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Abstract: Effective predictive policing can guide police patrols and deter crime. Hourly crime
prediction is expected to save police time. The selection of spatial resolution is important due to its
strong relationship with the accuracy of crime prediction. In this paper, we propose an adaptive
spatial resolution method to select the best spatial resolution for hourly crime prediction. The
ST-ResNet model is applied to predict crime risk, with historical crime data and weather data as
predictive variables. A prediction accuracy index (PAI) is used to evaluate the accuracy of the results.
Data on property crimes committed in Suzhou, a big city in China, were selected as the research data.
The experiment results indicate that a 2.4 km spatial resolution leads to the best performance for
crime prediction. The adaptive spatial resolution method can be used to guide police deployment.

Keywords: ST-ResNet; spatial resolution; crime prediction; property crime

1. Introduction

One of the main goals of crime prediction is to efficiently guide police deployment
such that predicted crimes can be dealt with effectively [1]. In this context, researchers and
police practitioners worldwide are increasingly looking into efficient methods for predictive
policing [2]. Many types of data have been used to improve the efficiency and accuracy
of crime prediction results, including historical crime records and socioenvironmental
data [1,3–5].

Retrospective studies using historical crime records are commonly related to hotspot
analysis. Using recent crime data, hotspots are detected and mapped to identify emerging
crimes [6,7]. In this context, crime hotspots are assumed to be stable over time [8,9]. This
assumption may work well for long-term high-crime areas due to the concentrated disad-
vantages [10]. In order to improve the accuracy of short-term predictions, recent crimes are
used to predict high-crime areas, for example via self-exciting point process models and
near-repeat approaches [11–13]. Moreover, criminology theories are proposed to interpret
why crimes tend to happen at a specific place and time [10,14–16], and some methods such
as geographically weighted regression and geographical and temporal weighted regression
have been used to explore the environmental factors of crime distribution [17,18]. However,
the dynamic nature of crime calls for more proactive methods [19,20].

In practice, the predicted crime risk may exist for a short time but dissipate rapidly
due to unexpected activities (e.g., the disappearance of criminogenic opportunities) [21].
In addition, a small time window may reduce the significance of historic data and lead
to greater noise in crime prediction [9,22]. This makes it difficult to effectively predict
emerging crimes, limiting the success of traditional methods for short-term prediction.
Hence, short-term prediction is urgently needed in policing practice.
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Fortunately, the development of deep learning has made it possible to perform effec-
tive short-term crime prediction, facilitated by socioeconomic factors as well as historical
crime data [23–25]. For example, Alexander et al. used a deep neural network model
for crime prediction using historical crime data, demographic data, weather records, and
transportation sites [26]. When the time window is small, the neural network model does
not perform well, with even further calculations being performed. To address this short-
coming, He et al. presented a deep residual network (ResNet) model to improve the model
performance when the time window is small [27]. Zhang et al. applied this model to hourly
crowd prediction by adapting it to the time dimension [28]. Using an ST-ResNet model
that can capture spatial structures with convolutional neural networks (CNNs) and learn
temporal dependencies with recurrent neural networks (RNNs), Wang et al. provided an
hourly crime prediction method based on weather record and historical crime data from
Los Angeles [29].

It is well known that crime is not evenly distributed in space [30,31]. Most crimes are
more likely to be committed at specific times of day [30]. The clustering nature of crime
is often interpreted by repeat and near-repeat phenomena, which have been identified
for many crime types, including vehicle thefts, street robberies, residential burglaries,
etc. [32–34]. Repeat and near-repeat phenomena confirm the strong relationship between
crimes’ proximity in space and time [23]. The Knox method is often used to quantify the
influence of this phenomenon [35]. Many studies have proven that repeat and near-repeat
patterns vary in different regions. For example, there was a significant near-repeat pattern
for 2 months within 400 m in Merseyside, UK, but in Nanjing, China, this pattern occurred
within 14 days and 300 m [19,36]. The analysis of repeat and near-repeat phenomena is
crucial for practical crime prediction [37,38].

