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Abstract: Vehicle trajectories derived from Global Navigation Satellite Systems (GNSS) are used in
various traffic applications based on trajectory quality analysis for the development of successful
traffic models. A trajectory consists of points and links that are connected, where both the points and
links are subject to positioning errors in the GNSS. Existing trajectory filters focus on point outliers,
but neglect link outliers on tracks caused by a long sampling interval. In this study, four categories of
link outliers are defined, i.e., radial, drift, clustered, and shortcut; current available algorithms are
applied to filter apparent point outliers for the first three categories, and a novel filtering approach
is proposed for link outliers of the fourth category in urban areas using spatial reasoning rules
without ancillary data. The proposed approach first measures specific geometric properties of links
from trajectory databases and then evaluates the similarities of geometric measures among the links,
following a set of spatial reasoning rules to determine link outliers. We tested this approach using
taxi trajectory datasets for Beijing with a built-in sampling interval of 50 to 65 s. The results show
that clustered links (27.14%) account for the majority of link outliers, followed by shortcut (6.53%),
radial (3.91%), and drift (0.62%) outliers.

Keywords: vehicle GNSS trajectory; tracking link; outlier; logistic regression; spatial reasoning

1. Introduction

Datasets comprising Global Navigation Satellite System (GNSS)-based vehicle trajecto-
ries are instrumental to traffic management, traffic congestion detection, and transportation
planning [1–3]. Ubiquitous GNSS receivers often have a low positioning accuracy due to
satellite geometry, atmospheric conditions, and signal attenuation. Therefore, applications
must adequately deal with noisy data or trajectory errors [4,5].

The poor quality associated with tracking points is often caused by an unexpectedly
abnormal sensor state, the influence of multipath reflection in the urban canyon [6,7].
Comprehensive information in urban areas on correct vehicle trajectory significantly helps
map-matching, driving behavior analysis, and vehicle-navigation systems so as to ensure
effective traffic efficiency [8]. Many trajectory mining methods have been proposed to
detect explicit errors for noisy or erroneous points along trajectories and evaluate their
spatial proximities [9,10]. However, besides explicit errors, more than 60% of taxi trajectory
data are collected at a low-frequency to save power and communication band-width costs
in big cities [11]. A large time or distance sampling interval may lead to implicit errors for
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links along trajectories, such as numerous spurious links close to a crossroads (i.e., shortcut
to a turning path), far from the road network [12,13].

Most filtering algorithms identify tracking point outliers based on geometric mea-
sures [14]; motion measures, such as velocity, direction, and distance [15]; and geostatistical
characteristics of point density [16]. Previous studies have shown that simple mean or
median filters can be used to detect drift points of high-rise blocks. Similarly, Gaussian
filtering reduces point outliers by eliminating overshoots in an analysis window with
an input time or distance [17]. However, these algorithms inherit an attenuation prob-
lem [18,19]. To overcome the attenuation problem, Kalman filters use state equations of
the linear system to compute the minimum variance in the system state and estimate the
optimal positions of tracking points, but the uneven sampling intervals of the trajectory
may affect the filtering results [20,21]. Particle filtering is also effective but requires the
definition of a complex distance threshold between locus points to avoid over or under
filtering [10,22]. Line density filters examine the degree of deviation of each point from a
highly converging area of points according to a preset global threshold [15]. In comparison,
kernel density methods, with detrending detection, classical trajectory outlier detection
(TRAOD), and density-based trajectory outlier detection (DBTOD), enable an advanced
threshold determination approach to dynamically determine an appropriate threshold
with a subset of trajectories [16,23,24].

Unexpected tracking links are often considered as “soft” errors due to a sampling
interval problem [25]. High sampling rates commonly lead to clustering links, often at
parking lots or nearby traffic lights. Large sampling intervals means that most of the
tracking points are lost and great uncertainty arises in the routes. This kind of uncertainty
severely affects the effectiveness and efficiency of subsequent processes such as indexing,
querying, and mining [26,27] during map matching, path inference [28,29], or travel time
estimation [30]. A shortcut link represents a vehicle undercutting an intersection without
following the roadway; less existing studies have concerned these implicit errors. This
issue, due to a long sampling interval, has been considered to be a map matching problem,
where a trajectory is partitioned into a set of segments or sections based on headings,
angle changes, and the velocity [31]. This in turn helps to identify abnormal segments
departing from an existing road network based on a quality evaluation index [15], structural
similarities [32,33], or the Hausdorff distance [34]. Such approaches focus on large trajectory
sections during map matching instead of individual links along a trajectory, such that the
spatial accuracy of cutting positions between adjacent sections and the geometric and
motion properties of the sections are quite coarse [35].

