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Abstract: Experiential learning through outdoor labs is an integral component of surveying educa-
tion. Cancelled labs as a result of weather, the inability to visit a wide variety of terrain location, 
recent distance education requirements create significant instructional challenges. In this paper, we 
present a software solution called surveying reality (SurReal); this software allows for students to 
conduct immersive and interactive virtual reality labs. This paper discusses the development of a 
virtual differential leveling lab. The developed software faithfully replicates major steps followed 
in the field and any skills learned in virtual reality are transferable in the physical world. Further-
more, this paper presents a novel technique for leveling multi-legged objects like a tripod on varia-
ble terrain. This method relies solely on geometric modeling and does not require physical simula-
tion of the tripod. This increases efficiency and ensures that the user experiences at least 60 frames 
per second, thus reducing lagging and creating a pleasant experience for the user. We conduct two 
leveling examples, a three-benchmark loop and a point-to-point leveling line. Both surveys had a 
misclosure of 1 mm due to observational random errors, which demonstrated that leveling can be 
conducted with mm-level precision, much like in the physical world. 

Keywords: engineering education; surveying; virtual reality; virtual laboratories; immersive and 
interactive 
 

1. Introduction 
Virtual reality (VR) in an educational setting reduces passive learning that students 

often experience in the classroom. Instead, students using VR engage in active learning, 
which is more immersive and engaging [1]. VR can be used to address the practical chal-
lenges in education, such as physically inaccessible sites, limitations due to liability or 
hazards, and the high costs associated with site visits [2]. VR has been used as an educa-
tional and instructional tool as early as the 1980s (e.g., flight simulations) [3,4]. In higher 
education, VR was introduced in the 1990s; however, limitations such as high purchase 
and maintenance cost, physical and psychological discomfort of the users, and poor vir-
tual environment design were the main reasons for prohibiting widespread dissemination 
[4]. The reduction in the cost of computer and VR hardware, increase of computer power, 
and photorealistic computer graphics allowed a rapid rise in desktop-based virtual tech-
nology in education. However, a major drawback of traditional application is the low 
level of immersion as the user interacts with the virtual environment via a standard com-
puter monitor, mouse, and keyboard. This limits the presence, experience, and engage-
ment of the user [5]. Several studies for various purposes, such as U.S. army training, 
medicine, engineering, and elementary education, have found that immersive VR leads 
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to increased learning [6–9]. In addition, Patel et al. [10] found that, in physical tasks, par-
ticipants learn more in immersive VR than using 2D video systems. In contrast, other 
studies found that immersive VR had no significant effect on learning [11,12]. Immersive 
VR has a significant advantage over desktop-based systems when teaching topics that re-
quire special reasoning [13–16]. The main two types of immersive VR are (i) cave auto-
matic virtual environments, where the walls of a room are covered with displays and the 
user wears 3D glasses; and (ii) head mounted displays (HMDs), where the user wears a 
display device to see the virtual environment and touch controllers or gloves to interact 
with it. The high cost of the former prohibits its widespread use [2]. Only in recent years, 
since the founding of Oculus in 2012, has widespread VR accessibility become feasible 
with a large reduction in price and an improved user experience. This has created the 
opportunity for application in engineering education and related disciplines. For example, 
immersive VR has supported engineering design [17] in construction engineering. VR has 
been used for visualization, safety training, training of the use of equipment such as cranes 
[18], geohazard visualization and assessment [19], simulating of a marine engine room for 
training marine engineers [20], and training for beginners on radiation shielding in nu-
clear engineering [21]. Furthermore, immersive VR has found applications in geography, 
geosciences, and spatial sciences [22,23]. Some recent examples include the use of VR to 
conduct virtual field trips to outcrop sites and take measurements about the rock charac-
teristics (e.g., thickness or rocks layers) [24,25], studying the internal system of volcanos 
[26], and a serious game of a moon base to motivate and support space research [27]. 

Previous virtual implementations of surveying tasks were desktop-based [28–31]. For 
instance, Dib et al. [28] created a differential leveling lab in desktop-based VR to assist 
student comprehension of concepts and practices. Differential leveling is the process of 
finding elevation differences between points [32]. This method can be used to establish 
new vertical control points in surveying. The authors found that virtual learning environ-
ments aid students’ declarative and procedural knowledge, which shows great potential 
of VR technology for surveying engineering education. However, student answers to 
open-ended questions revealed the limitation of non-immersive VR, as students found 
that navigation in flying motion was difficult and they would prefer a camera attached at 
the eye level of the character [28]. Another desktop-based attempt was SimuSurvey and 
SimuSurvey X, developed by [29–31], which simulated manipulation of surveying instru-
ments. Furthermore, the software simulated instrument errors and their interaction, 
which aided student comprehension of instrument operation and systematic erratic be-
havior [33]. Assessment of the software in surveying education showed an improvement 
of student academic performance [34]; however, some of the identified limitations were 
the inability to read measured data and decision-making of surveying procedures in a 3D 
environment that includes terrain constraints [34]. In addition, the desktop-based envi-
ronment created challenges in instrument operation and changing view angles. This is 
because desktop-based environments cannot mimic hand movement and real instrument 
operation. The user needs to switch between several viewpoints to navigate through the 
virtual environment; this is unnatural and cumbersome, reducing realism and the immer-
sion of the virtual lab. Other simpler attempts include software for training students on 
how to read a leveling rod [35] and control point selection for terrain modeling [36]. In 
surveying engineering, students must operate complicated instruments with several com-
ponents. These tasks require hand-eye coordination as well as 3D spatial awareness. The 
above examples demonstrate the limitations of desktop-based implementation of VR and 
the need to move into immersive implementations to create a sense of naturalism in nav-
igation and movement. Immersive VR has only recently found its way into surveying en-
gineering [37–39]. Bolkas and Chiampi [37] proposed that immersive VR labs can be used 
to address challenges in first year surveying engineering education related to cancellation 
of outdoor labs as a result of weather (rain and snow) and the inability to conduct labs in 
various terrains and sites (e.g., different terrains, cities, and construction sites). The recent 
coronavirus pandemic pushes universities to remote learning, but also opens the door for 
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implementation of novel remote learning methods. However, there are still some im-
portant barriers related to hardware cost to allow for the widespread application of im-
mersive VR for remote learning. Therefore, desktop-based VR is still the most suitable 
platform for remote learning purposes of surveying labs. The first results in Bolkas et al. 
[38] of an immersive and interactive leveling lab (a leveling loop) were promising, but 
despite the positives, the main drawbacks of immersive VR are symptoms of nausea and 
dizziness for novice users. Their effect tends to subside with time. Levin et al. [39] is an-
other example of immersive VR implementation in surveying. The authors created a topo-
graphic exercise to generate contours in a simulated terrain of varying complexity. The 
contours created by students were compared with reference ones, showing practical as-
pects of terrain modeling. Their example demonstrates the value of VR to address educa-
tion challenges; however, the implementation was simple, missing several important 
parts of the fieldwork, such as centering the tripod, work with tribrach screws, and instru-
ment leveling. 