Grid cell size is an important parameter in crime prediction, and crime forecasts are
sensitive to the spatial discretization scheme used [7,31,39–41]. Scale problems of the modi-
fiable areal unit problem can impact the proportion of difference related to surrounding
areas [42]. It varies between crime types and study regions [39]. To find an optimal unit for
mapping crime, some different approaches have been explored. Oberwittler and Wikström
analyzed robustness and internal uniformity in order to choose the optimal area for regres-
sions [39]. Gerell et al. computed intraclass correlations (ICCs) as a criterion by hierarchical
linear modeling to select an optimal surrounding environment size for an understanding
of the geography of arson incidents [43]. Malleson et al. estimated the similarity between
spatial point patterns at each resolution to determine an adequate unit when aggregating
point data to areas [44]. Ramos et al. balanced robustness to error and internal uniformity
to determine an optimal granularity to produce more reliable crime maps [45]. The criteria
of the optimal unit in crime mapping vary depending on the purpose of crime analysis. In
this paper, we focus on the accuracy of hourly crime prediction when selecting the optimal
unit, and choose the prediction accuracy index (PAI), which can measure the accuracy
level of model results, as a criterion to meet the needs of the actual patrol [6]. The deep
learning model ST-ResNet is constructed to extract the feature of a sparse matrix of hourly
crime data. The influence of different spatial resolutions on prediction results is analyzed
iteratively, and the highest PAI is calculated in the optimal resolution for the model. The
time cost of deep learning models for short-term prediction is higher than that of traditional
models for long-time prediction. To reduce the computational cost, we adopt a hierarchical
pyramid structure to provide different resolutions by an automated process.

In order to select the best spatial resolution in crime prediction at hourly temporal
scales, we propose an adaptive spatial resolution method. A data pyramid is built to
obtain information at different resolutions. The ST-ResNet models are constructed to
predict crimes at different scales by analyzing the heterogeneity of crime and weather
data. Then, the accuracy of prediction results at each resolution is compared based on the
PAI. The validation and accuracy assessments indicate that our method can achieve ideal
hourly forecasting results to satisfy the specific requirements of public security prevention
and control.
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The rest of this paper is organized as follows. Section 2 describes the study area and
data. Section 3 defines the methodology used to achieve the best prediction effectiveness.
Section 4 presents and discusses the prediction results. Finally, Section 5 summarizes the
conclusions and directions of future work.

2. Study Area and Data
2.1. Study Area and Property Crime Data

Statistically, property infringement cases account for over 70% of the crimes in
China [46]. The wide range of patrols required and insufficient police force lead to a
low rate of solving such cases [47]. We can improve the efficiency of resource allocation and
plan effective proactive interventions by assigning patrols properly, which can be achieved
through effective crime prediction [48].

Suzhou City, with a population of approximately 10,616,000 people, is located in
southeastern Jiangsu Province, China. It is the city with the sixth-highest GDP in China.
The Yangtze River is to the north of Suzhou and Taihu Lake (the third-largest freshwater
lake in China) is to the west of Suzhou. Suzhou is an important city of the Yangtze River
Delta urban agglomeration in the Taihu Lake Basin, where the economy is active and
transportation is widely available. A solution for effective crime prediction that can be
applied to each area is necessary to help the police arrange their force and reduce the crime
rate. Among the five municipal districts of Suzhou, we selected the four that account for
more than 80% of the city’s criminal cases from 2012 to 2013, namely, Huqiu District, Gusu
District, Wuzhong District, and Xiangcheng District, and eliminated their water areas to
create our study area.

Figure 1 shows the kernel density estimation of all property crimes (over 130,000
cases) in the study area from January 2012 to October 2013. The crime data were acquired
from the local police department, and the dataset contains the case number, crime type,
occurring time, geographical coordinates, etc. In this paper, our target crime types were
burglary, theft, and robbery, which are classified by the police as common types of property
crime in Suzhou [3,49,50].
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2.2. Weather Data

Weather can influence crime rates and criminal behavior, and each variable has a
diverse effect on different crime types [51–53]. In short-term crime prediction, weather
variables are common predictors, and temperature is a significant one for property crime
prediction [29,54]. In this study, we chose temperature as the external influence of the
model. Data on daily average temperature, highest temperature, and lowest temperature
data for the 671 days from January 2012 to October 2013 were collected from the China
Ministry of Agriculture Planning and Design Institute [55].