In this study, we develop an integrated approach to detect link outliers in large
sampling interval trajectories in urban areas. We use existing algorithms to manage
apparent link outliers at a minimum cost and propose a novel spatial reasoning method
to detect implicit shortcut link outliers caused by long sampling intervals. Our method
does not utilize ancillary databases (e.g., road networks). We apply machine learning to
estimate a set of specific geometric and motion metrics for individual links, which should
be measured by referring to a road network. In addition, an elementary set of spatial
patterns reflecting the primary spatial structures for the tracking links of the road network
are identified to support the determination of outlier links based on the geometric and
motion measures of all links. Finally, we test our method using Beijing taxi trajectory
datasets collected in 2012.

2. Materials and Methods
2.1. Definition of Outlier Tracking Links

A vehicle GNSS trajectory is a timestamped location sequence of tracking points (xi,
yi, ti) recorded at a regular time or distance sampling interval by a GNSS device installed
in a vehicle. Alternatively, the trajectory can be considered as a set of tracking links that are
defined as vectors connecting two consecutive tracking points.
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An outlier represents a data point that significantly differs from the mode or true
value [36]. The trajectory is the approximation of the path on which a vehicle traverses,
which may depart from the vehicle ground truth path due to measurement errors. Previous
studies have mostly considered positioning errors that cause spatial fluctuations in the
tracking points and correspondingly affect the matching between trajectories and roads
(Figure 1a). Longer time or distance sampling intervals recorded by the positioning device
result in reduced quality of the trajectory, i.e., dozens of seconds generally adopted for a
Taxi positioning device will affect the quality of the trajectory near a crossroads (Figure 1b),
where the trajectory is presented as a shortcut line.
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Figure 1. Four types of outlier tracking links (tracking points, tracking links, radial outliers, drift
outliers, clustered outliers, and shortcut outliers are shown in (a), (b), (c), (d), (e), and (f), respectively).

Based on these concepts for tracking links and our data collection, we defined four
types of outliers: radial, drift, clustered, and shortcut.

(1) Radial outliers (Figure 1c) radiate illumination in which the center represents the
initial location to which a GNSS logger returns in case it cannot acquire a positional fix.
These outliers may be due to abnormal conditions causing temporary disturbances in
the GNSS;

(2) Drift outliers (Figure 1d) refer to tracking links with endpoints departing from road
networks due to poor-quality positioning. These outliers may be caused by iono-
spheric disturbances, the atmospheric layer, or multipath interference;

(3) Clustered outliers (Figure 1e) present intertwined threads in which a large number of
positioned points diverge and, consequently, the links cross each other. The accuracy
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of these tracking points is acceptable, and they mostly appear at crossroads, parking
lots, or roadsides when a vehicle stops at a traffic signal or temporarily parks;

(4) Shortcut outliers (Figure 1f) often occur at crossroads. A shortcut tracking link denotes
a vehicle turning path on which few tracking points were logged when a vehicle
passed an intersection. The shortcut links cause a significant mismatch between the
actual trajectory and the road because only two endpoints of the link lie on roads.

The first three types of outliers (referred to as explicit point outliers) have been widely
identified as geo-positioning problems while the last is referred to as implicit outliers, where
less attention has been placed on shortcut outliers. In general, a larger GNSS sampling
interval for the device results in the appearance of more shortcut link outliers.

We established an integrated approach (Figure 2) based on a combination of current
techniques to address problems regarding the detection of the above-mentioned link
outliers. It is possible that one link is identified as two different categories of outlier so
explicit outliers are first identified in the order of radial, clustered, and drift, and filtering is
then applied to implicit outliers.
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Figure 2. An integrated approach for the detection of outlier tracking links.

Radial outliers were processed by trajectory filtering where an improved robust
Kalman filtering strategy, based on the IGG III method [37], was used to identify out-
lier points by posterior phase residuals as well as the standardized residuals of observation
with a tolerance reject threshold of 500 m and a positioning error of 10 m [11]. Clustered
outliers were processed using the instantaneous velocity of the tracking point (obtained
from the row data). According to the statistical results, the threshold was set as 2 m/s [38].
Drift outliers were filtered by a detrended fluctuation analysis (DFA) [16,18], in which
the DFA value at a line density of trajectories was calculated using the points that had
density values larger than the specified density, through DFA analysis the density of 3.5
was adopted as the threshold where the extreme events with low-density points were
removed without impacting the trend in the long-range correlation of the trace.

To detect shortcut outliers and determine structural identification, we thoroughly
designed a density- and entropy-based approach to calculate specific features for shortcut
links. The geometric and motion measures are calculated by geostatistics in which logical
regression, SVM (support vector machine) and decision-tree were tested to judge whether
a tracking point is “on-road” or “on-crossroads”.
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In integrating these procedures, an optimum performance was achieved at a minimum
cost with respect to the goal of detecting all outliers.

2.2. Tracking Link Modeling
2.2.1. Geometric and Motion Measures of a Tracking Link

A tracking link is a vector connecting two adjacent tracking points (called endpoints
of the link). A shortcut link with two endpoints, which are often located on two different
lanes, is a highly simplified version of a curved vehicle turning path at crossroads due to
the long sampling interval.

