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Abstract: Understanding the spatial variability of soil organic matter (SOM) is crucial for imple-
menting precise land degradation control and fertilization to improve crop productivity. Studying
spatial variability provides a scientific basis for precision fertilization and land degradation control.
In this study, geostatistics and classical statistical methods were used to analyze the spatial variability
of SOM and its influencing factors under various degrees of land degradation in the red bed area
of southern China. The results demonstrate a declining trend for SOM content with increasing
land degradation. The SOM content differs profoundly under different land degradation degrees.
The coefficient of variation ranges from 13.61% for extreme land degradation to 8.98% for mild
land degradation, 7.96% for moderate land degradation, and 5.64% for severe land degradation. A
significant positive correlation is displayed between the altitude and the SOM (p < 0.01) under mild
and moderate land degradation conditions. Bulk density and pH value have a significant negative
correlation with SOM (p < 0.01). It can be observed that terrain factors, as well as physical and
chemical soil parameters, have a great influence on SOM.

Keywords: soil organic matter; land degradation; semivariogram; spatial distribution; classical statistics

1. Introduction

Soil organic matter (SOM) is a primary source of plant mineral nutrition and an es-
sential part of the terrestrial soil carbon pool. The content and dynamics of SOM directly
impact the global carbon cycle [1–3]. Land degradation is affected by intersecting factors
including topography, parent material, climate and human activities. Soil nutrition loss is
associated with the condition of land degradation, which affects the health of the soil carbon
pool [4,5]. Therefore, it is important to carry out reasonable soil and water conservation
measures to promote soil carbon recovery and accumulation [6]. Identifying the influencing
factors of SOM variability under different land degradation levels establishes a theoretical
basis for studying regional soil carbon restoration mechanisms, thereby facilitating the
development of soil quality restoration, ecological reconstruction, and water and soil con-
servation in ecologically fragile areas. The conservation, migration and distribution of SOM
are complex physical, chemical and biological processes affected by many factors. The past
literature has shown that because of the variation in soil erosion, the SOM content varies
in different regions [7–10], land-use patterns [11,12] and landforms [13,14]. For example,
Yao et al. [15] studied the change in SOM content in different soil depths (0–20, 20–40
and 40–60 cm) in the red soil region of South China, and found that the spatial pattern
of SOM was characterized by higher content in the periphery and lower content in the
middle. Zhang et al. [14] analyzed the spatial heterogeneity of SOM in the Karst mountain
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area which possesses a fragile ecology. Their statistical results indicate that the landforms,
which lead to great discrepancies in human activities and geographic characteristics, are
the primary factor for the high heterogeneity of SOM content in mountainous Karst ar-
eas. Thus, investigating the influencing factors for the spatial variability of SOM under
different land degradation degrees contributes to improving mappings of SOM spatial
variability and estimations of the recovery potential for the soil carbon pool in ecologically
vulnerable areas.

The Nanxiong basin is a typical red bed ecosystem with special material, energy,
structure and function, which is formed based on red sandstone and glutenite and under
the interaction of the atmosphere, water, rocks and organisms [16,17]. In recent years, the
aggravation of human activities has exacerbated the land degradation of red bed ecology,
generating severe ecological problems such as deserts in the red bed area of southern
China [18]. The loss of SOM has become an obstacle to the sustainable development
of local agriculture, and the protection of soil environment and land resources. Some
publications [19–23] have illustrated that the variation of SOM content is associated with
terrain factors (altitude, slope), bulk density, soil pH, etc. However, the research into
the influencing factors of SOM spatial variation, focusing on different land degradation
degrees, is still lacking and has become a pressing topic. Thus, it is of great significance to
explore the spatial variability of soil organic matter and its associated impact mechanism
under various land degradation types in the red bed area. As a result, this research uses the
ecologically fragile area of southern China as a study area, and investigates the relationship
between the SOM content and topographic factors, soil physical and chemical parameters
in different land degradation conditions, providing a foundation for farmland utilization,
and conservation of soil and water.

