006 0.036

Scenic Regions 0.010 0.115 0.000 0.000 0.115 0.750 0.010
Daily Life Service Regions 0.080 0.218 0.029 0.000 0.168 0.000 0.505

Table 7. Confusion matrix of identification result based on GPTEM.

Public Service
Regions

AFAHF
Regions

Commercial
Regions

Residential
Regions

Industrial
Regions

Scenic
Regions

Daily Life
Service
Regions

Public Service Regions 0.992 0.003 0.000 0.000 0.003 0.001 0.001
AFAHF Regions 0.000 0.992 0.000 0.000 0.000 0.004 0.004

Commercial Regions 0.160 0.140 0.680 0.000 0.000 0.000 0.020
Residential Regions 0.452 0.263 0.021 0.032 0.000 0.011 0.221
Industrial Regions 0.315 0.298 0.000 0.000 0.369 0.000 0.018

Scenic Regions 0.146 0.125 0.000 0.000 0.000 0.708 0.021
Daily Life Service Regions 0.181 0.180 0.000 0.000 0.000 0.000 0.639

Table 8. Evaluation index of urban function identification.

Methods Training Time
(in Seconds) Kappa Overall Accuracy

word2vec 315.48 0.4059 0.4504
GloVe 38.99 0.7000 0.7844

Furthermore, using more than 3,400,000 takeout OD data points provided by Dian-
woda Company and covering a one-month period (August 2017), we qualitatively evaluate
the extraction and identification results. Figure 7 presents the results of kernel density
estimation on the origin and destination of the takeout deliveries.

Comparing the results of the kernel density estimation in Figure 7b,c with the results
of urban functional region identification in Figure 7a, the start points of takeouts (Figure 7b)
are mainly concentrated in the commercial regions (e.g., area a. in Figure 7b) and daily life
service regions (e.g., area b, c, and d in the subplot (b) of Figure 7). These two region types
include most of the restaurants that provide takeout service. The end points of takeout
deliveries are mainly concentrated in residential regions (e.g., area a. in the subplot (c)
of Figure 7), commercial regions (e.g., area b in the subplot (c) of Figure 7), and public
service regions (e.g., area c in the subplot (c) of Figure 7). Because the takeout data used
in this study cover a long period of time (i.e., one month), places in commercial regions
(e.g., companies, and banks) and public service regions (e.g., government organizations,
hospitals, and schools) may be common destinations for takeout deliveries during working
hours, whereas apartments in residential regions would be more common destinations at
other times. Thus, the kernel density estimation in Figure 7 demonstrates the soundness of
our identified urban functional regions.
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Figure 7. Functional regions identified using GPTEM (a) and kernel density estimation of takeout origin (b) and destination
(c) data.

5.5. Discussion

In this section, we first discuss the construction of the urban functional corpus. Unlike
the construction of the corpus based on the TAZ in the research of Yao et al. [15] and the
construction based on tuples consisting of the central POIs and its K-nearest POIs in the
research of Zhai et al. [31], we aim to make the urban functional corpus more continuous
and closer in structure to the corpus composed of natural language while taking into
account geographical proximity. Therefore, we construct the urban functional corpus
in units of buffers centered on each POI. As mentioned in Section 3.2, the buffer-based
method enhances the spatial context relationship. Furthermore, as the Gaode POIs dataset
contains relatively complete POI types, it has practical significance to the extraction and
identification of urban functional regions.

In addition, according to the confusion matrix displayed in Table 7, we note that the
proposed method is extremely accurate for the extraction of public service regions and
agriculture, forestry, animal husbandry, and fishing (AFAHF) regions. The results based on
the proposed method and manual annotations exhibit spatial homogeneity in these two
regions, mainly because they are mostly located in the suburbs of the study area where the
POIs are relatively homogeneous and sparse and the spatial features are relatively easy to
capture. Meanwhile, there is obvious spatial heterogeneity in residential areas, mainly due
to the fact that there are fewer POIs in residential categories. More importantly, in most
cases, residential regions are mixed with other types of urban functional regions such as
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public service regions and daily life service regions, which makes it difficult to extract their
spatial features and results in large classification errors.

6. Conclusions and Future Work

We proposed a GloVe-based POI type embedding model that accounts for the co-
occurrence statistics of POIs and spatial context while training POI type vectors. Using the
proposed model, we extract and identifyurban functional regions using POIs at the scale of
traffic analysis zones. Through comparison against a baseline method based on word2vec,
we proved that our method outperforms the word2vec-based method in terms of training
speed and overall accuracy.

To extract and identify urban functional regions with very high accuracy, conventional
data (e.g., geodemographic data, questionnaire data) may be more reliable. The goal of our
study is to help city planners monitor regional development after initial urban planning,
and we have achieved this by providing a new method to mine information hidden in POIs.
Given their easy accessibility, POIs are a low cost and effective data source for quickly
evaluating the development and changes in the functions of various regions in a city.

This study has some limitations. First, because each POI can only represent one point
in an urban space, we could not account for its influence on nearby areas. In the future,
other types of data could be merged into the methodology presented in this study to make
the urban functional corpus more practical by assigning weights to POIs. Second, this
study introduces TAZ as the basic unit of analysis and thus is inevitably prone to the
modifiable areal unit problem due to the zoning effect. In the future, the impact of different
urban space division schemes on the results could be considered. Finally, our accuracy
evaluation process is based on the judgment of volunteers and is hence subjective, the
multiple annotations for each region notwithstanding. In the future, more labelled data
can be introduced to make the accuracy evaluation more rigorous and reliable, and the
proposed method can be refined accordingly to make it even more effective in meeting the
needs of urban planners and managers.
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