To detect shortcut links within tracking links that define a vehicle trajectory, the
following essential measures or properties of a link were estimated by machine learning to
support link pattern recognition.

(1) Link coordinates denote the geolocations of the link endpoints. The coordinate is
represented as (xi, yi, ti), where ti is the timestamp;

(2) The endpoint type refers to the location of an endpoint, i.e., on the road or at a
crossroads. An innovative endpoint-type determination algorithm is proposed in this
study to divide the tracking points into two types (“on-road” vs. “on-crossroads”);

(3) The “on-site” heading of a tracking point denotes the true moving direction of a
vehicle in a road network. This is estimated using the number of nearby tracking link
directions, without requiring ancillary datasets (e.g., road networks);

(4) Link direction is the link heading that can be easily calculated using the coordinates
and timestamps of two endpoints. In a shortcut link case, this direction is actually not
the headings of vehicles;

(5) The fractile line density of a link is the spatial density of tracking links that lie within
a search window centered at a fractile position along the processed tracking link. For
a shortcut link, two ending points are sitting on road-network, while most fractile
points depart from roads. By default, we calculated three density values, i.e., at the
start-, middle-, and end-points of the link.

2.2.2. Determining the Location of Tracking Points in the Road Network without Utilizing
Ancillary Road Databases

To detect whether a tracking point is located on the road or at a crossroads, we need to
analyze the spatial relationship between the tracking point and the intersection coverage.
However, existing road network datasets (e.g., OpenStreetMap) are organized in the form
of line features. Extracting intersections from a large scale street network map not only
requires extra works but also faces some new technical problems such as how to determine
the coverage of intersections. Therefore, an alternative solution that calculates advanced
information entropy- and density- based geometric features only based on a trajectory
dataset was developed to distinguish the type (“on-road” or “on-crossroads”) of tracking
points in this work.

(1) Measuring the information entropy at a tracking point

Tracking links on roads often have two major directions, which are opposite to each
other, and tracking links within a crossroad area are usually omnidirectional. Given a
tracking point, an information entropy metric is proposed to quantify the distribution of
the directions of links near the point.

For each tracking point on a trajectory, we defined a search window with the size of
the road width (e.g., 20 m) to extract tracking links that intersect with the window based
on our experience. Based on the distribution of the directions of these links, we calculated
the information entropy at the tracking point as follows.

We considered that D = {α1, α2, . . . , αi, . . . , αm}, αi ∈ [0, 2π] is the collection of the
direction values for the selected links that intersect with a window centered at the pro-
cessed tracking point. We equally divided a circle centered at this tracking point into
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eight angle sectors and calculated the frequency distribution of the directions of these links,
F = { f1, . . . , fi, . . . , f8}. Subsequently, the information entropy, H, was calculated as follows:

H = −∑n
j=1 Pj log

(
Pj
)

(1)

Pj =
f j

∑n
j=1 f j

(2)

where f j represents the number of links with directions lying within the jth angle sector;
∑n

j=1 f j is the total number of links in the window; Pj is the probability. The sector number,
n, was set to 8 by default.

Information entropy can be used to measure the complexity of a system. The more
states the system has, the more information it possesses, the higher the entropy [39].
Based on Equation (1), the headings-based information entropy of tracking points on roads
should be significantly lower than that of intersections. While there are mainly two opposite
directions on a two-way road and one on a one-way road, there are more directions at an
intersection to which several roadways with different directions often connect.

(2) Measuring the line density gradient at a tracking point

The line density at a tracking point is the density of line features in the neighborhood
of the processed tracking point, which is calculated in a magnitude-per-unit area from
polyline features that fall within a radius around each cell. We note that the line density
of an on-crossroads point is larger than that of an on-road point in most cases because
crossroads have a larger traffic flow than connected roadways. Therefore, we proposed
a line density gradient indicator to describe the difference between the line densities of
on-crossroads and on-road points.

For a given tracking point, a filter kernel was defined using a three-by-three cell
window. First, a specific cell centered at the point was defined and the eight nearest
neighbors were aligned to the present cell. For each cell, we calculated the mean line
density of the tracking points that it contains. The line density gradient was then calculated
as follows:

G = [dc −max(di)]/dc (3)

where G is the line density gradient at a tracking point, dc is the average line density
of the center cell, and di is the average line density of neighbor cell i, i = 1 . . . 8. In
general, the gradient is a positive number at an intersection, fluctuates narrowly around
zero on a roadway, and becomes negative in the transition area between the intersection
and roadway.