Therefore, the main objectives of this study are: (1) to clarify the spatial variation
characteristics of SOM under different land degradation types in this study area; (2) to
obtain the influencing factors of spatial variation of SOM through correlation analysis; and
(3) to explore the impact mechanism of land degradation on the spatial distribution pattern
of SOM in the study area.

2. Materials and Methods
2.1. Description of the Study Area

The study area is located in the northeast of Nanxiong basin, a typical red bed area
in Nanxiong City, Guangdong Province (Figure 1). Dayuling is located in the north, sur-
rounded by mountains on three sides, including Jiangxi province in the east, Renhua in
the west and Shixing in the south. The geographical coordinates range from 114◦29′50′′ E
to 114◦33′30′′ E, and from 25◦13′23′′ N to 25◦16′57′′ N. It consists of a series of purple-red
mudstone, siltstone, silty conglomerate, red-gray glutenite, granitic conglomerate and
glutenite. Shallow hills with an altitude of 105–250 m are distributed widely in this area.
The area has a subtropical monsoon humid climate with four distinct seasons throughout
the year. The annual average temperature is 19.6 ◦C, the annual average evaporation is
1678.7 mm, and the annual average rainfall is 1555.1 mm. The natural soil types are yellow
soil, red soil, red lime soil and purple soil.

2.2. Field Sampling and Laboratory Testing

The sample was collected in November 2017 after the local crops were fully harvested.
A global positioning system (GPS) was used to determine the longitude, latitude, and
altitude and other information of each sampling point. A geological compass was employed
to obtain the slope and rock strike of sampling points. At a spacing of around 50–300 m, a
5 cm-diameter hand-held soil drill was used to collect soil samples at a depth of 0–20 cm,
after removing the debris and growing plants on the sampling surface. Five to six samples
were collected from each sampling location and mixed evenly using the quartering method
to obtain a 1 kg combined soil sample, which was put into labelled plastic bags.
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Figure 1. Location of the study area and distribution of soil sampling sites. Figure 1. Location of the study area and distribution of soil sampling sites.
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2.3. Laboratory Testing

In the laboratory, the soil samples were dried, and weeds and impurities were removed
using a 2 mm sieve. The method of sodium dichromate wet oxidation was used [24,25].
The principle of this method is to oxidize the soil organic matter with an excess of standard
potassium bicadmium sulfuric acid solution. The remaining potassium bicadmate was
titrated with ferrous sulfate solution, and the amount of potassium bicadmium consumed
was used to calculate the soil organic matter content. The chemical reaction formula of the
determination process is as follows:

2KCr2O7 + 3C + 8H2SO4 + 2K2SO4 → 2Cr2(SO4)3 + 3CO2 + 8H2O (1)

KCr2O7 + 6FeSO4 + 7H2SO4 → K2SO4 + Cr2(SO4)3 + 3Fe2(SO4)3 + 7H2O (2)

Specific operation steps were as follows: (1) 0.500 g of the air-dried soil sample passing
through 2 mm sieve was weighted and transferred into a 150 mL Erlenmeyer flask; 5.00 mL
of 0.800 mol/L K2Cr2O7 solution and 5 mL concentrated H2SO4 were added using a
pipette; the solutions were mixed evenly by shaking and covered with a bent-neck funnel
to condense and vaporize; (2) the solution was heated on a preheated electric sand bath
with a temperature of 170–180 ◦C; we started timing when it began to boil to allow boiling
to last for 5 ± 0.5 min; (3) the triangular flask was then taken off and cooled, then the
solution was carefully transferred into a 250 mL triangular flask, and the small funnel and
original flask were rinsed with distilled water, which was then poured into the 250 mL;
note that the total solution volume was controlled within the range of 60–80 mL; (4) 3 drops
of o-phenanthroline indicator were added and titrated with 0.2 mol/L FeSO4; the solution
color first changed from orange-yellow to blue-green, and then changed to brick-red at the
end of the titration; the amount of FeSO4 was recorded as V; this step was repeated three
times; and (5) while testing the sample, two blank tests were conducted and the average
value was calculated; burned soil or quartz sand were used to replace the soil sample to
avoid spilling the solution; the same procedures were followed and the used FeSO4 amount
was recorded as Vo. The calculation formula is as follows:

SOM(%) =
(VO −V)×N× 0.003× 1.724− 1.1

w
× 100% (3)

where N is the molar concentration of ferrous sulfate; 0.003 is the 1/4 carbon atom millimo-
lar mass; w is the dried soil weight, and 1.724 is the conversion coefficient between organic
carbon and organic matter.