3. Methodology

To improve the effectiveness of hourly crime prediction, we proposed an adaptive
spatial resolution method to select the optimal unit for crime prediction models. The
ST-ResNet model was used to predict the crime risk. The PAI was used to measure the
accuracy of the results at different spatial resolutions [29]. Figure 2 indicates the procedure
of the method.
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A data pyramid [56] was produced to aggregated points to the grid at multiple scales,
as shown in Figure 3. Most web mapping services like Google Maps and Microsoft Bing
Maps adopt the pyramid technique to provide on-demand map content to users [57,58]. The
discretization method we used is the same as in these web mapping services. The procedure
starts with a coarse resolution and then recursively generates the other resolutions. The
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points are aggregated to the layers in each calculation of the ST-ResNet model. The base
resolution is set to 9.6 km, which corresponds to the 12th level of the pyramid according to
the local maximum patrol area.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 5 of 20 
 

 

A data pyramid [56] was produced to aggregated points to the grid at multiple scales, 
as shown in Figure 3. Most web mapping services like Google Maps and Microsoft Bing 
Maps adopt the pyramid technique to provide on-demand map content to users [57,58]. 
The discretization method we used is the same as in these web mapping services. The 
procedure starts with a coarse resolution and then recursively generates the other resolu-
tions. The points are aggregated to the layers in each calculation of the ST-ResNet model. 
The base resolution is set to 9.6 km, which corresponds to the 12th level of the pyramid 
according to the local maximum patrol area. 

The research area was overlaid by grid cells of various resolutions. The high-resolu-
tion layer has small grids that cover a small area and the low-resolution layer has large 
grids that cover a large area. The crimes were aggregated to the space time grids based on 
their geocoordinates and time. The number of crimes was counted by grid and assigned 
to the corresponding cells of a layer. 

For the weather data, the grid cells of a time layer share the same value because the 
weather is homogeneous over the research area. The established layers were divided into 
training data and test data. Training data were used to train the ST-ResNet model M (as 
discussed in Section 3.1) and identify the optimal parameters in a certain spatial resolu-
tion. Then, the crime risk was calculated with test data evaluated by the PAI. 

By increasing the level of layer d in the pyramid, the resolution of the grid is in-
creased. The crimes were re-aggregated to the grids of another layer. To minimize the 
influence of time variation of crime, crimes committed over 12 months were selected as 
training data and the crimes committed in the following month were selected to verify the 
accuracy of the model. This process was carried out recursively for certain times until the 
highest-resolution layer was obtained. PAI was included in the model to evaluate the ac-
curacy of the calculations. 

 
Figure 3. A pyramid of aggregated lattices. 

3.1. ST-ResNet Model 
The ST-ResNet model predicts crime risk based on weather records as well as crime 

patterns including trend, period, and closeness (Figure 4). The trend indicates the ten-
dency of the number of crimes to increase or decrease. The period refers to the periodic 
pattern of crime at a certain time scale. Compared with distant ones, crimes committed 
closer together in time are more likely to be related. Therefore, “closeness” refers to the 
time distance between crime pairs. Following the research of Wang (2019), the experiment 
adopted hourly, daily, and weekly levels as the time spacings of the 3 crime periodic char-
acteristics [29]. 

Figure 4 shows the process of the ST-ResNet model. In the convolution step, multi-
layer convolution is selected to measure the relationship between nonadjacent regions. 

Figure 3. A pyramid of aggregated lattices.

The research area was overlaid by grid cells of various resolutions. The high-resolution
layer has small grids that cover a small area and the low-resolution layer has large grids
that cover a large area. The crimes were aggregated to the space time grids based on their
geocoordinates and time. The number of crimes was counted by grid and assigned to the
corresponding cells of a layer.