(3) Labeling tracking points by logistic regression

Logistic regression was adopted to judge whether a tracking point is “on-road” or
“on-crossroads” based on information entropy and a line density gradient. The predictive
statistics involve probabilistic nonlinear regression. Let x = (x1, x2, · · · , xn) be a vector
with n variables, and P(Y = 1|x) be the probability of a tracking point being “on-crossroads”
given its attribute values represented as an input vector x. The logistic regression model
can be expressed as follows:

P(Y = 1|x) = π(x) =
1

1 + e−g(x)
(4)

where g(x) = β0 + β1x1 + · · ·+ βnxn, β0 is the intercept, and β = (β1, β2, · · · , βn) repre-
sents the regression coefficients of the explanatory variables that must be calibrated with
the training samples. The range of x was set to [0, 1] and the probability of the occurrence
of the dependent variable Y = 1 was estimated.

The maximum likelihood function was used to estimate β. Let {y1, · · · , yi, · · · , ym}
be m observations from training samples and yi = 0 denote that the ith sample is of an
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“on-road” type, whereas yi = 1 represents “on-crossroads”. The likelihood function of m
observations can then be expressed as:

L(β) =
m

∏
i=1

p(yi) =
m

∏
i=1

p(x)yi [1− p(x)]1−yi (5)

By applying natural logarithms on both sides of Equation (4), a logarithmic likelihood
function can be obtained, which can be used to solve the β coefficients:

ln L =
m

∑
i=1

[
yi(β0 + β1xi1 + · · ·+ βnxin)− ln

(
1 + eβ0+β1xi1+···+βnxin

)]
(6)

where m is the number of observations and n is the number of variables. The β coefficients
were estimated by maximizing ln L in an iterative process based on the commonly used
Newton–Raphson method.

2.2.3. Estimating “On-Site” Headings at Two Endpoints of a Link

The “on-site” headings at the endpoints of a tracking link are the directions of vehicle
moving forward. However, we did not use headings in our datasets in this study to
guarantee our method enabled on those data sources that lack of vehicle heading measures;
rather, we estimated the on-site heading based on the geostatistics of the tracking links
that intersect with a search window centered at the endpoint. It is also possible to use the
street network to estimate as vehicle heading is always identical to a roadway direction.
The on-site heading is null if the endpoints are located within an intersection area.

Given an “on-road” point that is attached to a specific tracking link with a direction of
αlink, D = {α1, α2, . . . , αi, . . . , αm}, αi ∈ [0, 2π] is the collection of directions of a total of m
links that lie within a search window centered at the point. The cosine similarity function
was used as a metric to measure how similar the directions of the two links are, as follows:

si = cos(|αi − αlink|), i ∈ [1, m] (7)

where a positive cosine value, si, represents the same moving direction (an intercross with
an acute angle) and a negative value denotes an opposite direction (an intercross with
an obtuse angle). Consequently, the m links in the search window can be separated into
two groups.

We used the average of the directions of each group to approximate the roadway
direction. The average direction with a positive cosine similarity is the on-site heading
estimated at the processed endpoint. The on-site headings of two endpoints of a tracking
link are represented as βi, i = 0 or 1. We note that “on-site” headings of the “on-crossroads”
endpoints were not calculated.

2.2.4. Calculation of the Line Density at a Fractile Position of a Tracking Link

The line density is the density of line features in a search window and was calculated
in units of length per unit of area. Given a search window with a size d, the total number of
N tracking links was selected, where li denotes the length of the ith link. The line density
at the center of the window can be calculated as follows:

ρ =
∑N

i=1 li
d2 (8)

Based on the assumption that Q = {q1, . . . , qi, . . . , qm} is the number of fractile points
along a tracking link, qi is the ith fractile point on the link while q1 and qm are the start-
and end-points of the segment, respectively. The parameter P = {ρ1, . . . , ρi . . . , ρm} is
the fractile line density at point Q along the tracking link, which is calculated using
Equation (8). Along a tracking link, an infinite number of fractile point can be set in theory.
Two endpoints and at least one fractile point are required by our model. To reduce the large
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amount of calculation, we used m = 3, in which the fractile point was the intermediate point
of the link since the line density at this point is lower than others with a large probability.

2.3. Shortcut Tracking Link Detection Algorithm
2.3.1. Spatial Patterns of Tracking Links

A tracking link may depict various spatial patterns in urban street grids. Based on
the permutation and combination of the locations of two endpoints in the road network,
tracking links can be grouped into three major spatial patterns: (I) both endpoints located
at the crossroads, (II) one endpoint at the crossroads and the other on the road, and (III)
both endpoints on roads.

By considering possible combinations of the link direction, on-site heading of end-
points, and fractile line densities, the three major groups can be further divided into several
subgroups. The elementary spatial patterns of the tracking links after removing duplicates
due to rotation, mirroring, and flipping are shown in Figure 3 in comparison to a street map
which was partitioned into a road area and block area (representing the non-road area).
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Figure 3. Spatial patterns of the tracking links, with normal links, i.e., I1, II11, II21, and III11, and
shortcut outlier links, i.e., I2, II12, II22, III12, and III20.