To address these educational challenges, we have developed a virtual reality soft-
ware solution named SurReal—surveying reality. This software simulates surveying labs 
in an immersive and interactive virtual environment. The application replicates, to a high 
degree of fidelity, a differential level instrument, but can also incorporate additional in-
struments, a variety of terrains, and can be used in a variety of surveying scenarios. 

This paper focuses on the technical aspects of the software and the main objective is 
to present and discuss the main software features, the encountered challenges, and the 
methods developed to overcome them. Of note is our novel technique that was developed 
for the positioning of complex objects (like a tripod) on complex surfaces in VR with low 
computational load. Complex objects are becoming ever present as the intricacy of simu-
lations and games is increasing; therefore, it is important to maintain a low computational 
load that will not affect the performance of the virtual simulation. This paper is structured 
into separate sections pertinent to the main features of the software. We then provide 
demonstrations of our virtual differential leveling labs, i.e., a three-benchmark leveling 
loop and a point-to-point leveling line. The final section summarizes the main conclusions 
of this paper and discusses remarks for future work. 

2. Materials and Methods 
2.1. Development Platform, Hardware, and User Interface 

The software is in continuous development using an Agile Software Development 
methodology. Features and bugs are tracked via Microsoft Planner and tasks are distrib-
uted during frequent scrum meetings. A private GitHub code repository facilitates devel-
opment and versioning. New features are developed in branches before being merged 
into the master after passing testing. Alpha testing is routinely conducted by team mem-
bers. Issues and changes are then added to Microsoft Planner before being addressed at 
the next scrum meeting. Occasionally, surveying students, from outside of the project, use 
the software and act as a small-scale beta test. This methodology allows us to quickly im-
plement changes and improve the software. 

To choose a development platform, we compared the Unity game engine with the 
Unreal game engine. Both game engines support VR development and have similar fea-
ture sets. Unity uses C# and Unreal uses C++. Although both languages are similar, there 
were significant advantages to C#, such as allowing for faster iteration and being easier to 
learn. Furthermore, Unity 3D has a more active development community, as it is the most 
popular game engine for educational and training VR applications [40]. With respect to 
hardware, we considered the Oculus Rift and HTC Vive. Price points between the Oculus 
Rift and HTC Vive were similar. We decided on the Oculus Rift after examining both soft-
ware development kits (SDKs), looking at the documentation, and performing a trial run 
with both devices. The system requirements of the software are based on the system re-
quirements of Oculus Rift, which can be found in [41]. 
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Interaction with virtual objects can be broken down into two categories: (i) selection 
and (ii) grabbing. The interaction is controlled through controllers (Figure 1). 

Grabbing: This is where the user can physically grab the object by extending their 
hand, holding it, and dropping it in a new position. This interaction is very intuitive and 
feels fluid even for new users with no experience in VR (see Figure 1). 

Selection: In the real-world, surveyors must adjust tripod legs, screws, and knobs by 
making fine movements using their fingers. Such movements are difficult to simulate in 
VR because of tracking limitations; thus, a selection and menu method was developed. 
Oculus provides a very basic form of user interface (UI) control; we, therefore, built a 
custom UI system to work seamlessly in VR. This system uses a pointer to select UI ele-
ments and interact with them. With a basic piece of equipment, the entire object is selected 
no matter what part the user selects. With more complex objects, which are broken down 
into standalone individual components, the user can select them and interact with them 
separately. When the user has an object selected, a menu for that object will appear. We 
handle menus as a screen on a virtual tablet held in the player’s nondominant hand. 

In the main menu of the virtual tablet (Figure 2a), the user can access basic software 
functions that are useful for the virtual labs: marking the position, which drops a tempo-
rary point; open the pedometer for counting paces; and open the lab instructions, which 
opens a PDF with lab instructions for students (Figure 2b). Students can open the 
fieldbook to access their notes and make modifications. The “open settings” option allows 
students to mute ambient sounds of the virtual environment. From settings, the students 
can select the lefty mode, switching the selection pointer to their left hand (Figure 2c). At 
the top right corner of the main menu, there are three additional options, i.e., save pro-
gress, export a lab report in PDF, and an option to open a map of the area (Figure 2d). 

 
Figure 1. Example of grabbing, moving, and snapping of the leveling rod on a monument: (a) 
grabbing the rod; (b) the rod snapped on the surveying monument. 
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Figure 2. Virtual tablet: (a) main menu; (b) lab instructions; (c) settings and lefty mode; (d) virtual 
map. 

2.2. The Ready Room and Virtual Environment 
When students start the software application, they are brought into a virtual envi-

ronment we call the “ready room” (Figure 3). Here, students can log into their account to 
access the software (Figure 3a). The login options were included to authenticate and au-
thorize the users. In addition, this enables a student to start a lab on one machine and 
complete it on another (Figure 3b). Through the ready room, students can choose which 
virtual environment and which lab that they want to use. Currently, we have two leveling 
labs, the first is a three-benchmark loop and the second is a level line. Our future work 
will expand the available labs to include additional instruments (e.g., total stations and 
global navigation satellite system) and more tasks (e.g., setting control and collecting data 
for topographic mapping). 
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Figure 3. The virtual reality ready room: (a) log in; (b) load or create a new lab; (c) location selec-
tion; (d) lab selection. 