For the weather data, the grid cells of a time layer share the same value because the
weather is homogeneous over the research area. The established layers were divided into
training data and test data. Training data were used to train the ST-ResNet model M (as
discussed in Section 3.1) and identify the optimal parameters in a certain spatial resolution.
Then, the crime risk was calculated with test data evaluated by the PAI.

By increasing the level of layer d in the pyramid, the resolution of the grid is increased.
The crimes were re-aggregated to the grids of another layer. To minimize the influence
of time variation of crime, crimes committed over 12 months were selected as training
data and the crimes committed in the following month were selected to verify the accuracy
of the model. This process was carried out recursively for certain times until the highest-
resolution layer was obtained. PAI was included in the model to evaluate the accuracy of
the calculations.

3.1. ST-ResNet Model

The ST-ResNet model predicts crime risk based on weather records as well as crime
patterns including trend, period, and closeness (Figure 4). The trend indicates the tendency
of the number of crimes to increase or decrease. The period refers to the periodic pattern
of crime at a certain time scale. Compared with distant ones, crimes committed closer
together in time are more likely to be related. Therefore, “closeness” refers to the time
distance between crime pairs. Following the research of Wang (2019), the experiment
adopted hourly, daily, and weekly levels as the time spacings of the 3 crime periodic
characteristics [29].
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Figure 4 shows the process of the ST-ResNet model. In the convolution step, multilayer
convolution is selected to measure the relationship between nonadjacent regions. The 3
periodic components and the external component (weather) are fused via a parametric-
matrix-based fusion method.

The model utilizes the historical crime spatial distributions {Xt}n
t=1 and weather

records {Wt}n+1
t=1 to predict crime spatial distribution Xn+1 at time tn+1, where X1, X2, . . . ,

Xn+1 are the layers representing crime spatial distributions at times t, t2, . . . , tn+1, and W1,
W2, . . . , Wn+1 are the weather layers.

We minimized the root-mean-square error (RMSE) between the predicted crime matrix
and the true crime matrix to train the model:

RMSE =

√
1
Z ∑

i
(xi − x̂i)

2 (1)

where xi is the true value, x̂i is the predicted value, and Z is the number of training data
points [59].

The modeling process was conducted as follows: A training dataset (from January 2012
to December 2012) was used to train the model with cross-validation (20% validation ratio),
and a test set (from January 2013 to October 2013) was used to test the final model. The
model was trained over multiple iterations to select the final model, with the optimal tuning
parameters based on minimizing the cross-validation error. Then, we made predictions
about the test set using the final model and evaluated the prediction effect. Accounting
for the fact that seasonal differences potentially influence results, for each month of the
test set we repeatedly predicted crime events for each variation of the methodological
parameters. That is, for each variation, predictions were made using a rolling window (e.g.,
when predicting for January 2013 using 1 year of historical data, the data from January
2012 to December 2012 were used for training; when predicting for February 2013, data
from February 2012 to January 2013 were used; and so on): the prediction accuracy was
calculated for each month and then averaged for each variation for the test set.

3.2. Accuracy Evaluation

The RMSE, which evaluates the difference between the predicted and the values ob-
served, and the F1 score [60], which evaluates the precision and recall, are scale-dependent.
A commonly used crime prediction evaluation index is the prediction accuracy index
(PAI) [6]. This can be used to compare the accuracy of hotspots calculated by different
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methods via extremely simple calculations and can compare the prediction results at
different resolutions and magnitudes. The general form of this variable is as follows:

PAI =
n/N
a/A

(2)

where n is the number of crime events in areas where crimes are predicted to occur. N is
the number of actual crime events in the whole study area. a is the area of regions where
crimes are predicted to occur. A is the area of the study area. The PAI can be considered as
the hit rate in areas where crimes are predicted to occur with respect to the size of the study
area. The higher the hit rate and the better the prediction effect, the higher the PAI will be.

4. Results
4.1. Data Analysis

Crime risk measured by a repeat and near-repeat calculator varies among different
crime types [52]. We calculated the proximity, periodicity, and heterogeneity of crimes in
space and time. Finally, the correlation between temperature variation and crime level was
tested.

