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Abstract: Black soil is fertile, abundant with organic matter (OM) and is exceptional for farming. The
black soil zone in northeast China is the third-largest black soil zone globally and produces a quarter
of China’s commodity grain. However, the soil organic matter (SOM) in this zone is declining, and the
quality of cultivated land is falling off rapidly due to overexploitation and unsustainable management
practices. To help develop an integrated protection strategy for black soil, this study aimed to identify
the primary factors contributing to SOM degradation. The geographic detector, which can detect both
linear and nonlinear relationships and the interactions based on spatial heterogeneous patterns, was
used to quantitatively analyze the natural and anthropogenic factors affecting SOM concentration
in northeast China. In descending order, the nine factors affecting SOM are temperature, gross
domestic product (GDP), elevation, population, soil type, precipitation, soil erosion, land use, and
geomorphology. The influence of all factors is significant, and the interaction of any two factors
enhances their impact. The SOM concentration decreases with increased temperature, population,
soil erosion, elevation and terrain undulation. SOM rises with increased precipitation, initially
decreases with increasing GDP but then increases, and varies by soil type and land use. Conclusions
about detailed impacts are presented in this paper. For example, wind erosion has a more significant
effect than water erosion, and irrigated land has a lower SOM content than dry land. Based on the
study results, protection measures, including conservation tillage, farmland shelterbelts, cross-slope
ridges, terraces, and rainfed farming are recommended. The conversion of high-quality farmland to
non-farm uses should be prohibited.

Keywords: black soil; geographical detector; soil organic matter; influencing factors

1. Introduction

Black soil is one of the most valuable resources available to human beings because it is
abundant with OM and superior for farming [1]. The black soil zone in northeast China is
the third-largest black soil zone globally and serves as China’s warehouse [2]. It produces
a quarter of China’s commodity grain each year and plays a significant role in ensuring
food security for the Chinese population of 1.4 billion. However, the soil organic matter
(SOM) in this zone is declining, and the quality is decreasing due to overexploitation and
unsustainable farming practices. Reduced SOM in the tillage layer is one of the primary
reasons for the degradation of black soil. The SOM loss rate is severe; it is estimated that
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China loses about one centimeter of black soil annually. That loss requires 200 to 400 years
for the soil to recover [3].

In response to this crisis, China launched a plan to protect black soil in the northeast
region from 2017 to 2030 to promote the sustainability of resources utilization, ecological
environment, and productive capacity of black soil. SOM is the most important indicator
of fertility of black soil. It provides crops with various nutrients to increase productivity,
improves soil microbial diversity, and maintains soil health. In addition, it is an essential
sink for the carbon cycle in the terrestrial ecosystem. Therefore, OM enrichment in black
soil should be a standing priority.

The SOM content of black soil is affected by many natural and anthropogenic factors.
They include soil type [4–6], topography [7,8], climate [9–11], vegetation [12–15], land
use [16–18], and so on. The different soil types lead to different soil nutrient losses, which
lead to different accumulation of SOM. Topography mainly affects the SOM content by
affecting the temperature. Climate factors mainly include temperature and precipitation.
Temperature affects SOM content by affecting the degradation of OM by microorganisms
and precipitation affects SOM content by affecting the OM accumulation. Vegetation
increases the accumulation of SOM by reducing wind erosion of surface soil. The difference
of land use affects the quantity and quality of SOM, which further affects the decomposition
process of SOM [19].

Recognizing the role of the primary influencing factors is essential to an integrated
protection strategy. Many studies analyze the factors influencing SOM and its spatial
distribution. Further, correlation analysis [20], geographically weighted regression [21,22],
and kriging [23] are the most frequently used methods. On the one hand, SOM’s primary
factors vary in different regions due to different environments and human activities. Fur-
ther, the entire northeast black soil zone has not been studied comprehensively. On the
other hand, the linear relationship between SOM and the influencing factors is assumed
in those methods, and the interactive influence cannot be estimated accurately. Therefore,
the factors influencing SOM in the black soil zone of northeast China must be identified
accurately using appropriate and effective methods.