According to the Dimensionally Extended 9-Intersection Model (DE9M) (Egenhofer
and Herring 1990), there are two types of spatial relationships between a tracking link and
partitioned street map, i.e., the link may be completely within a road area or intersect with a
block area. The former is called a normal link (I1, II11, II21, and III11), i.e., a straightforward
link along a roadway, which overlaps with the vehicle ground truth path. The latter is
called a shortcut outlier link (I2, II12, II22, III12, and III20), which is a vehicle turning path
without tracking points at the crossroads.

2.3.2. Detecting Shortcut Outliers by Spatial Reasoning

Whether a tracking link is normal or abnormal depends on whether the two endpoints
of the link are on the same roadway. Considering that urban roads are straight or the
path directions sharply change over a given distance of the tracking link with a reasonable
length, we can define three criteria to infer whether a tracking link is a shortcut outlier
based on the link’s geometric and motion measures:

The combination of two endpoints of the link based on point types;
The agreement between link direction and on-site headings of two endpoints;
The agreement among fractile line densities of the link.
Figure 4 illustrates the detection of link outliers (or spatial patterns) via spatial reason-

ing. The challenge is to decide if a tracking link may be deemed as normal or a shortcut.
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Figure 4. A schematic diagram showing the spatial reasoning workflow.

If a tracking link fits the roadway well, the link direction must be close to the on-site
headings of the two endpoints and all fractile line densities of the link must also be close to
the densities at the two endpoints. Therefore, two fundamental coefficients, i.e., Tag for the
direction similarity and γ for the fractile line density similarity, were defined. The ranges
of the two coefficients are discussed in the discussion section. Their default values (21◦

and 0.64, respectively) were estimated from the geostatistics of our subjective sampling
design experiments.

3. Results
3.1. Study Area and Dataset

The trajectory dataset used in our experiments was based on the GNSS data from taxis
in the urban area of Beijing, China, including 12,000 trajectories collected on 1 November
2012. The average distance between two consecutive tracking points is ~219 m and the
sampling time intervals range from 12 to 65 s (Figure 5). This dataset is representative of
low sampling rate trajectory databases acquired in big cities, which contain various noises
and often cause the difficulty of path inference, map matching, or traffic rule extraction.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 20 
 

 

III

    Input：
a tracking link

Endpoint 
type

I

II

Two on-crossroads 
endpoints

Combination of 
on-crossroads & on-road

Two on-road
 endnoints

I1

I2

II11
II21

II12
II22

Yes

No

Yes

No

III11

III20

E
ndpoint type

O
n-site direction

L
ine density at 

fractile points

L
ink direction

min(ρi,i≠1,i≠m) > ϒ·min(ρ1,ρm)

|αlink - βi,i=0 or 1| < Tag

|β0 - β1| < Tag

Yes

Yes

No

max(|αlink - β0|, |αlink - β1|) < Tag

Remark:
Normal links - I1, II11, II21, III11

Shortcut outlier links – I2, II12, II22, III12, III20

min(ρi,i≠1,i≠m) > ϒ·min(ρ1,ρm)
Yes

III12
No

No

min(ρi,i≠1,i≠m) > ϒ·min(ρ1,ρm)
Yes

No

 
Figure 4. A schematic diagram showing the spatial reasoning workflow. 

3. Results 
3.1. Study Area and Dataset 

The trajectory dataset used in our experiments was based on the GNSS data from 
taxis in the urban area of Beijing, China, including 12,000 trajectories collected on 1 No-
vember 2012. The average distance between two consecutive tracking points is ~219 m 
and the sampling time intervals range from 12 to 65 s (Figure 5). This dataset is repre-
sentative of low sampling rate trajectory databases acquired in big cities, which contain 
various noises and often cause the difficulty of path inference, map matching, or traffic 
rule extraction. 

 
Figure 5. Sampling time intervals of the dataset. 

3.2. General Information on Detected Link Outliers 
Without utilizing auxiliary databases (e.g., road networks), we first preprocessed the 

taxi trajectory datasets to identify radial, drift, and clustered link outliers. The dedicated 
shortcut detection method was then applied to determine implicit outliers using the spa-
tial reasoning approach. As listed in Table 1, poor tracking links account for ~38.2% of the 

Figure 5. Sampling time intervals of the dataset.



ISPRS Int. J. Geo-Inf. 2021, 10, 333 10 of 19

3.2. General Information on Detected Link Outliers

Without utilizing auxiliary databases (e.g., road networks), we first preprocessed the
taxi trajectory datasets to identify radial, drift, and clustered link outliers. The dedicated
shortcut detection method was then applied to determine implicit outliers using the spatial
reasoning approach. As listed in Table 1, poor tracking links account for ~38.2% of the
entire test dataset; explicit outliers account for 4.5%; implicit outliers account for 33.7%.
Most of the link outliers are clustered links, followed by shortcut links.

Table 1. Tracking link statistics.