Figure 5 shows the daily statistics, 7-day moving average data, 14-day moving average
data, and 30-day moving average data for property crime events from January 2012 to
October 2013.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 7 of 20 
 

 

(PAI) [6]. This can be used to compare the accuracy of hotspots calculated by different 
methods via extremely simple calculations and can compare the prediction results at dif-
ferent resolutions and magnitudes. The general form of this variable is as follows: ܲܫܣ ൌ (2) ܣ/ܽܰ/݊

where ݊ is the number of crime events in areas where crimes are predicted to oc-
cur.	ܰ is the number of actual crime events in the whole study area.	ܽ is the area of re-
gions where crimes are predicted to occur. ܣ is the area of the study area. The PAI can be 
considered as the hit rate in areas where crimes are predicted to occur with respect to the 
size of the study area. The higher the hit rate and the better the prediction effect, the higher 
the PAI will be. 

4. Results 
4.1. Data Analysis 

Crime risk measured by a repeat and near-repeat calculator varies among different 
crime types [52]. We calculated the proximity, periodicity, and heterogeneity of crimes in 
space and time. Finally, the correlation between temperature variation and crime level 
was tested. 

Figure 5 shows the daily statistics, 7-day moving average data, 14-day moving aver-
age data, and 30-day moving average data for property crime events from January 2012 
to October 2013. 

 
Figure 5. Chart of daily statistics and moving averages for property crime events. 

The near-repeat calculator uses the Knox test to analyze the coordinates within a 
given time span by Monte Carlo simulations to detect the near-repeat phenomenon [61]. 
We set a spatial bandwidth of 300 m because the block length of our study area is about 
300 m. We set the temporal bandwidth at 7 days. The Manhattan distance was used be-
cause it is close to an approximation of the actual route for urban environments. Table 1 
shows the crime risk level in a near-repeat matrix; in the case of our study area, there was 
a significant near-repeat pattern for the first week within 300 m, and the near-repeat phe-
nomenon weakened with time and distance. 

Table 1. Observed-to-expected mean frequencies for property crime events. 

 0–7 Days 8–14 Days 15–21 Days 22–28 Days 29–35 Days More than 35 Days 
Same  2.235 ** 1.000 1.000 1.000 1.000 0.998 

1–300 m 1.047 * 0.951 0.933 1.144 1.000 0.988 
301–600 m 1.002 0.996 1.002 1.002 1.000 1.000 
601–900 m 0.981 1.017 1.013* 1.019 1.000 1.001 
901–1200 m 1.005 0.988 1.006 1.007 0.998 1.002* 

1201–1500 m 1.003 1.021 0.970 0.932 0.997 1.000 
1501–1800 m 1.013* 0.996 0.980 0.967 0.956 0.999 
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The near-repeat calculator uses the Knox test to analyze the coordinates within a given
time span by Monte Carlo simulations to detect the near-repeat phenomenon [61]. We set
a spatial bandwidth of 300 m because the block length of our study area is about 300 m.
We set the temporal bandwidth at 7 days. The Manhattan distance was used because it is
close to an approximation of the actual route for urban environments. Table 1 shows the
crime risk level in a near-repeat matrix; in the case of our study area, there was a significant
near-repeat pattern for the first week within 300 m, and the near-repeat phenomenon
weakened with time and distance.

The power spectrum method [62] is used to calculate the periods of crime data. The
magnitude squared of Fourier coefficients is a measure of power. The power is computed
on one-half of the coefficients since half of them are repeated in magnitude. We plotted
the power spectra as a function of frequency, measured in cycles per hour and per day. To
interpret the view of the cyclical activity more easily, we also plotted power as a function
of period, measured in hours and days per cycle. Figure 6 shows the power spectrum (a)
and the period of the hourly data (b). The average periods passing the significance test are
24 h, 48 h, 80 h, and 160 h. The repeating short-term cycle can be seen in daily periodicity.
Figure 7 shows the power spectrum (a) and the period of the daily data (b). The average
periods passing the significance test are 7 days, 14 days, 19 days, 33 days, and 67 days. This
shows the weekly trend of the crime data.
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Table 1. Observed-to-expected mean frequencies for property crime events.