An integral component of any VR software, game, or application is the virtual envi-
ronment. Through the environment, users can navigate, explore, and experience the main 
software features. In VR, the environment is key to create a feeling of “being there”. The 
first environment we created was a part of the Penn State Wilkes-Barre campus, where 
surveying students often complete their physical labs. This served as validation for using 
point cloud technologies, namely aerial photogrammetry from small unmanned aerial 
systems (sUAS) and terrestrial laser scanning, to create a realistic environment (terrain 
and objects) [42]. Such technologies capture geometric information at the few cm-level, 
thus allowing for accurate geometric representation of real scenes in VR. Point cloud tech-
nologies have been used to create virtual environments in several disciplines such as in 
gaming and filmmaking, preservation of cultural heritage, and geoscience for field trips 
[43–48]. Another essential aspect of virtual environments is textures, as they give a sense 
of realism. To create realistic textures, we used close-up pictures and applied them as ma-
terials on the 3D objects [42]. Figure 4 shows an example of the virtual environment. The 
second environment available in the current version of the software is the Windridge City 
[49]. This environment is offered free and ready to use by Unity. We use the Windridge 
City to simulate urban surveys within the software. The software can support several en-
vironments and labs, and more environments with different terrains will be added in the 
future. 
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Figure 4. Virtual environments: (a) Penn State Wilkes-Barre; (b) Windridge City by Unity; (c) im-
mersed view of the Penn Stat Wilkes-Barre environment; (d) immersed view of the Windridge 
City environment. 

2.3. The Leveling Rod 
For the leveling rod, markings were created in Photoshop and turned into a texture 

in Unity. The user can grab and drop the rod in any location. In early versions of the soft-
ware, the user had to perform a trial-and-error approach to achieve precise centering on 
a location (e.g., surveying monument or turning point), and centering was difficult, time-
consuming, and counterproductive. To simplify this approach, we allow the rod to snap 
precisely on monuments or turning points when the rod touches the monument or turning 
point. 

In real life, a surveyor will hold the rod with a circular bubble attached to it, trying 
to level it. Such a hand movement cannot be replicated with high accuracy in VR; therefore, 
a different approach using the virtual tablet was followed. By selecting the rod, the user 
can see a menu with three axes on the virtual tablet and see the leveling state of the rod 
(Figure 5a). The virtual bubble moves out of the edges of the circular vial when the rod is 
leveled to within 1° (the circular vial ranges from −1° to +1°). There are two controls in 
each axis. The first control moves a slider that allows for coarse rotations for approximate 
leveling of the rod. Then, using the arrow buttons, the user applies finer rotations for pre-
cise leveling of the rod. The fine arrows make changes of 0.01° (36′′) each time. This allows 
for leveling the rod within 30′′ to 1′ in most cases. Figure 5b shows an example of the rod 
being leveled. With this workaround, students understand that they have to level the rod 
before moving to the next lab step, thus maintaining this specific learning objective. Fi-
nally, the user can expand and collapse the rod as needed in one-meter intervals up to five 
meters (see “Height” slider in Figure 5). 
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Figure 5. Leveling the rod: (a) the rod is not leveled; (b) the rod is leveled. Note that, in Unity, y- is 
used as the vertical axis and not the z-axis. 

2.4. The Differential Level Functions 
For the differential level instrument, we created a model based on a Topcon AT-G3 

instrument. This instrument is attached to the tripod, because, in differential leveling, cen-
tering is not necessary, and in the field, surveyors often transport the differential level 
instrument mounted on the tripod. As with the rod, the user can reach towards any tripod 
leg grab and move the tripod and instrument to a different location. 

Most components in the tripod and level are selectable, giving them separate func-
tionality, namely, these are tripod legs, tribrach screws, telescope, peep sight, focus knob, 
and eyepiece. As with the rod, these individual components are controlled via the virtual 
tablet. The instrument focus is simulated through blurring of the picture with a distance-
dependent component and a focus capability from 0 to 150 m. Figure 6a,b show the in-
strument view before and after focusing. Note that, in Figure 6b, the crosshair is still blurry. 
The user needs to select the eyepiece and focus the crosshair (Figure 6c). Then, by selecting 
the peep sight, the user has a coarse rotation of the instrument (Figure 6d), which allows 
the user to approximately aim towards the rod. The field of view of this coarse rotation is 
20°. The student can then select the main body of the instrument, which brings the fine 
rotation view and allows for precise aiming (Figure 7a). The field of view in the fine view 
is 1°30′, similar to the Topcon instrument used as the model. The user can go towards the 
instrument and lean towards the telescope to make a measurement (Figure 7b). However, 
reading the rod by leaning towards the instrument can be difficult in VR because of clip-
ping (when the camera intersects the object); therefore, users can make observations using 
the projected telescope view on the virtual tablet. For recording measurements, students 
have a virtual fieldbook. The virtual fieldbook is set up like a typical spreadsheet with 
numerous cells that are selectable (Figure 8). When they are finished with a lab, they are 
able to press an export button (see bottom right corner in Figure 8) and have the entire 
fieldbook exported in CSV format for use elsewhere. 

The tripod legs and tribrach screws control the leveling of the instrument. As move-
ment of tripod legs and tribrach screws is associated with terrain undulations, a technique 
had to be developed to position the entire device based on the leg lengths as well as the 
terrain it was resting on. The following subsection goes into depth on the efficient tech-
nique we developed that is used to calculate the proper position and rotation of the dif-
ferential level instrument. 
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Figure 6. Additional instrument functions: (a) focus knob showing instrument view before focus-
ing; (b) focus knob showing instrument view after focusing; (c) focusing of the eyepiece; (d) coarse 
rotation using the peep sight. 