The geographical detector model (GDM) proposed by Wang [24] can estimate the
linear, nonlinear, and interactive influence of explanatory variables on the target variable
based on the coherence of their spatial distribution pattern. The GDM has been widely
used in soil science [25–28], ecology [29–32], meteorology [33–35], public health [36–40] and
other fields. In this study, the GDM was used to identify the primary factors influencing
SOM in the black soil zone of northeast China.

2. Materials and Methods
2.1. Study Area

The study area is the black soil zone of China (119.42◦–135.08◦′ E and 40.61◦–52.89◦ N)
covering 228 counties in the Heilongjiang, Jilin, and Liaoning provinces and the Inner
Mongolia Autonomous Region. The location of the study area and SOM concentration is
shown in Figure 1. The study area belongs to the cold temperate zone with a mainland
monsoon climate. The area is hot and rainy in summer, and cold and dry in winter.
This area’s annual precipitation is about 500–700 mm, 70%–90% of which is concentrated
primarily during the growing season from April to September. It is one of the largest black
soil zones globally, the most critical grain-producing area of China. There are 18.54 million
hectares of cultivated land in this area, with corn, soybeans, and rice as the primary crops.
In recent years, severe black soil degradation has drawn national attention, and substantial
capital and technology will be invested in this region in the following years.

2.2. Data Sources
2.2.1. SOM Data

SOM data for 2017 were provided by the Ministry of Natural Resources of China. Each
agricultural land plot was assigned a SOM topsoil content (0–30 cm). The SOM content was
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derived from county-level soil maps produced by the Chinese Second National Soil Survey
in the 1980s and adjusted with supplementary surveys. SOM data quality control follows
the Chinese national standard “Regulation for gradation on agriculture land quality”. For
consistency with the influencing factors’ spatial scale, the spatial representation of SOM
content in the topsoil was changed from polygons to 1 km × 1 km pixel. Each pixel’s SOM
content was calculated as the area-weighted mean of the SOM for all plots located in the
pixel, as shown in formula (1).

yg =
∑k

h=1 YhSh

∑k
h=1 Sh

(1)

where yg is the SOM content of pixel g, k is the number of plots located within or intersected
with the pixel, Yh is the SOM content of plot h, Sh is the area of plot h in the pixel (if
the plot is totally within the pixel, its area is used; however, if the plot was intersected
with the pixel, only the intersection area was counted), as shown in Figure 2. The study
area had a total of 145,702 pixels. Pixels without agricultural land were removed. The
calculation was conducted in a Hadoop platform, and the same pixel system was used for
the influencing factors.
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2.2.2. Influencing Factors

When studying the change in SOM in a large scale region, soil microscopic character-
istics should not be regarded as influencing factors, and more dominant factors matching
the corresponding scale should be considered, such as climate, environment and anthro-
pogenic factors [41]. Nine influencing factors at the regional scale were considered, includ-
ing geomorphic types (GT), digital elevation model (DEM), soil type (ST), mean annual
temperature (MAT), mean annual precipitation (MAP), soil erosion data (SE), pixelized
gross domestic product map (GDP), pixelized population map (POP), and land use type
(LUT). The data for the nine factors were downloaded from the Resource and Environment
Data Cloud Platform, Chinese Academy of Sciences (http://www.resdc.cn (accessed on
10 October 2019)), as shown in Figure 3. The resolution of all data were 1 km. Because the
GDM needed to divide the explanatory variables into strata, continuous variables, such as
GDP, POP, MAT, MAP, and DEM, were divided into eight classes employing the natural
breaks method, which is widely used when the data do not meet the GDM [42]. Each class
was treated as one stratum. The classified types were adopted as the strata for the GT,
SE, ST, and LUT category variables. Because this study focused only on the SOM in the
cultivated land, for LUT, there were only three types, including paddy fields, dry land,
and irrigated land. ST was classified according to soil genesis classification criteria; only
eight soil types were identified in the 145,702 pixels containing cultivated land. According
to Chinese industry standards, “soil erosion classification and classification standards”,
SE is divided into 10 classes. According to Chinese national standard “Specifications of
classification and coding of geomorphological types”, GT is divided into 4 classes. The
stratification details for the nine factors are listed in Table 1.