0–7 Days 8–14 Days 15–21 Days 22–28 Days 29–35 Days More Than 35 Days

Same 2.235 ** 1.000 1.000 1.000 1.000 0.998
1–300 m 1.047 * 0.951 0.933 1.144 1.000 0.988

301–600 m 1.002 0.996 1.002 1.002 1.000 1.000
601–900 m 0.981 1.017 1.013 * 1.019 1.000 1.001
901–1200 m 1.005 0.988 1.006 1.007 0.998 1.002 *

1201–1500 m 1.003 1.021 0.970 0.932 0.997 1.000
1501–1800 m 1.013 * 0.996 0.980 0.967 0.956 0.999

More than 1800
m 1.011 * 1.001 1.034 1.021 0.987 0.994

* p < 0.05; ** p < 0.01.
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We calculated the ratio of the number of cases in adjacent hours, excluding some
moments with abnormally high or no cases; then, we counted the number of hours cor-
responding to each ratio value from January 2012 to October 2013. Figure 8 shows the
ratio statistics. Ninety-five percent of adjacent hours have a ratio of cases between 0 and 4.
Considering that the number of cases per hour is small, we defined the times when the
ratio value was between 0.5 and 2 (which means the change rate is no more than 100%) as
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no-mutation hours and the times when the ratio value was less than 0.5 or greater than 2
as mutation hours. We also calculated the ratio of the number of cases between periods of
two-hour intervals and three-hour intervals. Table 2 shows the percentages of no-mutation
hours in the three situations. Although the percentage of no-mutation hours decreased
as the time interval increased, it was still high for all three intervals. Therefore, it can be
concluded that there are interactions between the cases at adjacent moments (1–3 h).
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Table 2. The percentage of no-mutation hours.

Time Interval No Mutation Mutation No-Mutation
Percentage

1 h 11204 4876 70.02%
2 h 9738 6702 58.32%
3 h 8709 7371 54.17%

Figure 9 shows the changes in daily temperature variables and crime number, and
their trends possess a certain relevance. Considering that the study area is a part of a city,
there is no significant spatial variation of temperature in this area. Thus, we only analyzed
the impact of temperature on crime data over time. A Pearson correlation analysis [63]
was used to examine the relationships between the daily temperature variables and crime
number. Table 3 shows the results. The daily temperature variables (average temperature,
highest temperature, and lowest temperature) are significantly highly correlative. We chose
the daily highest temperature, which is most relevant to the crime number, to use in the
crime number regression analysis [52]. The result (R2 = 30.9%) indicated that the highest
temperature can explain 30.9% of the variance in property crime.

4.2. Data Aggregation

Figure 10 shows the property crime distribution at different spatial resolutions from
January 2012 to October 2013. The information of different spatial resolutions of the study
area is shown in Table 4. There is a strong clustering characteristic for the crime distribution.
The cases are mainly concentrated in the center of the study area.
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Table 3. Correlation matrix for daily temperature and crime number.

Average
Temperature

Highest
Temperature

Lowest
Temperature Crime Number

Average
temperature - 0.987 ** 0.988 ** 0.539 **

Highest
temperature - 0.957 ** 0.556 **

Lowest
temperature - 0.512 **

Crime number -

** p < 0.01.
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Table 4. Different spatial resolutions of the study area.

Level of Layer Spatial Resolution Rows Columns

12th 9.6 km 8 9
13th 4.8 km 15 16
14th 2.4 km 28 32
15th 1.2 km 55 63

4.3. ST-ResNet Model for Crime Prediction in Suzhou

We divided the training data from 2012 between a training set and a validation
set at a proportion of 9:1. RMSE was employed as the evaluation metric to tune the
main hyperparameters to identify the optimal parameters for ST-ResNet models at each
resolution, including convolution kernel size, number of convolution kernels, network
depth, and length of closeness, period, and trend. The early stopping strategy was adopted
to prevent overfitting [64,65]. The training procedure stopped when the RMSE of the
validation set was not attenuated for 5 iterations.