 
Figure 7. Making a measurement: (a) fine rotation that allows view for observation; (b) telescope 
view from the instrument. 



ISPRS Int. J. Geo-Inf. 2021, 10, 296 10 of 24 
 

 

 
Figure 8. Virtual fieldbook and recording of measurements. 

2.5. Efficient Tripod Positioning 
When simulating 3D objects in VR, low polygon objects are simple to render, while 

complex objects such as water are much more resource-intensive to simulate. A naive ap-
proach is to fully simulate these objects as physical entities (with mass, velocity, and po-
sition parameters) in a physics engine. This physical simulation takes up vast amounts of 
compute resources, and the cost grows exponentially as more complexity is introduced 
[50,51]. This either slows the 3D game or requires a powerful computer, especially when 
an object is being tracked in real time [50,52]. Tracking a complex 3D object necessitates 
finding its position and rotation with respect to the reference frame in the virtual world. 
These are increasingly difficult to calculate as more complex shapes are placed on more 
complex surfaces. This process can be cut down dramatically if the entire process of phys-
ical simulation is eliminated. We have developed a novel technique for the positioning of 
complex objects on complex surfaces without the use of large amounts of computational 
overhead. Going forward, it is assumed we are talking about objects with no unique phys-
ical characteristics such as bounciness or slipperiness where a physical simulation would 
be inevitable. We seek to implement this process while maintaining a smooth and immer-
sive experience to retain the benefits of VR [6–9]. 

Our technique was originally developed for use with a tripod of varying length legs, 
and as a result, it works on any object with varying length legs or support points. The 
technique can be extended to objects with an unlimited finite number of supporting points, 
on any type of varying terrain. The process can be broken down into two main phases, the 
positioning phase and the rotating phase. To position the object, it is necessary to know 
the endpoint positions of each of the supports, for instance, the positions of the ends of 
the tripod legs. Given these points, we can then find an average point from these support 
points, where the object should rest (Figure 9a). We also need to find the corresponding 
ground point below the tripod, which is calculated from the intersection of the tripod legs 
with the ground (when the tripod intersects the ground) or the extension of the tripod 
legs, following the vertical direction, and the apparent intersection of them with the 
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ground (when the tripod is on the air) (Figure 9a). The average three dimensional vectors 
are found as follows: 𝒑௔௩௚௢௕௝ = ቈ∑ 𝑥௜௢௕௝௡௜ୀଵ𝑛 , ∑ 𝑦௜௢௕௝௡௜ୀଵ𝑛 , ∑ 𝑧௜௢௕௝௡௜ୀଵ𝑛 ቉ (1)

𝒑௔௩௚௚௡ௗ = ቈ∑ 𝑥௜௚௡ௗ௡௜ୀଵ𝑛 , ∑ 𝑦௜௚௡ௗ௡௜ୀଵ𝑛 , ∑ 𝑧௜௚௡ௗ௡௜ୀଵ𝑛 ቉ (2)

where 𝒑௔௩௚௢௕௝  is the average three-dimensional vector of the object (tripod) calculated at the 
support points (endpoints of the tripod legs); 𝑛 is the number of support points; and 𝑥௜௢௕௝, 𝑦௜௢௕௝, and 𝑧௜௢௕௝ are the coordinates of the 𝑖th support point. 𝒑௔௩௚௚௡ௗ is the average three-
dimensional vector of the ground, calculated as the intersection between the support 
points and ground or their apparent intersection in the case where the tripod is being held 
on the air. Terms 𝑥௜௚௡ௗ, 𝑦௜௚௡ௗ, and 𝑧௜௚௡ௗ are the corresponding ground coordinates of the 𝑖th support point. 

 

Figure 9. Effective tripod positioning and leveling: (a) calculation of the average point for the object (tripod) and ground; 
(b) two vectors between the leg endpoints form a hyperplane. 

By aligning 𝒑௔௩௚௢௕௝  to 𝒑௔௩௚௚௡ௗ, we can position the object (tripod) to the ground. The next 
step is to align the normals that are formed by the support points and their intersection to 
the ground. We first get a normal of the object’s average point perpendicular to the hy-
perplane of the supporting points. Similarly, we can get a normal of the ground’s average 
point perpendicular to the hyperplane at the intersection of the supporting points with 
the ground. A hyperplane is formed by simply taking two vectors between the endpoints, 
as shown in Figure 10b. The vectors of the object hyperplane can be found using the fol-
lowing formulas: 𝒗ଵ,ଶ௢௕௝ = 𝒑ଵ௢௕௝ − 𝒑ଶ௢௕௝ (3)𝒗ଵ,ଷ௢௕௝ = 𝒑ଵ௢௕௝ − 𝒑ଷ௢௕௝ (4)

where 𝒗ଵ,ଶ௢௕௝  and 𝒗ଵ,ଷ௢௕௝  are the hyperplane vectors for the object and 𝒑ଵ௢௕௝ =ൣ𝑥ଵ௢௕௝ 𝑦ଵ௢௕௝ 𝑧ଵ௢௕௝൧୘
, 𝒑ଶ௢௕௝ = ൣ𝑥ଶ௢௕௝ 𝑦ଶ௢௕௝ 𝑧ଶ௢௕௝൧୘

, and 𝒑ଷ௢௕௝ = ൣ𝑥ଷ௢௕௝ 𝑦ଷ௢௕௝ 𝑧ଷ௢௕௝൧୘
are the 

position vectors of the endpoints. For the ground hyperplane, we similarly have the fol-
lowing: 
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𝒗ଵ,ଶ௚௡ௗ = 𝒑ଵ௚௡ௗ − 𝒑ଶ௚௡ௗ (5)𝒗ଵ,ଷ௚௡ௗ = 𝒑ଵ௚௡ௗ − 𝒑ଷ௚௡ௗ (6)

where 𝒗ଵ,ଶ௚௡ௗ  and 𝒗ଵ,ଷ௚௡ௗ  are the hyperplane vectors for the ground and 𝒑ଵ௚௡ௗ =ൣ𝑥ଵ௚௡ௗ 𝑦ଵ௚௡ௗ 𝑧ଵ௚௡ௗ൧୘
, 𝒑ଶ௚௡ௗ = ൣ𝑥ଶ௚௡ௗ 𝑦ଶ௚௡ௗ 𝑧ଶ௚௡ௗ൧୘

, and 𝒑ଷ௚௡ௗ = ൣ𝑥ଷ௚௡ௗ 𝑦ଷ௚௡ௗ 𝑧ଷ௚௡ௗ൧୘
 

are the position vectors of the points formed by the intersection of the supporting end-
points to the ground. 