2.3. Method

The GDM is a set of statistical methods for detecting spatially stratified heterogeneity
and revealing the driving force behind it. This method assumes that if an explanatory
variable has an important influence on the target variable, it will have a similar spatial
distribution pattern [43]. By analyzing the variances in strata divided by the explanatory
variables and the total variance, it does not have a probability distribution and linear
relationship assumptions. In this study, the factor detector and interaction detector were
used to identify which factors influence SOM and how different factors interact [44]. The
GDM software was downloaded from the website http://www.geodetector.cn/ (accessed
on 15 October 2019).

2.3.1. The Factor Detector

Factor detectors can quantitatively measure the relative importance of influencing factors.
Each factor’s explanatory power was measured by the q-value calculated in formula (2).

q = 1− ∑S
s=1 nsδ2

s
Nδ2 (2)

where S is the number of strata separated in an influencing factor, ns is the number of
spatial pixels in stratum s, δ2

s is the variance of SOM content in stratum s, N is the total
number of spatial pixels in the study area, and δ2 is the variance of SOM content of all
pixels of the whole study area. The larger the q-value, the stronger the explanatory power
of the influence factor for SOM, and vice versa. The significance of the q-value can be tested
by the non-central F test, as shown in formula (3).

F ~ F(S − 1, n − S; λ) (3)

where F() is the non-central F distribution function, S is the number of strata, n is the
sample size, and λ is the noncentrality.

http://www.resdc.cn
http://www.geodetector.cn/
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Table 1. Stratification of influencing factors.

Strata No. Soil Erosion Type
Digital

Elevation
Model (m)

Geomorphic Types
Mean Annual
Precipitation

(0.1 mm)

Mean Annual
temperature

(0.1 ◦C)
Soil Type

Population
Distribution Data

(Person/km2)

GDP Data
(RMB/km2) Land Use Type

1 Hydraulic micro-erosion 0–100 Low elevation plain
(LE_plain) 2360.9–3968.5 (−52.95)–(−9.22) Primary soil 0.5–68.9 2–382 Dry land

2 Hydraulic mild erosion 100–200 Low elevation platform
(LE_platform) 3968.5–4456.8 (−9.22) to 4.19 Semileached soil 68.9–114.9 382–735 Irrigated land

3 Hydraulic moderate
erosion 200–300 Low elevation hill

(LE_hill) 4456.8–4865.4 4.19–17.02 Leached soil 114.9–169.6 735–1137 Paddy fields

4 Hydraulic intense erosion 300–400
Small undulating and

low elevation mountain
(SULE_mountain)

4865.4–5203.2 17.02–29.85 Calcareous soil 169.6–246.5 1137–1913

5 Wind micro-erosion 400–500 5203.2–5506.8 29.85–42.09 Hemihydric soil 246.5–560.7 1913–3316
6 Wind mild erosion 500–600 5506.8–5802.3 42.09–53.76 Hydrogenic soil 560.7–1273.4 3316–8346
7 Wind moderate erosion 600–700 5802.3–6155.7 53.76–68.92 Saline–alkali soil 1273.4–2919.4 8346–25780
8 Wind intense erosion 700–800 6155.7–7858.6 68.92–95.75 Artificial soil 2919.4–13,857.9 25,780–112,098
9 Freeze–thaw micro-erosion
10 Freeze–thaw mild erosion
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2.3.2. The Interaction Detector

The interaction detector can identify interactions between different influencing factors.
It is based on the detector of individual factors and their combination. For two factors
X1 and X2, by denoting their unique q-values as q (X1) and (X2) and the q-value by their
combination as q (X1∩X2), the following interactive collusion can be made according to
their relationships:

1. If q (X1∩X2) < min (q (X1), q (X2)), the influences of two factors on SOM weaken each
other nonlinearly.

2. If min (q (X1), q (X2)) < q (X1∩X2) < max (q (X1), q (X2)), the influence of one factor
on SOM is weakened.

3. If q (X1∩X2) > max (q (X1), q (X2)), the influences of two factors on SOM are mutually
enhanced.

4. If q (X1∩X2) = q (X1) + q (X2), two factors are independent of each other.
5. If q (X1∩X2) > q (X1) + q (X2), the influences of two factors on SOM are nonlin-

early enhanced.