All laboratory experiments were completed by the Key Laboratory of Comprehen-
sive Management of Agricultural Environment of Guangdong Province, Institute of Eco-
environmental and Soil Science, Guangdong Academy of Sciences, China.

2.4. Data Analysis

Classical statistics and geostatistics methods were used for data analysis. The spatial
distribution map for SOM was drawn using the Kriging interpolation function within the
geostatistics module of the ArcGIS 10.5 software. Based on the different sampling densities
and soil type, the random grid was set up under four land degradation types (i.e., mild,
moderate, severe and extreme) for a total of 225 sample points. The spatial variability
and correlation of soil organic matter were analyzed using the GS + 9.0 and ArcGIS 10.5
software [26,27]. The calculation formula of the semivariogram can be presented as follows:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)− Z(xi + h)]

2

(4)

where γ (h) is the number of points with a distance of h, Z (xi) is the sample value at
position xi, Z (xi + h) is the value at distance xi + h, and N (h) is the number of samples
separated by h.
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2.5. Classification of Land Degradation Degree in Red Bed Area

Based on our wide range of field investigations, land degradation in the study area is
categorized into four levels: mild, moderate, severe and extreme land degradation. Mild
land degradation has a certain amount of soil coverage above the majority of red bed soft
rock, and a coverage rate of 50–70%, including sparse forest or grass shrubs, but its dominant
native vegetation has gradually reduced, leading to the appearance of red bed bare areas
with spots. Moderate land degradation is observed to have a vegetation coverage rate of
only 30–50%, with the occurrence of patchy bare rock in strong erosion areas, the formation
of a large number of small erosion ditches, the rapid decline of community biomass, and
strongly eroded surface soil. Severe land degradation possesses a coverage rate of only
about 10–30%, including sparse forest or shrub grass cover, with flaky red soft rock exposure,
heavy gully erosion, local patchy soil layers, and the growing of some dry soil arid shrub
and grass vegetation. Extreme land degradation has a vegetation coverage rate of less
than 10%, with more than 90% of the surface consisting of red bed soft rock outcrops,
dense surface erosion ditches, no mature soil on the surface, and clusters of drought-
tolerant herbs or shrubs. According to the above categorization descriptions, the specific
quantitative characterization values of land degradation degrees are shown in Table 1. The
Land Degradation Classification System was developed by the plot investigation in the
Nanxiong Basin, conducted by one of the authors in this study, Luobin Yan.

Table 1. Classification of red bed land degradation at landscape scale.

Grading Standard Naked Features Soil Characteristics Vegetation Characteristics Land Production Potential

Mild land degradation Spotty bedrock
exposed

Most of the soil layers are more
than 50 cm thick, with complete
ABC soil layer and slight
soil erosion.

About 50–70% vegetation
coverage, and the community
structure is complex, forming
an obvious interlayer structure
of arbor, shrub and grass.

Biological production
capacity is high, and can be
used for forestry or
agricultural land.

Moderate land
degradation

Patchy bare rock
outcropping

Most of the soil layer is 20–50 cm
thick, only BC layer, humus (A)
development is not obvious, soil
erosion is strong.

30–50% vegetation coverage,
the arbor layer is destroyed to
form shrub grass communiteis,
with artificially planted Pinus
massoniana and Schima
superba forests.

The potential productivity of
land is relatively low, and
can be developed as
irrigated land, dry land or
artificial economic
forest land.

Severe land
degradation

Exposure of flaky
bare rock

Most of the soil layer is 5–20 cm
thick, with thin eluvial layer (B),
and the soil erosion is severe.

10–30% vegetation coverage,
and the community is
dominated by grass slope
meadow with few plant
species and interspersed with
drought tolerant
thorny shrubs.

The potential productivity of
land is scant, can mainly be
used for uncultivated dry
land, artificial eucalyptus,
leucaena shelter forest land
and so on.

