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Abstract: Slope failure probabilistic models generated using random forest (RF) machine learning
(ML), manually interpreted incident points, and light detection and ranging (LiDAR) digital terrain
variables are assessed for predicting and generalizing to new geographic extents. Specifically, models
for four Major Land Resource Areas (MLRAs) in the state of West Virginia in the United States
(US) were created. All region-specific models were then used to predict withheld validation data
within all four MLRAs. For all validation datasets, the model trained using data from the same
MLRA provided the highest reported overall accuracy (OA), Kappa statistic, F1 Score, area under the
receiver operating characteristic curve (AUC ROC), and area under the precision-recall curve (AUC
PR). However, the model from the same MLRA as the validation dataset did not always provide the
highest precision, recall, and/or specificity, suggesting that models extrapolated to new geographic
extents tend to either overpredict or underpredict the land area of slope failure occurrence whereas
they offer a better balance between omission and commission error within the region in which they
were trained. This study highlights the value of developing region-specific inventories, models,
and high resolution and detailed digital elevation data, since models may not generalize well to
new geographic extents, potentially resulting from spatial heterogeneity in landscape and/or slope
failure characteristics.

Keywords: slope failures; landslides; light detection and ranging; LiDAR; digital terrain analysis;
machine learning; random forest; spatial predictive modeling; generalization

1. Introduction

Slope failures, such as landslides, are a geohazard of global concern that often result in
damage to personal property and public infrastructure, exacerbation of social and economic
issues impacting already strained communities and governments, and loss of life [1–3].
Remote sensing, spatial predictive modeling, and machine learning (ML) techniques
have proven valuable for inventorying or mapping existing slope failures (e.g., [4–9])
and predicting the likelihood or probability of slope failure occurrence or susceptibility
(e.g., [10–17]). High spatial resolution digital terrain data, such as those derived using light
detection and ranging (LiDAR), have improved our ability to identify slope failures on the
landscape surface, even when obscured by vegetative cover, and generate detailed terrain
variables to aid in modeling [17–22]. Further, such data are becoming more widely available;
for example, the United States Geological Survey (USGS) is currently coordinating the
collection of LiDAR data for the entire contiguous United States (US) via the 3D Elevation
Program (3DEP) [23,24].

Despite these advancements, there is still a need to further refine and develop com-
putational methods for generating map products and predictive models consistently over

ISPRS Int. J. Geo-Inf. 2021, 10, 293. https://doi.org/10.3390/ijgi10050293 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-4412-5599
https://doi.org/10.3390/ijgi10050293
https://doi.org/10.3390/ijgi10050293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10050293
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi10050293?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2021, 10, 293 2 of 24

large spatial extents and to make full use of slope failure inventories and digital terrain
data. In this study, we specifically focus on the production of probabilistic slope failure
occurrence models using LiDAR-derived terrain variables and manually digitized failure
locations to explore the key issue of how well models trained in different landscapes,
defined by Major Land Resource Areas (MLRAs), extrapolate to other MLRAs in the state
of West Virginia in the US. In this study, we define slope failures as the movement of a
mass of rock, earth, or debris down a slope [3,25].

This study is part of a larger project to develop a multi-hazard risk assessment for the
entire state of West Virginia. For the slope failure component of the study, we are working
on completing a statewide slope failure occurrence probability model along with a dataset
of manually interpreted occurrence points, data which are made available through the
web-based WV Landslide Tool (https://www.mapwv.gov/landslide) (accessed on 2 May
2021). Our prior study specifically focused on results for the Northern Appalachian Ridges
and Valleys (NARV) MLRA, which constitutes the eastern portion of the state. This prior
study concluded that including additional landscape variables, such as distance to roads
and streams, soil properties, and bedrock geology characteristics, may not improve model
performance in comparison to just using digital terrain variables derived from LiDAR. We
specifically documented the value of the following topographic variables: slope gradient
(Slp), surface area ratio (SAR), cross-sectional curvature (CSC), surface relief ratio (SRR),
and plan curvature (PlC). We also noted the value of a large, quality training dataset and
the robustness of the random forest (RF) ML algorithm to a large feature space, as model
performance did not improve with variable selection [17].