Link Outliers
Normal Links Total

Radial Drift Clustered Shortcut

1,285,827 203,891 8,925,152 2,147,429 20,323,301 32,885,600

3.91% 0.62% 27.14% 6.53% 61.80% 100%

The tracking links were labeled and plotted on a map (Figure 6). The map shows
that normal links reflect the straightforward grids of the street network. Clustered links
mostly appear at crossroads, with some at roadside hot spots or parking lots. The patterns
of the shortcut, radical, and drift links, which notably deviate from roads and overlap with
residential blocks, are disorganized, such that street grids cannot be distinguished from
these links.
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Among all the link outliers, both clustered and shortcut links are signals. The for-
mer refers to vehicle short-time parking or stopping sites while the latter indicates road-
intersections. Radial and drift links represent noise; however, they may be used to analyze
the geo-context based on which the noise was generated.

3.3. Detailed Illustration of Shortcut Link Outliers

We selected the Mudanyuan district to determine the spatial characteristics of the
shortcut link outliers. The roads (seville orange color) on the map (Figure 7) are district
distributors that conduct the traffic among various residential, industrial, and principal
business districts.
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Figure 7. High-quality tracking points versus poor-quality tracking links at the Mudanyuan site:
(a) shows that on-crossroads and on-road tracking points are well separated in space and (b) shows
the complex intercross pattern of poor-quality tracking links at the intersection area.

Among the tracking links within the Mudanyuan area, shortcut link outliers account
for ~5.839% (Table 2). We note that the number of link outliers (III) is higher than that of
the other outliers (I, II) because “on-road” links represent the majority in comparison with
the “on-crossroads” links.

Table 2. Tracking link statistics for Mudanyuan.

Link Type Count (%) Remarks

I1 8351 3.436 Normal
I2 1 0.004 Shortcut

II11 2442 10.049 Normal
II12 50 0.206 Shortcut
II21 2321 9.551 Normal
II22 50 0.206 Shortcut

III11 17,283 71.123 Normal
III12 13 0.053 Shortcut
III20 1305 5.370 Shortcut

Unknown 1008 4.148 Sparse or near boundary

Based on overlapping all the tracking datasets, road networks, and Google images
in this district (Figure 7), all of the preprocessed tracking points are high-quality points,
which fluctuate within a narrow range around the streets and crossroads. Figure 7 shows
that on-crossroads and on-road tracking points are well separated in space (Figure 7a).

However, the trajectory lines based on the connection of these consecutive points
with tracking links present a complex intercross pattern (Figure 7b). All normal links
together present a clear street grid. In contrast, the shortcut link outliers, which are
actually simplified vehicle turning paths, are distributed in an unorganized manner near
the crossroads. Advanced mining algorithms for these shortcut links could be utilized to
recognize road intersections or traffic rules.



ISPRS Int. J. Geo-Inf. 2021, 10, 333 12 of 19

4. Discussion
4.1. Does the Information Entropy Effectively Describe the Separation of the Location of Tracking
Points in a Road Network?

The tracking points were grouped into two categories (“on-crossroads” and “on-
road”) based on the spatial relationship between the tracking points and road network
without using the road network database. An information entropy descriptor was used to
determine the difference between the two types of points.

Based on Equation (1), the information entropy for all tracking points in the Mu-
danyuan district was calculated. As illustrated in Figure 8, the information entropy values
of the “on-crossroads” tracking points are significantly higher than those of the “on-road”
tracking points. The farther a tracking point is from road intersections, the lower its
information entropy is.
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We interactively selected 11,368 sample tracking points at the inner side of the Second
Ring Road of Beijing, among which 8556 are on the streets and 2812 are at intersections.
Based on Equation (1), the information entropies were computed for all samples. In a
handout test, these samples were divided into two folders, with one folder containing
9094 samples to train the logistic regression model and the other consisting of 2274 samples
for validation.

K-fold cross-validation was used to test the parameters tuning and the performance
of the trained logistic regression model. The 11,368 sample tracking points are divided into
five folds, out of which four folds are for training and one is for testing. The results of five
repeated classifications are shown in Table 3. High Kappa scores from 97.55 to 98.72 were
achieved based on the confusion matrix of the validation samples (Table 3), which implies
a good level of agreement for the logistic regression used to distinguish the tracking points
at road intersections from those on roads using the information entropy descriptor and
line density gradient. The application of this logistic regression classifier to all tracking
points of the test datasets shows that the “on-crossroads” points account for 24.70% of all
the tracking points.
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Table 3. Accuracy of the tracking points classification.