Extreme land
degradation

Continuous
bedrock exposure

The thickness of the soil layer is
less than 5 cm, with only
weathered debris. The process of
soil formation is not obvious, the
loss is rapid, and the weathering
erosion of the bedrock is strong.

Less than 10% vegetation
coverage, with only a few
extremely drought-tolerant
shrubs and herbs distributed.

There is basically no
biological production
potential.

3. Results
3.1. Descriptive Statistical Characteristics of SOM

According to the statistical analysis results of SOM (Table 2), the average value of
SOM is 19.84 g/kg, ranging from approximately 9.11 to 34.80 g/kg. With the exacerbation
of land degradation, the SOM content showed a downward trend, with mild land degra-
dation (27.70 g/kg) > moderate land degradation (21.11 g/kg) > severe land degradation
(17.02 g/kg) > extreme land degradation (13.45 g/kg).

K-S test results showed that the soil moisture in the study area follows a normal
distribution (p > 0.05) and met the requirements of geostatistical analysis. It can be con-
cluded that all of them conform to normal distribution. The coefficient of variation of SOM
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under different types of land degradation was at a medium level. The order of coefficient
of variation was extreme land degradation (13.61%) > mild land degradation (8.98%) >
moderate land degradation (7.96%) > severe land degradation (5.64%).

Table 2. Descriptive statistic characteristics of SOM in soil with different land types.

Types of Land Degradation Samples Minimum Maximum Average Standard
Deviation

Coefficient of
Variation Skewness K-S

L-Test

Total 225 9.11 34.80 19.84 2.64 13.31 0.42 1.65
Mild land degradation 57 24.25 34.80 27.70 2.49 8.98 0.56 1.66

Moderate land degradation 56 18.36 24.21 21.11 1.68 7.96 0.36 1.61
Severe land degradation 55 15.42 18.36 17.02 0.96 5.64 −1.51 0.93

Extreme land degradation 57 9.11 15.39 13.45 1.83 13.61 −0.78 0.62

3.2. Semivariogram Analysis

It can be seen from Table 3 that the nugget effect value (i.e., the proportion of spatial
variation caused by randomness in the total variation of the system) of SOM under different
land degradation types is less than 25%, indicating that there is a strong spatial correlation
and that the internal factors play a major role. The impact of terrain factors and soil
structural factors on the spatial variation of SOM reaches 89%. The semivariogram model
of SOM under different land degradation types follows Gaussian distribution. The SOM
level ranged from 2646.57 to 2824.97 m. The sampling design scale of this experiment was
50–300 m, which met the requirements of geostatistics sampling and reflected the spatial
pattern information of SOM. Under different land degradation types, the range from large to
small was mild land degradation (2824.97) > moderate land degradation (2805.92) > severe
land degradation (2769.55) > extreme land degradation (2646.57), indicating that the spatial
autocorrelation distance of mild land degradation was large. The second is moderate land
degradation, and the autocorrelation distance of extreme land degradation is small. The
order of spatial autocorrelation intensity was mild land degradation (10.56%) > moderate
land degradation (7.85%) > severe land degradation (7.76%) > extreme land degradation
(0.33%). With the increase in land degradation level, the spatial autocorrelation intensity
tends to decrease.

Table 3. Semi-variogram parameters of SOM in soil with different vegetation types.

Types of Land Degradation Number of Samples Model Nugget Sill Nugget/Sill Rang (m) R2

Mild land degradation 57 Gaussian 0.15 1.42 10.56 2824.97 0.98
Moderate land degradation 56 Gaussian 0.56 7.13 7.85 2805.92 0.86

Severe land degradation 55 Gaussian 0.46 5.93 7.76 2769.55 0.95
Extreme land degradation 57 Gaussian 0.01 3.01 0.33 2646.57 0.96