This current study expands upon the prior study by focusing on an investigation of
model performance when extrapolating to new geographic extents with disparate geomor-
phic, land use, disturbance, and/or geologic characteristics. Given that it is commonly very
labor-intensive and time-consuming to develop new training data and models for new
geographic extents, investigating the geographic generalization of region-specific models
is a valuable research contribution, especially considering the increasing availability of
detailed digital terrain data.

2. Background
2.1. Model Generalization

The generalization of spatial predictive models to new geographic extents has been
investigated in prior studies (e.g., [26–30]). For example, Maxwell et al. [28] explored the
generalization of palustrine wetland probabilistic occurrence models when trained in one
physiographic region and applied to new regions, all within the state of West Virginia. They
noted a reduction in performance, as measured with the area under the receiver operating
characteristic curve (AUC ROC), and cautioned against extrapolating such predictive
models to new geographic extents. Many recent studies have focused on the generalization
of deep learning (DL) models specifically, which have been argued to generalize well to
new data given the high level of data abstraction applied [26,30].

Many studies have documented successful DL model generalization to new, disparate
data and/or other geographic extents [31,32]. For example, Maggiori et al. [33] reported
accurate generalization of convolutional neural network (CNN)-based DL building detec-
tion models when trained in a subset of cities and applied to different cities. However,
several studies have noted a reduced DL model performance when applied to new ge-
ographic extents or disparate data; for example, Maxwell et al. [29] quantified reduced
model performance when a semantic segmentation DL model for extracting historic surface
mine extents from topographic maps trained on data in eastern Kentucky was applied
to new topographic maps in mining regions of southwestern Virginia and eastern Ohio.
Similarly, Maxwell et al. [27] quantified reduced performance when an instance segmenta-
tion DL model for extracting valley fill faces, geomorphic features resulting from surface
mine reclamation, was trained in West Virginia then applied to new data and geographic
extents in Kentucky and Virginia. The model, which was trained using LiDAR-derived

https://www.mapwv.gov/landslide
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data, performed especially poorly when used to predict disparate photogrammetrically-
derived data.

We argue that the generalization performance of probabilistic spatial models generated
using ML or DL techniques is problem- and method-specific. Thus, if there is a need to
apply models to new geographic extents, then this generalization performance must be
assessed. Or, validation of a model using data collected within the same geographic
extent to which it was trained does not offer a valid assessment of model generalization
performance to new geographic extents.

2.2. Probabilistic Spatial Models with Random Forest

This study makes use of the random forest (RF) [34] nonparametric, ML algorithm to
generate probabilistic spatial models of slope failure occurrence. Single decision trees (DT)
rely on recursive binary splits of the data to generate decision rules to partition the data into
more homogeneous subsets. It has been shown that using an ensemble of decision trees,
as opposed to a single tree, can improve model performance [34]. RF offers one means to
accomplish this. Each tree in the RF model receives a subset of the available training data,
selected using bootstrap sampling. Also, only a random subset of the available predictor
variables is available for selecting a splitting rule at each node. The goal of limiting the
training data available in each tree and the predictor variables available at each node is to
reduce the correlation between the trees in the ensemble. Although each tree may generate
a weaker prediction, the ensemble of weak predictors can be collectively robust due to
reduced correlation and overfitting [17,34–37].

RF has shown many positive attributes for application to remotely sensed and geospa-
tial data for predictive modeling tasks. First, it has been reported to be robust to complex
and large feature spaces and can accept continuous and categorical predictor variables with
varying scales and distributions [17,35,37–39], minimizing the need for feature selection
or reduction. Because each tree in the ensemble does not use all the training samples, the
withheld, or out-of-bag (OOB), samples can be used to assess model performance as long
as the training samples are representative of the population and unbiased [34,36,37,39].
It also allows for the estimate of predictor variable importance within the model [34,37],
which improves the interpretability of the model and allows for the identification and
documentation of key explanatory variables.

The RF algorithm has been applied to a variety of spatial probabilistic mapping prob-
lems. For example, Evans and Cushman [40] applied RF to predict the probability of occur-
rence of conifer species using topographic, climate, and spectral variables. Strager et al. [41]
applied the algorithm to predict the future expansion of surface coal mining in the Ap-
palachian region based on coal seam and landscape characteristics. Maxwell et al. [28] and
Wright and Gallant [42] both explored probabilistic wetland mapping.