We compared the RMSEs between predictions and validation data with different
parameters at each resolution. The optimal ST-ResNet model should be constructed
with a 3 × 3 convolution kernel size (Appendix A Table A1), 64 convolution kernels
(Appendix A Table A2), 8 residual network units (Appendix A Figure 1), and the 3 temporal
components (1 h, 1 day, and 1 week) (Appendix A Figure A2, Appendix A Figure A3,
Appendix A Figure A4, respectively). According to the previous analysis, the highest daily
temperature is proven to be a significant external factor affecting property crimes. In this
model, we selected highest daily temperature as the external component.

4.4. Selection of the Optimal Spatial Resolution

We ran models with optimal hyperparameters at different spatial resolutions (from
1.2 km to 9.6 km) and calculated the PAI of the prediction results (shown in Figure 11).
The highest PAI was achieved with a 2.4 km spatial resolution in our study area with
RMSE = 7.81.
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4.5. Evaluation of the Prediction Results

Based on the previous results, the optimal ST-ResNet model is conducted with a 2.4 km
spatial resolution. With the test dataset, we calculated its average evaluation indicator
values for its prediction results for PAI = 8.8.

Figure 12 shows the prediction results and the actual distributions at the different
four resolutions at 12 a.m. on 1 January 2013. Binary maps were adapted because the
crime prediction evaluation index PAI deals with a place being a crime hotspot or not
(binary). Colored grids represent the occurrence of crimes. In general, true prediction
results are concentrated in city centers, which are areas with high crime densities; in edge
areas, predictions are poor. Although the similarity between the prediction results and the
actual distributions decreases with increasing resolution, there is a trade-off between the
grid size and practical police force arrangement. PAI values of prediction results at a 1.2 km
resolution (Figure 12b), 2.4 km resolution (Figure 12d), 4.8 km resolution (Figure 12f), and
9.6 km resolution (Figure 12h) resolution are 2.7, 5.9, 9.8, and 3.3, respectively. Larger grid
cells can capture more criminal activities but lead to difficulties for police arrangements.
Finding crime hotspots with an appropriate grid cell size is crucial to arranging police
forces effectively.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 13 of 20 
 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 12. Cont.



ISPRS Int. J. Geo-Inf. 2021, 10, 314 13 of 19
ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 13 of 20 
 

 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 12. Comparison of model predictions and the actual distributions: (a) actual distribution of
property crime events at a 9.6 km spatial resolution; (b) visualization of the prediction results at a
9.6 km spatial resolution; (c) actual distribution of property crime events at a 4.8 km spatial resolution;
(d) visualization of the prediction results at a 4.8 km spatial resolution; (e) actual distribution of
property crime events at a 2.4 km spatial resolution; (f) visualization of the prediction results at a
2.4 km spatial resolution; (g) actual distribution of property crime events at a 1.2 km spatial resolution;
(h) visualization of the prediction results at a 1.2 km spatial resolution.
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5. Conclusions and Future Work

We proposed an adaptive spatial resolution method to select the best spatial resolution
for crime prediction at hourly temporal scales based on the ST-ResNet model. In this paper,
we discussed the property crime distribution characteristics and the corresponding weather
impact factors. Interactive relationships between crimes close in time were confirmed.
The periodic characteristic of crime in days and weeks was tested. Spatially, crimes are
often clustered, and the degrees of regional crime event clustering at different spatial
resolutions are distinct. A pyramid layering model was built to perform the information of
different resolutions. The method we proposed can improve the accuracy of the hourly
crime prediction model adopted in the research of Wang (2019) by selecting an optimal
resolution for it [29]. We believe the current results can be used to allocate police resources
more efficiently.

In this study, the results showed that the optimal unit of analysis was neither the
finest nor the broadest considered, but an intermediate unit. This is consistent with
the research of Ramos et al. (2020) and Malleson et al. (2019) [44,45]. Ramos et al. (2020)
recommended crime maps with intermediate granularity as being the most reliable, because
coarse granularities may mask crime hotspots and too-fine granularities may make crime
counts unstable and unrepresentative [45]. Similarly, Malleson et al. (2019) recommended
medium-granularity maps for point data aggregation because they can balance the benefits
of smaller units (important heterogeneity which will probably be hidden in larger units is
apparent when using smaller units) and the drawbacks of larger ones (including unstable
and unrepresentative crime counts) [44].