2.3.3. Impact Analysis

The GDM can measure the explanatory power of influencing factors but cannot
determine whether the influence is positive or negative. The average SOM content within
each stratum can be plotted in the radar graph with strata as the axes to analyze each factor’s
detailed impact. The strata are ordered by corresponding values for the continuous variable
to reveal the variation trend of the average SOM content with the rise of influencing factors.
For the category variable, the strata are ranked according to the classification method of the
types. The elevation and undulation ordered the strata of GT; the strata of SE were ordered
first by erosion type and then by erosion intensity. The irrigation conditions ordered the
strata of LUT, and the strata of ST were ordered consistent with the principle of soil genesis.

3. Results
3.1. Factor Detector Results

The results of the factor detector of natural factors and anthropogenic factors are listed
in Table 2. All factors have a significant (p < 0.01) influence on SOM content. The q-value
of MAT is the highest among natural factors and is also larger than anthropogenic factors.
The q-value explains 35.6% of the spatial heterogeneity of SOM. Following MAT, DEM, ST,
and MAP are three primary natural factors influencing SOM content with the explanatory
powers of 14.4%, 12.6%, and 12.5%. The q-values of SE and GT are smaller than 0.1 but are
still statistically significant. GDP has the highest q-value among anthropogenic factors and
is the second highest among all factors. POP also has a high q-value and can explain 13.2%
of the spatial heterogeneity of the SOM content. The q-value of LUT is relatively small and
reaches 7.5%. Our findings revealed that the main factors affecting SOM are natural factors,
and anthropogenic factors also have a certain impact on it.

Table 2. The q-values of the factor detector.

Influencing Factor q-Value p-Value

Natural factors

MAT 35.6% 5.49 × 10−10

DEM 14.4% 3.47 × 10−10

ST 12.6% 4.55 × 10−10

MAP 12.5% 1.91 × 10−10

SE 8.0% 2.94 × 10−10

GT 0.6% 2.57 × 10−10

Anthropogenic factors
GDP 14.6% 6.16 × 10−10

POP 13.2% 7.82 × 10−10

LUT 7.5% 2.71 × 10−10
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3.2. The Interaction of Detector Results

A total of 36 pairs of factors influencing the SOM content of cultivated black soil
were obtained. Each pair was greater than that of a single factor, as listed in Table 3. This
characteristic means that all factors exerting influence on SOM from different aspects can
enhance each other. The combination of MAT and MAP has the highest q-value; together,
they explain 42.7% of the SOM content distribution of the study area. This finding is
coincident with the conclusion that the distribution of SOM content in northeast China
is greatly affected by climatic factors [45]. The q-value of the interaction detector results
for MAT with other factors are all greater than 0.36 and exceed the interaction of other
factors. This finding confirms the importance of MAT for SOM. The combination of MAT
and DEM has the second-highest q-value; the results show that the combination of MAT
and DEM can also have a good effect. Although the temperature decreases as the elevation
increases, temperature is not only affected by altitude, but also by other factors, such as
latitude. Altitude is not only reflected in temperature, but also in topographic factors, such
as the slope. So, the interaction between DEM and MAT can reflect the actual situation
more comprehensively. GT is a unique factor. Although the q-value of its factor detector
is low, the interaction detector with other factors is nonlinearly enhanced. It reveals the
fundamental influence of GT, which can magnify the effect of other factors.

Table 3. Influence of the interaction between pairs of factors *.