This algorithm has specifically been applied to slope failure susceptibility and oc-
currence predictive modeling (e.g., [5,12,14,17,43–49]). Goetz et al. [44] assessed multiple
models for susceptibility mapping including RF, generalized additive models (GAMs),
weights of evidence (WoE), support vector machines (SVM), and bootstrap aggregated
classification trees with penalized discriminant analysis (BPLDA). Their study concluded
that RF provided the strongest predictive performance based on AUC ROC and true posi-
tive rate (TPR). However, the performance was not always statistically significantly better
than that provided by all other tested algorithms. Youssef et al. [47] also documented
strong performance for RF in comparison to other methods. Pourghasemi and Kerle [49]
combined RF and evidential belief function (EBF) approaches for susceptibility modeling
while Taalab et al. [14] documented the value of RF for making slope susceptibility pre-
dictions over large spatial extents. Catani et al. [43] undertook a systematic study of RF
for slope failure susceptibility mapping to assess sensitivity and scaling issues relating to
model hyperparameter settings, feature space and optimal predictor variable sets, spatial
resolution of input variables, and training data characteristics. They concluded that the
optimal settings and inputs vary based on the scale and resolution of the output model
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and that optimal variables to undertake a prediction depend on algorithm settings and
available data. This study highlights the need to assess model generalization to new
geographic extents given variability in model performance when investigated using a
systematic sensitivity analysis.

2.3. Digital Terrain Data for Landslide Mapping and Modeling

Generally, topographic variables derived from digital terrain models (DTMs) have
been shown to be of value for predicting slope failure susceptibility or occurrence
(e.g., [17,18,43,44,50]). In contrast, multispectral remotely sensed data are more commonly
applied to slope failure mapping and detection problems and rely on unique spectral or
textural signatures of the disturbed surface in comparison to other land cover or land-
scape features in the mapped extent [4–9,51–55]. The high spatial resolution digital terrain
representations made available by LiDAR have been shown to be of particular value for
landslide susceptibility or occurrence modeling [17,18,20,21,56]. Such models can offer
enough detail for trained geomorphologists and geohazard professionals to identify slope
failures and associated features, such as scarps and head and toe components [17,20,21].
LiDAR is an active remote sensing technique that relies on laser range finding, global
navigation satellite systems (GNSS), and inertial measurement units (IMUs) to generate
three-dimensional point clouds referenced to a geospatial datum and projection to repre-
sent landscapes with a high level of spatial and textural detail. Further processing of the
point cloud data allows for differentiation of ground returns. These ground points can then
be used to generate raster-based, continuous DTMs [20,21,57].

From LiDAR-derived DTMs a variety of topographic metrics can be calculated to
characterize the local landscape surface. Unfortunately, a review of prior research sug-
gests that an optimal set of variables have not been identified or recommended for slope
failure susceptibility or occurrence mapping and that the optimal variable set is likely
case-specific [17,20,21,43,58–60]. However, some measures have been shown to be of par-
ticular value, including measures of topographic slope, topographic wetness, and surface
curvature [17,22,61–63]. Variable selection is further complicated by the reliance of many
topographic variable calculations on local moving windows, which allows for defining
neighborhoods using different window sizes and/or shapes [64]. Few studies have investi-
gated the impact of widow size on variable importance and model performance for slope
failure susceptibility or occurrence mapping specifically [17]. In our prior study, we found
that variables using smaller windows were generally of greater importance in our slope
failure occurrence model than the same variable calculated using a larger window [17].
However, this may not be the case for all landscapes. For a thorough review of terrain and
geomorphometric variables for use in remote sensing and spatial predictive modeling, we
recommend Franklin [65].