 
Figure 10. Example of the tripod positioning: (a) tripod is held in the air, the object and ground 
normal are shown; (b) the object normal is aligned with the ground normal when the user drops 
the tripod. The y-axis, which defines the vertical (up-down) direction in Unity, is also shown for 
reference. The instrument should be aligned with the vertical direction to be considered leveled. 

We can get the normal of this hyperplane by taking the cross product of these two 
vectors and finding the object normal and ground normal: 𝒏 =  −(𝒗ଵ,ଶ௢௕௝ × 𝒗ଵ,ଷ௢௕௝) (7)𝒈 =  −(𝒗ଵ,ଶ௚௡ௗ × 𝒗ଵ,ଷ௚௡ௗ) (8)

where 𝒏 is the object normal and 𝒈 is the ground normal. If the support points are at 
equal height on flat terrain, then the object normal points directly in the up direction. In 
addition, if the support points move (e.g., when the tripod leg is extended), this object 
normal moves as well. The rotation of the tripod can be achieved if we simply align the 
object and ground normal vectors. The rotation angles are found as follows: 𝒂 = cosିଵ ൬ 𝒏 ∙ 𝒈|𝒏||𝒈|൰ (9)

where 𝒂 is a vector of the three rotation angles. When the object is rotated along the x-
axis and z-axis angles (the y-axis rotation along the up and down direction is discarded), 
the support points become aligned with the ground, which completes the process. Figure 
10a shows an example of the object and ground normals when the tripod is held in the air, 
and Figure 10b shows that the two normals align when the user drops the tripod. 

2.6. Leveling of the Differential Level 
2.6.1. Virtual Circular Bubble 

When the user is making efforts to adjust tripod legs and screws, it is important to 
provide them with the same way of feedback in real time via a virtual circular bubble 
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(Figure 11). The bubble is controlled directly from the rotation of the telescope’s vertical 
axis with respect to the up direction (y-axis in Unity). In the physical world, the up direc-
tion would correspond to a plumb line. To provide the circular bubble feedback to the 
user, we take the x-axis and z-axis rotation values and map these values onto a circle using 
the square to circle formulas: 

𝑋 =  𝑢  ඨ1 − ቆ𝑣ଶ2 ቇ   (10)

𝑍 =  𝑣  ඨ1 − ቆ𝑢ଶ2 ቇ (11)

where 𝑋 and 𝑍 are the corresponding cartesian coordinates to plot the bubble in the cir-
cle of Figure 11, and 𝑢 and 𝑣 are the rotation angles with respect to the x-axis and z-axis, 
respectively. The local circular bubble space is rotated when the instrument is rotated 
about the y-axis, which gives an accurate representation of the rotation of the equipment 
and bubble system, much like in the real world (Figure 11). The 𝑢 and 𝑣 rotation angles 
include the rough rotation of the tripod (coarse leveling) and the precise rotation of the 
tribrach screws (precise leveling) as follows: 𝑢 =  𝑢ᇱ + 𝑢ᇱᇱ (12)𝑣 =  𝑣ᇱ + 𝑣ᇱᇱ (13)

where 𝑢ᇱ and 𝑣ᇱ are the rotation angles of the object normal (tripod movement) when 
the tripod is rotated about the y-axis, and 𝑢ᇱᇱ and 𝑣ᇱᇱ are the rotation angles of the tele-
scope (tribrach movement) when the instrument is rotated about the y-axis. 

 
Figure 11. Circular bubble feedback: (a) bubble view on virtual tablet and instrument; (b) circular 
bubble is roughly leveled. 

2.6.2. Rough Leveling (Tripod Legs) 
Rough leveling of the instrument commences when the user adjusts the tripod legs, 

which roughly aligns the object normal with the “up” direction (𝑢ᇱ and 𝑣ᇱ rotation angles 
from Equations 12 and 13). Then, the tribrach screws are used to achieve precise leveling 
of the instrument, which aligns the telescope axis, which is perpendicular to the tele-
scope’s collimation axis, with the up direction (y-axis). The user can select each individual 
tripod leg (e.g., Figure 11). Using the sliding bars and fine control arrows (Figure 11a), the 
user can expand or collapse each leg by about 50 cm to achieve approximate/coarse level-
ing. The coarse circular vial depicts an area that ranges from −3° to +3°, and the fine arrow 



ISPRS Int. J. Geo-Inf. 2021, 10, 296 14 of 24 
 

 

buttons change the rotation by 1′. Therefore, after this step, the instrument will be a few 
degrees to a few minutes from being leveled. 