GT DEM GDP POP ST MAT MAP LUT SE

GT Nonl-En Nonl-En Nonl-En Nonl-En Nonl-En Nonl-En Nonl-En Nonl-En
DEM 16.88% Bi-En Bi-En Bi-En Bi-En Bi-En Bi-En Bi-En
GDP 15.74% 24.59% Bi-En Bi-En Bi-En Bi-En Bi-En Bi-En
POP 15.46% 21.57% 18.01% Bi-En Bi-En Nonl-En Bi-En Nonl-En
ST 15.68% 21.28% 24.01% 22.56% Bi-En Bi-En Bi-En Bi-En

MAT 39.87% 41.13% 37.15% 37.57% 39.82% Bi-En Bi-En Bi-En
MAP 17.52% 28.4% 23.96% 28.07% 24.04% 42.74% Bi-En Bi-En
LUT 8.92% 18.16% 19.91% 18.49% 17.74% 38.62% 16.83% Bi-En
SE 9.67% 19.16% 22.01% 24.1% 17.34% 39.11% 19.18% 13.5%

* “Nonl-En” represents two nonlinearly enhanced factors, “Bi-En” represents two factors that are mutually enhanced.

There are three types of interactions: (1) anthropogenic factors with anthropogenic
factors, (2) natural factors with natural factors, and (3) natural factors with anthropogenic
factors. The detector results are compared in Figure 4. The interaction between the
anthropogenic factors was smaller than the other two types. The combination of natural
factors with anthropogenic factors increased the explanatory power on SOM content. The
interactions of POP with MAP and SE were all nonlinearly enhanced. This means that
population can magnify the influence of natural factors. The interaction between natural
factors is also considerable, but the magnification is less than that of natural factors with
anthropogenic factors. Based on the interaction detector results, we concluded that to
protect SOM, we should adjust land-use activities according to natural conditions and
attempt to change natural conditions when possible.

3.3. Impact Analysis Results

Based on the factor and interaction detectors that revealed the explanatory power
of factors on SOM content, each factor’s detailed impacts were analyzed by comparing
the SOM content of the different strata. The average SOM content in different strata of
all the factors is presented in Figure 5. We found that with the increase in MAT, the SOM
content decreased. The reason may be that the high temperature promotes the activity of
soil microorganisms and accelerates the decomposition of SOM. However, for the MAP,
the more precipitation there is, the higher the SOM content is. Because the northeast black
soil zone has less rainfall, water is one factor limiting vegetable growth. The sub-region
with a low MAP produces less organic material than consumption, thus reducing SOM.
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For the DEM, the lower the elevation is, the higher the SOM content is. This is inconsistent
with the conclusion that the temperature decreases with the increase in altitude, which
leads to the increase in SOM content [46]. A reason for this may be that for the elevation
of our study area, the maximum is 800m; the influence of temperature is not significant,
which indicates that the main factor in low altitude may be the loss of soil nutrients caused
by the slope. According to the GT classification, the undulating terrain ranges from low to
high in the form of plain, platform, hill, and mountain. The SOM content also decreases
as the terrain undulation increases. This result is consistent with our understanding that
rich topsoil at higher elevations is transported to lower elevations due to gravity, rainfall,
and erosion. The long-term effect is that SOM at higher altitudes decreases, while SOM at
lower altitudes increases.
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Both wind and water erosion are inversely related to SOM content; the more substan-
tial the erosion intensity, the lower the SOM content. In the study area, SOM content in
areas subject to wind erosion is lower than water erosion. The result is that the impact of
wind erosion on SOM content is greater than water erosion. Because most precipitation
in this area is during the summer when crops are growing, the impact of water erosion is
slight. However, it is windy in the spring and winter when most of the land is bare; thus,
topsoil can be easily eroded by the wind and sandstorms common in this area.