3. Methods
3.1. Study Area

Figure 1 shows the extent of the four MLRAs [66] explored in this study, while Table 1
provides the land areas and associated abbreviations used in this paper. The MLRAs
include the Central Allegheny Plateau (CAP), Cumberland Plateau and Mountains (CPM),
Eastern Allegheny Plateau and Mountains (EAPM), and Northern Appalachian Ridges and
Valleys (NARV). Given that this project focuses on the state of West Virginia specifically,
only the extents of these MLRAs within the state were considered. West Virginia, in general
is characterized by a complex topography with a high degree of local relief. Elevations
range from roughly 70 to 1480 m. Average winter temperatures are around 0 ◦C, while
average summer temperatures are around 22 ◦C. Annual precipitation across the state is
variable, which is partially attributed to topographic and rain shadow effects. The highest
annual precipitation occurs on the western slopes of the high mountains within the EAPM
MLRA, with totals as high as 1600 mm per year, while the lowest precipitation occurs in
the NARV MLRA, with totals around 635 mm. The landscape is dominated by forests
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but also includes areas of agriculture, pastureland, and development [67]. Although not
extensively urbanized, as is common in many other regions in the eastern United States,
the state has been heavily modified as a result of anthropogenic processes, land use/land
cover change (LULCC), and resource extraction [27,67–69].
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Figure 1. (a) Major Land Resource Areas (MLRAs) investigated and compared in the study. (b) Shows
the extent of (a) in the contiguous United States. MLRA data are provided by the United States
Department of Agriculture (USDA) [66]. (c) through (f) provide examples of terrain conditions, rep-
resented using hillshades, in the four MLRAs studied. (c) CAP = Central Allegheny Plateau, (d) CPM
= Cumberland Plateau and Mountains, (e) EAPM = Eastern Allegheny Plateau and Mountains,
(f) NARV = Northern Appalachian Ridges and Valleys.

Table 1. MLRA land areas, abbreviations used in this study, and number of mapped slope failure
incidence points. Note that a statewide dataset of incidence points is not yet available since the
LiDAR collection is not yet complete.

MLRA Abbreviation Land Area in WV Number of Slope
Failures Mapped

Central Allegheny Plateau CAP 22,281 km2 15,259
Cumberland Plateau and

Mountains CPM 11,644 km2 12,533

Eastern Allegheny Plateau
and Mountains EAPM 18,071 km2 12,438

Northern Appalachian
Ridges and Valleys NARV 10,320 km2 1799



ISPRS Int. J. Geo-Inf. 2021, 10, 293 6 of 24

The CAP is a mature plateau with fine texture and a high degree of local relief dissected
by a dendritic stream network. It is underlain by sedimentary rocks of mixed lithology
but dominated by shale, mudstone, and sandstone, which are structurally flat to gently
folding and date to the Pennsylvanian and Permian periods. Forest communities include
oak-pine, oak-chestnut, cove hardwoods, and mixed mesophytic. The landscape has been
modified by agriculture, development, and surface and underground coal mining [67,70].
The CPM has a similar topography as the CAP; however, relief tends to be more rugged
due to several resistant geologic units. These topographic conditions have resulted in a
concentration of development in the floodplains [67,70]. This region has also been heavily
impacted by surface coal mining, including mountaintop removal practices, which have
substantially altered slopes and landforms due to an inability to reclaim the landscape
to a stable approximate original contour. Instead, mountaintops are flattened, forests are
fragmented and replaced with dominantly herbaceous vegetation, and reclamation results
in the filling of adjacent valleys with overburden materials [27,71–77]. It has been suggested
that this region has experienced some of the highest global magnitudes of anthropogenic
geomorphic alteration as a result of these mining practices, with substantial alterations to
the physical landscape and drainage network [68,69,78,79].

The EAPM contains the highest elevations in the state, receives the highest levels of
precipitation, and experiences the lowest annual winter temperatures. The lower elevation
forests in this MLRA are similar to those in the CAP and CPM; however, higher elevations
support northern hardwood and evergreen communities, including some native stands
of red spruce. Geologic units are of mixed lithology and range in age from Devonian
to Pennsylvanian, with some Mississippian limestones that result in karst valleys and
associated landforms [67,70]. Lastly, the NARV is characterized as an eroded folded
mountain belt, in which the topography is dominated by structural controls, including
anticlines, synclines, and thrust faults. The stream network has a trellis pattern, and
geologic units range in age from Precambrian to Devonian, with resistant sandstones
and some limestones forming long, linear ridges and siltstones, shales, or less resistant
limestones forming valleys. In comparison to the other MLRAs in the state, this region
generally has the lowest elevations and receives the least amount of annual precipitation,
especially on the east-facing slopes due to a rain shadow effect; as a result, drier forest
communities dominate, including oak-pine and oak-hickory. This MLRA also includes
a portion of the Great Valley, which is relatively flat and dominated by Cambrian and
Ordovician limestone, dolomite, and shale with dominantly agricultural land use [67,70].