2.6.3. Precise Leveling (Screw Rotation) 
The tribrach screws create a fine rotation between the telescope’s vertical axis and the 

up direction. In the physical world, the rotation of the screws translates to a physical 
change in the height of the tribrach screws. In VR, when the user rotates the screws, the 
telescope is relatively rotated with respect to the screws. The screws’ “pseudo heights” 
vary from −1 to 1 (unitless). Then, we can assign a rotational range of values to those val-
ues. In this implementation, we have assigned −1 to correspond to a rotation of −3° and 1 
to correspond to a rotation of +3°. By changing this correspondence, we can increase or 
decrease the allowable tilt of the telescope. We map the three “pseudo height” values of 
the screws to the x- and z-axis rotation of the telescope. Recall that, in Unity, the y-axis 
corresponds to the up axis. We do this mapping by using the left screw for the positive x-
axis rotation and half of the negative z-axis rotation (assuming the front is facing in the 
positive x-axis direction), the right screw as the negative x-axis rotation and half of the 
negative z-axis rotation, and the back screw as the positive z-axis rotation. The actual for-
mulas for finding the rotation values are as follows: 𝑢ᇱᇱ  =  𝑙2  − 𝑟2 (14)

𝑣ᇱᇱ  =  𝑏 − ൬𝑙2  + 𝑟2൰ (15)

where 𝑢ᇱᇱ is the x-axis rotation of the telescope in degrees, 𝑣ᇱᇱ is the z-axis rotation of the 
telescope in degrees, 𝑏 is the back screw height, 𝑙 is the left screw height, and 𝑟 is the 
right screw height. For example, in our implementation, if the left screw is moved by 0.5 
and right screw remains 0, then the 𝑢ᇱᇱ value becomes 0.25, which, in degrees, corre-
sponds to 0.75°. With the back screw also at 0, the 𝑣ᇱᇱ value becomes −0.25, which, in de-
grees, corresponds to −0.75°. The combination of screw and leg adjustments by the user 
leads to a leveled instrument as in real-life surveying. 

3. Results and Discussion 
3.1. Efficient Tripod Positioning 

In surveying, the legs on the tripod are adjusted to level the instrument based on the 
encountered ground shape. The positioning must be recalculated in every frame to give a 
smooth transition. For a pleasant and optimal VR experience, the rate of switch, called 
frames per second (FPS), should be maintained at least at 60 FPS [53], while Oculus rec-
ommends 90 FPS [54]. Figure 12 shows a performance comparison when a full physics 
simulation of the tripod legs is used (Figure 12a) versus our technique (Figure 12b). The 
dark green color shows the execution time allocation due to rendering, the blue is our 
code implemented with physics, the orange is other related physics functions in Unity, 
and the light green is background functions of Unity. When the full simulation is used, 
frames routinely spike to 66 ms, which corresponds to 15 FPS and results in unpleasant 
lag. The process using our technique takes far less than 10 ms, maintaining 60 FPS. There-
fore, our approach does not create any additional burden. We found this performance 
improvement to be vital to the simulation, as smooth adjustments of different pieces of 
equipment would not be possible without it. The computer system used for this simula-
tion had an Intel i7-8700 CPU (3.2 GHz), 64 GB of RAM, and a NVIDIA GeFORCE GTX 
1060 6GB GPU. 



ISPRS Int. J. Geo-Inf. 2021, 10, 296 15 of 24 
 

 

 
Figure 12. Simulation performance with full physical simulation of tripod legs versus our technique: (a) full physical sim-
ulation of the tripod legs; (b) our technique. The y-axis shows execution time in milliseconds and the frames per second 
(FPS) are shown in parenthesis. 

3.2. Leveling of the Differential Level Instrument 
Figure 13 shows the tripod roughly leveled (within ± 3°) and the object normal 

roughly aligned with the y-axis after manipulation of the tripod legs in VR. Next, the user 
moves to precise leveling using the tribrach screws. To make manipulation of tribrach 
screws more realistic, we color coded the tribrach screws, and restricted the user to select 
up to two screws at a time (Figure 14a). The plus signs add a corresponding tribrach screw 
to the level menu and the minus signs remove them. For example, in Figure 14a, the green 
and blue screws have been added. This resembles the main leveling technique used by 
surveyors of moving the two tribrach screws first and then the third one separately. In 
this example, the third screw is the red one. In earlier versions of the software [38], the 
circular level vial in Figure 14a depicted a range of −1° to +1°, and the fine arrow buttons 
changed the rotation by 0.01° (36′′). For leveling operations, this is not sufficient to achieve 
high leveling accuracy, as automatic levels are equipped with compensators that often 
allow leveling to within ±0.3′′ and can achieve accuracies of about 1 mm in 1 km [32]. This 
was changed to a two-step approach for the tribrach screws. The ranges in the circular 
level vials in Figure 14a were made the same as the tripod legs, thus the vial now depicts 
a range of −3° to +3°, and the fine arrow buttons change the rotation by 1′. Then, by select-
ing a toggle button, the user moves to a second, zoomed/precise, circular vial screen that 
allows precise leveling (Figure 14b). In this second screen, the vial depicts a range of −3′ 
to +3′ and the fine arrow buttons change the rotation by 1′′. This means that the instrument 
can now be leveled to within 1′′ by the users, which corresponds to an error of 0.5 mm at 
100 m. Students are not expected to conduct level loops that are longer than 100–200 m, 
as that would necessitate very large virtual environments and spending more than 20–30 
min in VR. This can increase nausea symptoms [55–57] and, therefore, this level of preci-
sion is sufficient for most surveying virtual labs. It is also worth noting that we can add a 
small “fixed” tilt to the telescope and replicate the collimation error [38]. This is a great 
addition for demonstration purposes and creating special labs with a focus on balancing 
the backsight and foresight distances or with a focus on calibration of level instruments 
and estimation of the collimation correction. 
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Figure 13. Tripod leg adjustment: (a) adjustment of one leg; (b) the tripod is roughly leveled. 

 
Figure 14. Precise leveling of the differential level instrument: (a) adjusting tribrach screws, the 
toggle indicates that the vial shows a range of −3° to +3°; (b) adjusting tribrach screws, the toggle 
indicates that the vial shows a range of −3′ to +3′, allowing for leveling to within 1′′. 

3.3. Instructional Feedback 
In such experiential learning settings, after the completion of surveying labs, it is im-

portant for students to check their achieved accuracy and identify any mistakes during 
data collection. Through reflection and discussion with the instructor, the students can 
gain experience, improve their skills, and make connections between theory with practice. 
In physical labs, it is often difficult for instructors to provide meaningful feedback, as in-
formation about the instrument’s condition during a measurement is not often available. 
In addition, students often make mistakes in their observations, which leads to large mis-
closures (i.e., the survey does not meet the accuracy requirements), but it is often impos-
sible for the instructor and students to identify blunder measurements in leveling. Virtual 
reality can address these challenges as the instrument’s condition during a measurement 
is known, and we can mathematically derive the true measurements that students should 
observe. 