The OM content in different soil types varies, following the principle of soil genesis.
Soils in decreasing order of OM content are hydromorphic soil (marsh soil), leached soil,
semi-leached soil, artificial soil, calcareous soil, saline–alkaline soil, and primary soil. The
hydromorphic soil has much higher OM than other soil types because water saturation
can promote vegetable growth but slow down the decomposition of OM due to the lack of
oxygen. In contrast, saline–alkaline soil and primary soil have the lowest OM due to the
shortage of input from vegetation.
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Figure 5. Average SOM values with different grades for all factors. (a) Average SOM values with different grades for
pixelized gross domestic product map; (b) average SOM values with different grades for pixelized population map;
(c) average SOM values with different grades for land use type; (d) average SOM values with different grades for mean
annual temperature; (e) average SOM values with different grades for mean annual precipitation; (f) average SOM values
with different grades for digital elevation model; (g) average SOM values with different grades for soil type; (h) average
SOM values with different grades for soil erosion data; (i) average SOM values with different grades for geomorphic types.

Among the anthropogenic factors, POP is inversely related to SOM; a denser pop-
ulation means more prolonged and more intense exploration, thus reducing SOM. The
relationship between SOM content and GDP is not monotonous. At first, SOM content
decreases as GDP increases, but when GDP exceeds 1137, SOM increases. This may be
due to the industrial structure. When GDP is low, agriculture is the leading industry; the
more output that is produced, the more the soil is used. When GDP is high, manufacturing
and service are the leading industries. The higher the GDP, the larger the number of
non-agricultural industries; accordingly, there is less pressure on black soil nutrients but
more pressure on the soil environment.

In different LUT, paddy fields have the highest SOM content because of their high
productivity and low decomposition rate caused by water saturation and the lack of oxygen.
Irrigated land has the lowest SOM content, lower than that of dry land. This is expected
because the use intensity of irrigated land is much higher than that of dry land when
both do not have straw returning. Therefore, straw returning should be encouraged, and
converting dry land into irrigated land should be considered with caution. Rainfed farming
should also be encouraged because, in this area, the heat and rain are synchronous.
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4. Discussion

Using the GDM to identify both linear and nonlinear relationships and interactions,
the influence of natural and anthropogenic factors on the SOM of the black soil zone in
northeast China was quantitatively analyzed. The findings are consistent with previous
studies and provide a quantitative and systematic understanding of the influencing fac-
tors [47]. Based on the study results, recommendations for black soil protection are offered.

This study concluded that temperature, elevation, soil type, and land use influence
SOM [48]. Among them, MAT has the most significant influence. Although we cannot
affect temperature, we can foresee that reducing SOM content will be accelerated by
global warming. GDP and POP have the second- and fourth-largest impact on SOM
among those factors. Human activities, such as excessive exploitation and unsustainable
management practices, play a critical role in the degradation of black soil. DEM and
geomorphic characteristics are also important influencing factors. Thus, in mountainous
areas, cross-slope ridges and terraces are recommended to retain soil nutrients. SOM varies
significantly depending on soil type. Therefore, strict protections should be implemented
to prevent the conversion of farmland with fertile soil types to non-farming uses. Further,
the protection of land resources and soils with high SOM content should be considered a
high priority.

Though wind erosion has more considerable influence than water erosion, both are
significant threats to soil productivity. Conservation tillage can effectively control wind
erosion by covering the land with stubble and enhancing mechanical soil stability. The
Chinese government is promoting conservation tillage in the black soil zone. Until 2020,
conservation tillage was practiced on 2.77 million hectares. That area is planned to increase
to 9.33 million hectares in 2025 and to 10 million hectares in 2030 [49]. The farmland
shelterbelt is another suggested measure to prevent wind erosion.

MAP is positively related to SOM content. Under the condition of abundant rainfall, it
is beneficial for the accumulation of SOM to increase vegetation coverage to prevent wind
erosion. The rainfall in the study area is relatively little and most of the cultivated land
needs irrigation. However, irrigated land has the lowest SOM content among the three
types of cultivated land. Under traditional and intense farming practices, irrigation threat-
ens soil fertility. Returning straw for conservation tillage can increase SOM and, at the same
time, increase soil permeability and water retention [50]. Hence, conservation tillage can
accompany rainfed farming and be appropriately modified based on the local precipitation.