3.2. Landslide Inventory and Training Data Development

Models were trained and validated using reference data collected via manual inter-
pretation of LiDAR-derived 1- or 2-m spatial resolution hillshades and slopeshades. The
LiDAR data are made available via the USGS 3DEP program (https://www.usgs.gov/
core-science-systems/ngp/3dep) (accessed on 2 May 2021) and the West Virginia GIS Tech-
nical Center (WVGISTC) and West Virginia View (http://data.wvgis.wvu.edu/elevation/)
(accessed on 2 May 2021). Hillshades offer a visualization of the terrain surface, are derived
from DTMs, and rely on the modeling of shadows cast over the landscape relative to an
illuminating position, defined by azimuth and altitude parameters [80].

In contrast, a slopeshade is simply a topographic slope gradient raster grid in which
shallower slopes are displayed using light shades and steeper slopes are displayed us-
ing darker shades. Slopeshades do not require defining the position of an illuminating
source [17,27,80]. Due to the large spatial extent and number of features to be interpreted,
and also as a result of the difficulty of accurately interpreting the areal extent of slope
failure features, each identified feature was mapped as a point at the initiation location or
head scarp. This process was completed by two trained analysts with supervision from
a professional geomorphologist. Although we did not differentiate failure types in our
probabilistic models, where possible, the analysts differentiated slides, debris flows, lateral
spread, and multiple failures. Most features were categorized as slides.

https://www.usgs.gov/core-science-systems/ngp/3dep
https://www.usgs.gov/core-science-systems/ngp/3dep
http://data.wvgis.wvu.edu/elevation/
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Table 1 provides the number of mapped incident points available for this study. To
date, a total of 42,029 features have been identified. Unfortunately, LiDAR data are not
currently available for the entire state extent; however, data are currently being collected
with a goal of a statewide LiDAR dataset being available by 2022. As a result, a statewide
inventory is not yet possible. Figure 2 shows the spatial distribution of the inventory. All
areas that have LiDAR data available have been interpreted, and only those areas were
used in this study. Figure 3 shows some example incident points for all MLRAs included
in this study.
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Since the RF model requires both presence and absence data, we had to generate
pseudo absence data to complement the slope failure inventory. To create these additional
data, we generated random points throughout the MLRA extents. We then removed any
points that (1) did not occur within areas in which LiDAR data are available, (2) occurred
within 30 m of an inventoried landslide, or (3) occurred within the extent of or within 30 m
of historic slope failure extents provided by the West Virginia Department of Transportation
(WVDOT) and the West Virginia Geological and Economic Survey (WVGES). This same
pseudo absence sampling method was used in our prior study [17]. Similar methods were
used by Strager et al. [41], Maxwell et al. [28], and Maxwell et al. [81]. Given that the
landslide inventories have been completed for all areas in the state where LiDAR data are
available and that only these areas were included in this study, we argue that the likelihood
of a pseudo absence sample occurring near a slope failure is unlikely.

3.3. Topographic Predictor Variables

Table 2 lists the terrain variables used in this study and provides the defined abbre-
viations and a brief description or equation. These terrain variables are identical to the
variables used in our prior study [17]. In contrast to our prior study, in which we also
included variables associated with distance from streams and roads, soil properties, and
bedrock geology characteristics, in this study we only use terrain variables since (1) these
variables can be consistently created for all areas where LiDAR data are available, allowing
for ease of extrapolation of models to new geographic extents, and (2) our prior study
suggested that including additional, non-terrain variables may not substantially improve
model performance. All variables were calculated from a LiDAR-derived DTM with a 2-m
spatial resolution, and a total of 14 different variables were produced. Several of these
measures rely on moving windows to compare the center cell to its neighbors and derive
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local terrain metrics. All variables that make use of moving windows were calculated using
three different circular radii, 7, 11, and 21 cells, in order to characterize local patterns at
different scales (Table 2). These scales were selected based on ridge-to-valley distances
across the study area extents. This resulted in a total of 32 predictor variables.