“On-Road” “On-Crossroads” Recall (%) Kappa

Test 1
“on-road” 1679 8 99.53

98.63“on-crossroads” 4 583 99.32
Precision (%) 99.76 98.65 -

Test 2
“on-road” 1685 10 99.41

98.50“on-crossroads” 3 576 99.48
Precision (%) 99.76 98.29 -

Test 3
“on-road” 1714 10 99.41

98.21“on-crossroads” 5 545 99.09
Precision (%) 99.71 98.20 -

Test 4
“on-road” 1704 15 99.13

97.63“on-crossroads” 5 550 99.10
Precision (%) 99.71 97.35 -

Test 5
“on-road” 1691 14 99.18

97.55“on-crossroads” 7 562 98.77
Precision (%) 99.59 97.57 -

4.2. Can the On-Site Heading Be a Replacement for a Vehicle Heading on a Roadway?

For the tracking link of a vehicle, the estimated “on-site” heading at its endpoints
is theoretically equivalent to the direction of the roadway on which the vehicle moves
forward, but it actually has some difference. To evaluate the accuracy of the estimated
on-site headings, the following test was performed in the Mudanyuan area: (1) there
were four intersections in this area, each with four roadways (two directions of entering
or exiting the intersection), so the ground truth headings of 25,026 on-road points were
assigned to one of the lane directions according to their location, (2) the absolute errors
or heading differences between the estimated headings and ground truth were calculated,
and (3) the heading difference was illustrated based on statistics.

Based on the statistics, the average of the heading differences is 2.2◦ and the standard
deviation is 6.58◦, indicating that the on-site headings are close to the roadway direction.
The density distribution of the heading differences represents a power-law distribution
and the 95th percentile on the accumulative curve is ~7◦ (Figure 9a), which confirms the
high accuracy of this method in terms of the estimation of on-site headings. This result
shows that shortcut tracking links can be detected using estimated on-site headings other
than the roadway directions from a road network auxiliary database.
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To further explore the on-road points with large errors, 2281 on-road points with
errors larger than 7◦ were selected to produce a heatmap (Figure 9b). The map shows that
most of the inaccurate points were located near intersections because the omnidirectional
presentation of the tracking links around an intersection affects the estimation of the
directions of the connected roadways.

4.3. When Are On-Site Headings and Link Directions of the Same Link Considered Identical?

A tracking link must fit a roadway well if the direction of the link and on-site headings
at two related endpoints are the same. However, due to the errors in estimating the on-site
headings and calculating the link direction, they are not completely equal, despite the link
that overlaps with the roadway. Therefore, an appropriate threshold (Tag) is required. The
directions and headings are the same if their difference is smaller than the threshold.

In a subjective sampling experiment, two groups of link samples were selected to test
the differences among the link directions and on-site headings at two endpoints: normal
(III11) and shortcut (III20) links. The measure of the difference between the on-site headings
and link direction is defined as max(|αlink − β0|, |αlink − β1| ).

For normal links, the indicator max(|αlink − β0|, |αlink − β1| ) is mostly near zero and
represents a hyperbola of a reciprocal function (Figure 10a1); this indicator is ~15◦ at the
95th percentile (Figure 10a2). For shortcut links, this indicator is ~24◦ at the 5th percentile
(Figure 10b2), which contrasts with the theoretical value of 45◦. In addition, the samples of
two groups do not have the same distribution (p-value < 0.01 based on the Mann–Whitney
U test).
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Figure 10. Agreement between two directions, i.e., max(|αlink − β0|, |αlink − β1| ), is defined to
measure the difference between the on-site headings and link direction. (a1) and (b1) respectively
show the measured values of the normal and abnormal links and (a2) and (b2) for the cumulative
curve, respectively.

Based on these results, we used an angle threshold range [15,24] for this indicator to
separate the two cases and set the default to 20◦. This value was set close to the threshold
value (20◦) to separate poor on-road points. The analyses of other link cases revealed
similar results.



ISPRS Int. J. Geo-Inf. 2021, 10, 333 15 of 19

4.4. When Is the Change in the Fractile Line Densities along a Link Considered a Normal or
Shortcut Link Case?

The line densities at all fractile positions of a normal tracking link distributed along
a roadway should be similar. For a shortcut link with only two endpoints on a road
network, the fractile line densities in the middle positions that taxis never reach should be
significantly lower than at the two endpoints.

Based on Equation (8), an indicator, i.e., γ = min(ρi,i=1...m)/min(ρ1, ρm)), was defined
to describe the change in the fractile line densities along a link. In an ideal case, the indicator
should be close to one for normal links and zero for shortcut links. Therefore, we can easily
distinguish shortcut links from normal links.

Another sampling experiment was performed to determine the distribution of the γ
indicator values by reusing two sample groups. Based on the statistics of the fractile line
densities, as illustrated in Figure 11(a1,b1), the γ indicator yields significantly different
distributions among normal links and shortcut links, as well as different histograms
(p-value < 0.01 based on the Mann–Whitney U test). The 5th percentile for the normal
links is 0.96 (Figure 11a2) and the 95th percentile for shortcut links is ~0.31 (Figure 11a2).
Therefore, the γ range was set to [0.31, 0.96] and the default was set to the average (0.64).
The analyses of other link cases revealed similar results.
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(
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)
/min(ρ1, ρm)), is defined to

describe the change in the fractile line densities along a link: (a1) and (b1), respectively, show
the measured values of the normal and abnormal links and (a2) and (b2) for the cumulative
curve, respectively.