By contrast, some researchers concluded that “smaller is better” in granularity choice
for crime analysis [39,43]. These studies focus on the impact of the social environment
on crime level from a micro view. A micro-view analysis may provide the relationship
between crime level and its impact factors in small areas. However, these results cannot
be used for police deployment. Our method is used to find the most appropriate unit for
improving the hit rate of the predicted crime hotspots. The result is expected to improve
the local police deployment and deter crime.

Many factors can affect criminal behaviors, and their impact varies in different situ-
ations. The occurrence of crime is usually the result of multiple factors. This paper only
discusses the temperature factor, and the auxiliary explanation is insufficient. More factors
will be considered in future work. Their impact on crime will be analyzed and combined
to improve the interpretation of crime to improve the prediction accuracy.
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Appendix A

Table A1 lists the RMSEs between predictions and validation data at different spatial
resolutions with different convolution kernel sizes. The same hyperparameters were used:
number of convolution kernels = 16, network depth = 4, length of closeness = 1 h, length
of period = 1 day, length of trend = 1 week. The results showed that 3 × 3 is the optimal
convolution kernel size for the model. A larger kernel will cover a larger spatial region, but
for the same receptive field, the stacking of small multilayer kernels is beneficial to detect
more complex nonlinear features than a single-layer larger kernel [66].

Table A2 lists the RMSEs between predictions and validation data at different spatial
resolutions with different numbers of convolution kernels. The other parameters remain
the same. The number of convolution kernels varies between 16, 32, 64, and 128. The
RMSEs initially decrease with the increase in numbers of convolution kernels and reach
their minimum values when the number is 64. Although a large number of convolution
kernels can be used to accurately extract the distribution of features, too many convolution
kernels can lead to overfitting problems. The optimal number of convolution kernels for
the model is 64.

Figure 1 shows the influence of the network depth on the training results at different
spatial resolutions. The residual network unit represents the network depth. The depths
vary from 4 to 16 in step two. As the network goes deeper, the RMSEs initially decrease and
reach their minimum values when the depth is eight. Subsequently, the RMSEs increase.
Training difficulty and noise at the city fringe will be introduced with the addition of layers.
Thus, the optimal network depth for the model is 8 ResNet units.

The impacts of temporal components, including closeness, period, and trend at dif-
ferent spatial resolutions, are also verified. Figure A2 shows the variations in RMSEs at
different spatial resolutions with different lengths of closeness, where we fix the length
of period to 1 day and the length of the trend to 1 week. The RMSEs are minimal when
the length of closeness is 1 h. Compared with distant hours, crimes between two adjacent
hours are more relevant. Figure A3 shows the variations in RMSEs at different spatial
resolutions with different lengths of period where we fix the length of closeness to 1 h and
the length of the trend to 1 week. We can observe that RMSEs decrease as the length of the
period increases. A period length of 1 day leads to the best RMSEs, indicating that short-
range periods tend to be beneficial, while long-range periods may be difficult to model.
Figure A4 shows the variations in RMSEs at different spatial resolutions with different
lengths of trend, where we fix the length of closeness to 1 h and the length of period to
1 day. We can see that a trend length of 1 week leads to the best performance. Similar to
periods, long-range trends may be more difficult to capture.

Table A1. RMSEs at different spatial resolutions with different convolution kernel sizes.

3 × 3 5 × 5 7 × 7

2.4 km 8.553 8.590 9.047
4.8 km 8.607 10.807 10.819
9.6 km 11.422 11.504 78.614

Table A2. RMSEs at different spatial resolutions with different numbers of convolution kernels.

16 32 64 128

2.4 km 8.670 8.639 8.553 8.604
4.8 km 8.883 8.760 8.607 8.659
9.6 km 11.386 11.258 11.222 11.331
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