3.3. Correlation Analysis of Soil Organic Matter and Influencing Factors

According to the Pearson correlation coefficient (Table 4), the SOM values under four
different land degradation conditions have a significant positive correlation with altitude,
aspect, surface temperature and soil nutrients (i.e., total nitrogen, total phosphorus and
total potassium) (p < 0.01), and negative correlation with slope, bulk density and pH
(p < 0.01). This implies that both the surface temperature and soil nutrient content rises with
increasing SOM. For mild and moderate land degradation, there was a significant positive
correlation between elevation and soil organic matter (p < 0.01). There is a significant
negative correlation (p < 0.01) between slope and the four types of land degradation, and
a significant negative correlation (p < 0.01) between soil organic matter and bulk density
and pH under extreme land degradation and severe land degradation conditions. The
higher the compactness of soil, the stronger the acidity and alkalinity of soil, and the
lower the SOM content. The correlation of the soil nutrients (i.e., total nitrogen, total
phosphorus, total potassium) in different types of land degradation showed a significant
positive correlation (p < 0.01).
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Table 4. Correlations between SOM and influence factors for soil with different land degradation types.

Soil Impact Factors
Types of Land Degradation

Mild Land Degradation Moderate Land Degradation Severe Land Degradation Extreme Land Degradation

Altitude 0.877 ** 0.800 ** 0.843 * 0.781 *
Slope −0.710 * −0.739 ** −0.737 ** −0.793 **

Aspect 0.949 ** 0.836 ** 0.948 ** 0.732 **
Surface temperature 0.800 ** 0.915 ** 0.930 ** 0.821 **

Bulk density −0.689 * −0.700 * −0.952 ** −0.841 **
pH −0.684 * −0.890 * −0.758 ** −0.774 **

Total nitrogen 0.694 ** 0.731 ** 0.864 ** 0.836 **
Total phosphorus 0.844 ** 0.780 ** 0.852 ** 0.861 **
Total potassium 0.714 ** 0.711 ** 0.873 ** 0.796 **

* The correlation was significant at the 0.05 level. ** The correlation was significant at the 0.01 level.

3.4. Spatial Distribution Pattern of SOM

The overall SOM content follows a downward trend with increasing land degradation,
which is consistent with previous research results. From the perspective of different degrees
of land degradation (Figure 2), most of the high-value areas of SOM are distributed in the
areas without obvious degradation, mild degradation and moderate degradation. The
distribution of land degradation in the study area was delineated based on the combination
of Quickbird images with a resolution of 0.5 m, pictures captured by unmanned aerial
vehicle (UAV) and handheld GPS. According to Figures 3 and 4, the SOM content in some
areas with a high degree of land degradation is also high, which is consistent with the results
shown in Table 4. The main reasons for this are as follows: (1) as the altitude increases,
the temperature decreases, encouraging SOM accumulation; (2) different altitudes lead to
distinct degrees of land degradation, which indirectly causes SOM differences; (3) in the low
mountain and hilly areas, the larger slope and soil density, loose soil and low vegetation
coverage lead to heavier SOM loss. There were significant differences between severe and
extreme land degradation types. Combined with Table 2, it can be seen that the average
levels of organic matter under severe land degradation and extreme land degradation are
the lowest (18.36 and 15.39 g/kg), which can be explained by two aspects: on the one hand,
the heavy and extreme land degradation weakens the soil surface aggregation and narrows
the fluctuation range, which is also shown by the maximum and minimum values; on the
other hand, the fewer samples lead to the greater randomness of content distribution.
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4. Discussion

Through the semivariogram analysis of SOM, the nugget effect value decreased
with the aggravation of land degradation, indicating that the influence of terrain factors,
and physical and chemical soil factors on SOM increased during the process of land
degradation. Secondly, after the severe land degradation reached the minimum, the slope
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had a significant negative correlation with the organic matter content. The nugget value
decreased with the increase in land degradation, and there was a strong correlation between
SOM content, topographic factors, and soil physical and chemical factors (Table 4). It can be
observed that different factors influence the spatial variability of SOM under different types
of land degradation. Therefore, land degradation is recognized as a major environmental
problem that adversely depletes SOM, which in turn directly affects soils, their fertility,
productivity and overall quality [28–30]. Liu et al. [19] also obtained similar results in
studying the spatial variation characteristics of SOM in the Loess Plateau. He believed that
external factors such as precipitation, temperature, and elevation had significant effects on
the distribution of SOM.