Table 2. Description of terrain variables used in study. Abbreviations defined in this table are used throughout the paper.

Variable Abbreviation Description Window Radius (Cells)

Slope Gradient Slp Gradient or rate of maximum change in Z
as degrees of rise 1

Mean Slope Gradient SlpMn Slope averaged over a local window 7, 11, 21

Linear Aspect LnAsp Transform of topographic aspect to linear
variable 1

Profile Curvature PrC Curvature parallel to direction of
maximum slope 7, 11, 21

Plan Curvature Plc Curvature perpendicular to direction of
maximum slope 7, 11, 21

Longitudinal Curvature LnC
Profile curvature intersecting with the

plane defined by the surface normal and
maximum gradient direction

7, 11, 21

Cross-Sectional Curvature CSC

Tangential curvature intersecting with the
plane defined by the surface normal and a

tangent to the contour-perpendicular to
maximum gradient direction

7, 11, 21

Slope Position SP Z—Mean Z 7, 11, 21

Topographic Roughness TR Square root of standard deviation of slope
in local window 7, 11, 21

Topographic Dissection TD Z−Min Z
Max Z−Min Z 7, 11, 21

Surface Area Ratio SAR Cell Area
cosine(slope ∗ π ∗ 180) 1

Surface Relief Ratio SRR Mean Z−Min Z
Max Z−Min Z 7, 11, 21

Site Exposure Index SEI Measure of exposure based on slope and
aspect 1

Heat Load Index HLI Measure of solar insolation based on slope,
aspect, and latitude 1

Slope gradient (Slp) [80] was calculated using the Slope Tool made available in the
Spatial Analyst Extension of ArcGIS Pro [82]. The Geomorphometry & Gradient Metrics
Toolbox [83] within ArcGIS Pro was used to calculate mean slope gradient (SlpMn) [80],
linear aspect (LnAsp) [84], slope position (SP) [85], topographic roughness (TR) [86,87],
topographic dissection (TD) [88], surface area ratio (SAR) [89], surface relief ratio (SRR) [59],
site exposure index (SEI) [90], and heat load index (HLI) [91]. Profile (PrC), plan (PlC),
longitudinal (LnC), and cross-sectional (CSC) curvatures [92,93] were calculated using the
Morphometric Features Module in the open-source System for Automated Geoscientific
Analysis (SAGA) software [94,95]. For a detailed introduction to geomorphometric vari-
ables derived from DTMs, we recommend Florinsky [96]. Ironside et al. [90] provide a
review of such metrics in landscape ecology while Franklin [65] provides a review within
remote sensing. Once all of the terrain variables were produced, the values at the pixel
locations co-occurring with the presence and pseudo absence point data were extracted
to generate data tables using the Extract Multi Values to Points Tool in ArcGIS Pro [82]. It
should be noted that there is a correlation between the terrain predictor variables used. This
was explored in our prior study [17] using Spearman’s rho [97]. However, we documented
that RF is robust to this complex feature space, as variable selection did not improve
model performance.