GT had the smallest q-values in factor detection. Still, it can nonlinearly enhance
the influence of other factors and, therefore, contribute to black soil protection. A variety
of measures, such as cross-slope ridges and terraces, should be taken in response to
geomorphic characteristics.

The different LUT lead to different changes in SOM. We should pay more attention to
LUT, especially under the condition of global warming which is a natural factor that we
have no direct control of. For paddy fields, we should adopt the following strategies: turn-
ing harrow, building strip fields, mixing sand, and increasing the application of phosphorus
and potassium. Adopting the above measures can accelerate soil maturation, improve soil
permeability, reduce soil water-retention capacity, promote microbial activity, regulate soil
chemical properties, and improve the quality and quantity of SOM. For dry land, it cannot
be blindly converted into irrigated land. Rainfed farming should be encouraged in the
study area.

In addition to the influencing factors selected in this paper, the influence of different
types of agricultural management practice on SOM is also very great, which is the main
factor to be considered for the cultivation methods in the study area. Stubble, crop rotation
and straw returning are common tillage measures in the study area [51]. Crop stubble
covers the surface, reduces the contact between microorganisms and organic matter in the
soil, stabilizes the content of SOM, effectively inhibits soil hyperventilation and prevents
soil erosion. The rotation cultivation of soybean and red bean has an obvious effect
on soil erosion control on the slope surface of the northeast, thin-layer black soil area.
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Straw returning to the field has the good effect of reducing soil erosion and can make the
soil nutrient cycle complete, increase the soil microbial diversity, and more importantly,
realize carbon sequestration through the input of the soil carbon pool. It is a sustainable
agricultural carbon sequestration measure. The above cultivation methods combined with
chemical fertilizer can also improve soil structure, increase crop yield and slow down
soil failure [52]. A reasonable choice of appropriate cultivation methods will be the main
problem in practice. In summary, black soil protection requires advanced conservation
methods, farmers’ cooperation, and the support of policymakers [53].

5. Conclusions

By using the GDM, this study quantitatively analyzed the factors influencing the
topsoil’s SOM content in the black soil zone of northeast China. The following conclusions
were drawn:

1. The nine factors analyzed have a significant relationship with the SOM content. In
descending order of intensity, those factors include temperature, GDP, elevation,
population, soil type, precipitation, soil erosion, land-use type, and geomorphic type.

2. The interaction of any two factors enhanced their influence on SOM content; the most
influential combinations include MAT + MAP (q = 0.43), DEM + MAT (q = 0.41),
MAT + GT (q = 0.40), MAT + ST (q = 0.40), and MAT + LUT (q = 0.39).

3. With increases in MAT, POP, SE, DEM, and terrain undulation, SOM content decreases.
At the same time, SOM content is positively affected by MAP. Wind erosion has more
significant impacts on SOM content than water erosion in the study area. When
GDP is less than 1137, it is negatively related to SOM content. However, when GDP
is greater than 1173, the correlation is positive. SOM content varies by soil type,
following the principle of soil genesis, which is related to other natural factors, such
as topography, parent material, climate, organism and age of soil. Hydromorphic soil,
leached soil, and semi-leached soil are fertile. Among the three types of tillage, SOM
content declines from high to low in paddy fields, dry land, and irrigated land.

This study demonstrated that both natural factors and anthropogenic activities have
effects on SOM. The main influencing factors are natural factors; anthropogenic activities
are in 5th position in the factors of influence, analyzed by pairs. However, natural factors
are hard to change, so we should pay more attention to anthropogenic activities. Excessive
exploitation and unsustainable management practices should be avoided. Sustainable
practices, such as conservation tillage, farmland shelterbelts, cross-slope ridges, terraces,
and rainfed farming, should be adopted and adjusted based on local conditions. Finally,
strict measures to prevent the conversion of high-quality farmland to non-farm uses should
be adopted and enforced.
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