Due to the influence of topography, parent material, climate, and biological and human
activities, the spatial variability of SOM varies under different land degradation types
(Table 2), and the influencing factors are also different (Table 4). Under mild and moderate
land degradation types, elevation and aspect are the main factors affecting the spatial
variation of SOM. It can be seen from Table 4 that the SOM content under different land
degradation types varies significantly with altitude, showing an increasing trend with the
increase in altitude. This is because, in low altitude areas, there are more human activities,
a high intensity of land development and utilization, and a low content of SOM. Although
the SOM values in some intensive cultivation areas are high, the scope is small. As the
altitude rises, human farming activities decrease, and a large number of terraces were built
in this area [31]. The higher degree of terracing also reduces soil erosion, avoiding soil
erosion of cultivated land and maintaining the content of SOM. Under extreme and severe
land degradation conditions, the dominant factors are slope and soil nutrients (total N,
total P, total K). A large number of studies [32–34] have shown that the loss of nutrient
elements in the surface soil caused by soil erosion on sloping farmland is the main reason
for the decline in soil fertility. With the increase in slope and precipitation runoff, the rates
of soil erosion, soil and water loss, soil nutrient loss and SOM loss accelerate.

Land degradation is characterized by spatial and temporal scales [35]. The temporal
scale can be categorized into small areas, slopes, small watersheds and regions, which
have distinct dominant and controlling processes. It is an effective measure to prevent soil
erosion and land degradation by constructing terraces under different slopes to optimize
land uses. The loss of SOM and other soil nutrients caused by land degradation destroys
land resources, reduces land productivity, and aggravates floods and droughts. The increas-
ingly serious land degradation poses a great threat to cultivated land use, soil and water
conservation, and has become one of the major global environmental problems [36–38].
The Nanxiong basin is an ecologically fragile red bed area in South China with complex
topography [16–18,31]. If the vegetation and soil layer on the surface of the red bed soil is
destroyed, the soft rock of the base red bed will be rapidly weathered and form surface
clasts. The precipitation runoff will remove the surface clasts continuously [39]. Gully
erosion occurs after the surface is exposed, and new soil layers are difficult to regenerate.
With the aggravation and degradation of land, SOM and nutrients are rapidly lost, and
desertification occurs eventually with bare bedrock [40–42]. In recent decades, a lot of
measures have been carried out to prevent and control the soil erosion of cultivated land,
and remarkable results have been achieved, though serious problems of soil erosion still
exist [17,31]. The spatial distribution of SOM under different degrees of land degradation
is closely related to other factors, such as vegetation coverage, investment in soil and water
conservation projects, land use, rainfall, and so on.

5. Conclusions

The results show that the SOM content is relatively low under different land degra-
dation types in the ecologically vulnerable red bed areas of South China, and the SOM
content tends to decrease with the exacerbation of land degradation. The overall variation
degree of SOM in the study area is moderate, and the nugget effect values of SOM under
different land degradation types are less than 25%, suggesting a strong spatial correlation.



ISPRS Int. J. Geo-Inf. 2021, 10, 366 11 of 13

The impact of terrain and soil structural parameters on the spatial variation of SOM reaches
89%. Under mild and moderate land degradation types, the elevation and aspect were
the main parameters affecting the spatial variability of SOM. For extreme and severe land
degradation types, slope and soil nutrients (i.e., total nitrogen, total phosphorus and total
potassium) were the main factors. Compared with the previous research, the results of this
study provide more direct guidance for investigations of the small-scale spatial variability
of SOM in red bed areas. This research also paves the way for the future study of the
large-scale spatial distribution of SOM content. In the future, the effects of biological and
environmental factors, such as vegetation, soil, topography, geology and human activities,
could be considered comprehensively to study the SOM impact mechanism. It is worth
mentioning that regional differences exist for the widely distributed red beds around the
world. The study area in this study has a subtropical monsoon climate, and the results
can only represent the spatial distribution of SOM in the typical subtropical humid area of
South China. More comprehensive studies for red bed areas in other climate zones could
be conducted in the future to better understand the topic.
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