The PDF lab report is an important instruction tool of the software, as it provides 
meaningful feedback to students. Every time the user accesses the fieldbook to record a 
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measurement, we capture the conditions of the environment. Specifically, we capture the 
time of how much off-level is the rod, how much off-level is the instrument, the distance 
between the instrument and rod, the true rod measurement, the elevation difference be-
tween the instrument and the rod, and the focus state of the instrument, as well as a 
screenshot of the rod and the fieldbook. Thus, students can compare actual and observed 
measurements, understand their errors, and identify mistakes in their surveying proce-
dures. 

Figure 15a shows a real case example, where the user recorded a measurement, but 
did not accurately level the instrument. The recorded measurement is 0.496 m. The user 
realized it and went back to relevel both the rods and instrument (Figure 15b). The rec-
orded measurement is now 0.482 m. In addition, we see that the true measurement (the 
measurement that the user should have observed for the given leveling state of the instru-
ment and rod) is within 1 mm of the observed measurement. This kind of feedback is 
unattainable during physical labs and can help students reflect on their mistakes and im-
prove their surveying skills as well as comprehend theoretical concepts in greater depth. 

 
Figure 15. Feedback examples when users record a measurement in their fieldbook: (a) when the 
differential level instrument is not accurately leveled; (b) when the differential level instrument is 
precisely leveled. 

3.4. Virtual Leveling Examples 
We provide two comprehensive leveling examples to demonstrate how differential 

leveling can be done in VR. Figure 16a shows the leveling exercise for the first example, 
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which is a three-benchmark loop. The figure shows the benchmark (BM) location and the 
instrument setup locations. The differential level instrument is set up in the “setup” loca-
tions, and the rod is set up in the “BM” locations. We start at setup 1, where we get a 
backsight measurement to BM1 and a foresight measurement to BM2. In the second setup, 
we get a backsight measurement to BM2 and a foresight measurement to BM3. Then, in 
the third setup, we get a backsight measurement to BM3 and a foresight measurement to 
BM1. Getting a final foresight measurement back to BM1 completes the level loop, and 
allows the surveyor to get a misclosure, as the sum of backsights minus the sum of the 
foresights should be zero. The second exercise is using the city environment (Figure 16b). 
The lab starts from BM1 and closes to BM2 with a requirement to place a temporary bench-
mark (TPBM1) at the corner of the street. In this case, we know the elevations of both BM1 
and BM2; therefore, we can get a misclosure and check the accuracy of the survey. Note 
that, in the physical world, the surveyors need to balance the backsight and foresight dis-
tances to within few meters (i.e., setup the instrument approximately in the middle of the 
backsight and foresight BMs) to reduce the collimation error of the instrument [32], which 
was not simulated in our implementations. Both examples are simple and designed con-
sidering that users should not spend more than 20–30 min in VR. The three-benchmark 
loop example took 35 min to complete, and the point-to-point level line took 20 min to 
complete. A recording of the city lab can be found at this link: https://psu.mediaspace.kal-
tura.com/media/Dimitrios+Bolkas%27s+Personal+Meeting+Room/1_5lt5lgxx (accessed 
on 21 April 2021). 
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Figure 16. Virtual reality lab examples: (a) three benchmark loop; (b) level line in city environment. BM, benchmark; TPBM, 
temporary BM. 

Table 1 shows the fieldbook measurements for the three-benchmark loop as well as 
the true measurements. Note that the true measurement corresponds to the middle cross-
hair reading at a given leveling state of the instrument. It does not take into account any 
error introduced as a result of misleveling of the instrument and rod. Therefore, the true 
measurements in Table 1 correspond to the measurements that the user should have ob-
served based on the existing leveling state of the instrument and rod. The actual height 
differences between a backsight and foresight point can be retrieved from the PDF report, 
as in each measurement, we capture the height difference between the 𝒑௔௩௚௢௕௝  and the base 
of the leveling rod. The achieved misclosure from this trial is −0.001 m. A comparison 
between the observed and true measurements shows that the user was always within 1 
mm. The misclosure using the true measurements was zero, which also indicates that the 
instrument was always leveled accurately. Any deviation from zero in the misclosure of 
the true measurement indicates misleveling errors (either of the rod or instrument). The 
leveling rod was always leveled with an accuracy of 1′ or better and leveling of the instru-
ment was always within 0′′ to 2′′. Therefore, this −0.001 m misclosure corresponds to ran-
dom observational errors. In the three-benchmark loop example, the backsight and fore-
sight distances have been balanced well, with the exception of the first setup owing to the 
uneven terrain and the fact that the user had to go closer to the backsight rod to ensure a 
measurement. The distances, converted from virtual paces, are within 1 m of the actual 
distances, showing that the virtual pacing tool is sufficient to support virtual leveling pro-
cedures. Of note is that, in the third setup, there is a tree that somewhat blocks the view 
in the backsight measurement of BM 3. The user here does not have many options, because, 
owing to the high elevation difference between BM 3 and BM 1 (about 2.4 m), we would 
need to add another setup up or the user would end up reading the rod too high (rod 
readings of 4 m to 5 m). This is not a good field practice as higher errors can be introduced. 
In the first attempt, the rod was not readable because the tree leaves were blocking the 
view. Therefore, the user had to slightly move the rod and relevel the instrument. The 
leaves were still blocking part of the rod, but recording a measurement was possible, as 
the leaves moved under the virtual wind at certain times (Figure 17). The measurement in 
this case was 3.351 m. This highlights that surveying labs in immersive and interactive VR 
can be very realistic and students can experience challenges that are often encountered in 
the field. 