4.5. How Many Trajectories Are Necessary in Order to Make the Entropy- and Density-Based
Approaches Work?

Based on our trajectory dataset at the Mudanyuan Intersection area, we randomly
resampled into various sub-datasets with different line densities so that the effects of the
sample’s line density on explainary variables in our approach can be illustrated. The
sample size of these sub-datasets varied from 31 to 2873.

The entropy and line density gradient related to an intersection, which are together used
to label tracking points, were first calculated on these subsets using a 35 m × 35 m window.
As the sample’s line density gets larger, two variables’ value increases until they reach up to
a limit at a line density of 5 (Figure 12(a1,b1)). Under this turning point, our approach may
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not satisfactorily classify tracking points. Another two parameters used in spatial reasoning,
which are the difference between the on-site headings and link direction and the change in the
fractile line densities along a link, were further calculated on the same sub-datasets. These two
parameters change sharply on low line-density samples. Over the line density 4, they tend to
converges progressively (Figure 12(b1,b2)). We took the maximal line-density in comparison
of two turning points. If we count on the number of trajectories, about 407 vehicle traces are
needed by our approach to achieve an acceptable output.
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4.6. How Much Curvature of Urban Roads the Method Can Take without Leading to Errors?

There are also other situations where link shortcuts occur, e.g., along curvy roads.
Therefore, we perform a robustness test to assess how much curvature (e.g., in terms of
curvature radius) the method can take in an urban street network. A total of 27 concentric
circles whose curvatures range from 0.001 m−1 to 0.01 m−1 were generated to simulate
roads. Along each circle, 600 vehicle GNSS trajectories were simulated on which tracking
points have positioning errors (0–15 m), time sampling interval (12–65 s), and speed
(36.5 km/h).

The link shortcuts at intersections are identified if the “on-site” headings and the
link direction are not identical. According to Section 4.3, for those non-shortcut links on
straight roads, the measure of the difference between the on-site headings and link direction
presents a power-law distribution (X1). Therefore, we also calculate the same measures for
the simulated links on each circle and obtain their distribution (X2). If X2 is stochastically
larger than X1, the curvature radius corresponding to X2 will be taken as a threshold value
to determine our method’s adoptability. The Mann–Whitney U test was used, in which
the null and alternative hypotheses are H0 : X1 < X2, H1 : X1 ≥ X2. As shown in Table 4,
the circles with curvature (<0.0068) and p-value (<0.0667) reject null hypotheses. Therefore
curvy roads with a curvature radius great than 147 m can be processed by our method.
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Table 4. Mann–Whitney U test for simulated curvy roads (or circles).

Curvature (m−1) p-Value Curvature (m−1) p-Value Curvature (m−1) p-Value

0.001 0 0.0064 0.0055 0.0073 0.7638
0.002 0 0.0065 0.0060 0.0074 0.9993
0.003 0 0.0066 0.0100 0.0075 0.9964
0.004 0 0.0067 0.0177 0.0076 0.994
0.005 0 0.0068 0.0667 0.0077 0.9994
0.006 0 0.0069 0.0887 0.0078 1

0.0061 0 0.007 0.0939 0.0079 1
0.0062 0.0003 0.0071 0.3718 0.008 1
0.0063 0.0035 0.0072 0.5679 0.009 1

5. Conclusions

In this study, the GNSS vehicle trajectory was considered to be a set of tracking links.
In addition to normal links, we defined four types of outliers (radial, drift, clustered, and
shortcut) and proposed an integrated approach to detect these outliers. In particular, an
advanced spatial reasoning method was developed to identify implicit shortcut outliers.
This approach was tested using a taxi trajectory dataset for Beijing from 2012. The four
types of outliers were successfully detected. The findings of this study can be summarized
as follows:

1. The proposed outlier detection method, which is based on a tracking link conceptual
framework, can be used to process vehicle trajectory datasets without relying on
road-network datasets. This is because the type of tracking points are determined by
those density-and entropy-based features from trajectory dataset itself, and it can also
be definitely recognized by matching open-access datasets i.e., OpenStreetMap.

2. The shortcut link detection is based on spatial reasoning. A set of spatial patterns
defining normal and shortcut links are identified and, correspondingly, several key
geometric measures of a tracking link are proposed by understanding trajectory
characteristics. Default threshold values of these measures are also determined by
subjective sampling design and analysis.

Our research offers a new perspective for detecting outliers in trajectories, and yet
there are some limitations. This approach is suitable for urban areas in which street grids
are well presented, not curvy roads in mountainous regions, motorway intersections, or
intersections on rural roads. Our approach, in which density, entropy, and even headings
are based on statistics, is limited to the feature of line-density at intersections as discussed.
In the future, we’d like to apply the model to more datasets that may reveal different
patterns or irregularities of trajectories in space, and further improve the approach.
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