Table 2 shows the corresponding results for the second example (point-to-point/level 
line) in the city environment. The terrain of the city environment is relatively flat, which 
is also highlighted by the recorded backsight and foresight measurements. The main out-
come here is to help students understand the hazards in the city environment and 
acknowledge that instrument setups should be on the sidewalk for safety (Figure 15b). 
The true elevation difference between BM 1 and BM 2 that we are trying to observe is 
−0.153 m. As shown in Table 2, this value was also found using the true measurements 
from the output report. The observed difference was −0.154 m, which also indicates a 0.001 
m difference due to observational errors. The height of the temporary benchmark, after 
distributing the misclosure, was found to be 341.579 m. As with the previous example, the 
rod was leveled with an accuracy of better than 1′ and the instrument with an accuracy of 
1′′. 
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Figure 17. Screenshots from the output report that show measurement in the presence of virtual 
wind: (a) screenshot at time 10:27:58; (b) screenshot at 10:28:15. 

Table 1. Measurements of the three-benchmark level loop in the campus environment. BM, bench-
mark. 

 Observed Measurements True Measurements 

Station 
Backsight 

(m) 
Foresight 

(m) 
Distance 

(m)  
Backsight 

(m) Foresight (m) 
Distance 

(m)  
BM1 0.482  9.0 0.483  8.6 

   13.5   14.1 
BM2 1.386 2.643 15.8 1.386 2.643 15.1 

   14.3   13.8 
BM3 3.351 1.595 21.0 3.351 1.595 21.0 

   18.8   18.9 
BM1  0.982   0.982  

 Sum Backsight (m): 5.219  Sum Backsight (m): 5.220  
 Sum Foresight (m): 5.220  Sum Foresight (m): 5.220  
 Misclosure (m): −0.001   Misclosure (m): 0.000  

Table 2. Measurements of the point-to-point level line in the city environment. TPBM, temporary 
BM. 

 Observed Measurements True Measurements 

Station Backsight 
(m) 

Foresight 
(m) 

Distance 
(m)  

Backsight 
(m) 

Foresight 
(m) 

Distance 
(m)  

BM1 1.339  33.8 1.340  33.6 
   30.0   32.2 

TPBM1 1.312 1.409 30.8 1.312 1.409 32.6 
   32.3   31.7 

BM2  1.396   1.396  
 Sum Backsight (m): 2.651  Sum Backsight (m): 2.652  
 Sum Foresight (m): 2.805  Sum Foresight (m): 2.805  
 Difference (m): −0.154  Difference (m): −0.153  

True Difference (m): Height BM2 − Height BM1 = 341.495 − 341.648 = −0.153 
Misclosure (m): −0.153 + 0.154 = 0.001 Misclosure (m): −0.153 + 0.153 = 0.000 
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4. Conclusions 
We presented a new VR simulation for surveying engineering activities. Specifically, 

we demonstrated its efficacy in the field of surveying by conducting academic labs in VR. 
The leveling simulation is immersive and interactive, giving students a first-person expe-
rience. The students can conduct virtual leveling much like in the physical world. They 
can grab, move, center, and level a leveling rod. They can grab, move, and level a differ-
ential level instrument. Even simple, but important instrument functions, such as instru-
ment and eyepiece focusing, were replicated. In terms of leveling, students adjust tripod 
legs to achieve coarse leveling, before moving to adjusting the tribrach screws to achieve 
precise leveling. This faithfully replicates the leveling process that students encounter in 
the physical world. In addition, students can record measurements in a virtual fieldbook. 
Virtual replication of the differential level instrument proved to be the most difficult task, 
as it had to match its real-world counterpart to a level of accuracy where the student 
would be able to pick up skills in the simulation and transfer them to the real world. The 
equipment and the landscape had to work smoothly together to create a continuous ex-
perience that does not hinder immersion. We developed a novel technique for leveling 
multi-legged objects on variable terrains. This technique models the geometric changes of 
the tripod movement and eliminates the physical simulation, which increases efficiency 
dramatically and ensures that 60 FPS are always maintained, giving a pleasant experience 
to users. 

Through VR, we can create multiple surveying scenarios in several virtual environ-
ments; thus, training students in a variety of surveying conditions that many times is dif-
ficult (and sometimes impossible) to replicate in the physical world. Such VR labs can be 
used to support surveying education when labs are cancelled as a result of weather. There 
are still some barriers with respect to the needed computer hardware to make this soft-
ware available for remote learning. The authors are working on adapting the software in 
Oculus Quest 2, which is untethered, and software can be loaded directly to the HMD). 
However, at this point, some simplifications on the virtual environment and textures 
might be necessary. 

We conducted two differential leveling labs as a demonstration, a three-benchmark 
loop and a point-to-point leveling line. In both cases, the misclosure was 1 mm, which is 
due to observational random errors. This shows that leveling activities can be faithfully 
replicated in VR with the same precision that surveyors can achieve in the physical world. 
The environment is realistic, creating realistic challenges for users. For example, we 
showed how tree leaves move with wind and block the view of the instrument to the rod. 
The output report offers great instructional feedback that is not attainable in real life. The 
report captures the leveling condition of the instrument and rod, as well as the true meas-
urements that students should have observed. Thus, students can use the output report 
and, through reflection, they can understand their mistakes and surveying approach, 
which is important to help them improve their surveying and engineering skills. The pa-
per focused on the technical aspects of the software, while a comprehensive pedagogical 
implementation and assessment will follow in the future. 

The developed labs are single player labs (one student conducts the virtual lab). Alt-
hough this approach has some advantages, surveying students would never conduct the 
entire lab on their own. As one student should be at the instrument making and recording 
observations and a second student should be holding the rod leveled. Therefore, they ex-
perience all the steps that are associated with leveling, giving them an overall experience 
and a different perspective. Future work will focus on developing a collaborative suite 
that will allow two or more players to co-exist in the environment and conduct surveying 
labs as a group, exercising their teamwork skills. Existing work on collaborative learning 
in VR shows great advantages over individual work such as improving learning of out-
comes and reducing anxiety related to tasks [58]. Furthermore, the software will be ex-
panded to include more environments and surveying instruments such as total stations 
and global navigation satellite systems. 
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