3.4. Model Training and Prediction

Figure 4 provides a conceptualization of the data partitioning, training, validation,
and inference processes used in this study. In order to reduce the influence of sample
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size on the model comparisons, 1200 presence samples, which represent individual point
or 2-m cell locations, were used to train each model. In order to validate the models,
500 non-overlapping presence samples were randomly withheld. So, each model was
trained with the same number of presence samples and then evaluated using all of the
validation sets, which were consistent for comparison and to assess model generalization
to different MLRAs. As also implemented in our prior study [17] and in order to provide a
wide variety of pseudo absence samples to characterize the landscape within the models,
each MLRA separate model was trained five times, using 1200 training samples each
time, and 1200 pseudo absence samples were selected using random sampling with a
replacement. The trees from all models were then combined to create a final, single model
for each MLRA. In an attempt to reduce spatial autocorrelation between the training
and validation samples in each MLRA, each region was tessellated into 10,000-hectare
contiguous hexagons. Random training and validation partitioning was conducted such
that slope failure and pseudo absence samples within the same hexagon bin occurred in
the same split.
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Models were trained using the randomForest package [98] in the R [99] data science
environment. A total of 501 trees were used in each model, as this was adequate to stabilize
the results. Once the five models were combined, this resulted in a total of 2505 trees in the
final model for each MLRA. The number of predictor variables available for splitting at each
node hyperparameter was optimized by testing 10 values using fivefold cross-validation
and a grid search as implemented in the caret package [100]. Optimal performance was
assessed using the AUC ROC metric. Each MLRA model was optimized separately.

3.5. Model Validation and Variable Importance

Models were evaluated using both binary, threshold-based metrics and also measures
that do not rely on setting a classification probability threshold. For the threshold-based
evaluation, samples with a predicted probability of occurrence in the presence, or slope
failure, class of greater than or equal to 0.5 were classified to the positive case while those
lower than 0.5 were mapped to the negative case. Table 3 describes the terminology used
to define the binary assessment metrics used. True positive (TP) samples are those that are
in the positive class and are correctly mapped as positive, in this case, slope failures, while
false positives (FPs) are not in the positive class but are incorrectly mapped as positive.
True negatives (TNs) are correctly mapped as negative, while false negatives (FNs) are
mapped as negative when they are actually positive.

Table 3. Example binary confusion matrix and associated terminology. TP = True Positive, FP = False
Positive, TN = True Negative, FN = False Negative.

Reference Data

True False

Classification
Result

True TP FP

False FN TN

Precision (Equation (1)) represents 1—commission error or the proportion of the
samples that are correctly classified within the samples predicted to be positive. Recall or
sensitivity (Equation (2)) represents 1—omission error or the proportion of the reference
data for the positive class that is correctly classified. The F1 score (Equation (3)) is the
harmonic mean of precision and recall, while specificity (Equation (4)) represents the
proportion of negative reference samples that are correctly predicted. Overall accuracy (OA)
(Equation (5)) represents the proportion of correctly classified features [101]. The Kappa
statistic (Equation (6)) corrects OA for chance agreement [57]. All binary assessment metrics
were calculated using the caret [100] package in R [99]. This package also allows for the
calculation of 95% confidence intervals for OA based on a binomial distribution [100,102].

Precision =
TP

TP + FP
(1)

Recall or Sensitivity =
TP

TP + FN
(2)

F1 Score =
2 × Precision × Recall

Precision + Recall
(3)

Specificity =
TN

TN + FP
(4)

Overall Accuracy =
TP + FP

TP + TN + FP + FN
(5)

Kappa =
(OA − Expected Agreement)
(1 − Expected Agreement)

(6)
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Receiver operating characteristic (ROC) curves and the associated area under the curve
measure (AUC ROC) were used to provide an assessment that does not rely on a binary
classification threshold. A ROC curve plots 1—specificity on the x-axis and sensitivity or
recall on the y-axis at varying decision thresholds [101,103–105]. The AUC ROC measure is
the area under the ROC curve and is equivalent to the probability that the classifier will
rank a randomly chosen positive (true) record higher than a randomly chosen negative
(false) record. ROC AUC is scaled from 0 to 1, with larger values indicating better model
performance [101,103–106]. This analysis was undertaken using the pROC package [106]
in R [99], which allows for the estimation of 95% confidence intervals for AUC ROC.

Since ROC curves and the associated AUC ROC metric rely on recall and specificity,
which are both insensitive to an imbalance in regards to the number of positive and negative
samples in the validation set, they can be misleading in cases where data imbalance should
be taken into account, such as when the mapped classes make up very different proportions
on the landscape. Specifically, reported ROC AUC can be overly optimistic in cases of
severe class imbalance and/or when the class of interest makes up a small proportion of
the investigated landscape [101,107]. In such cases, a precision-recall (P-R) curve may be
more informative since it does incorporate precision, which is sensitive to class imbalance
and quantifies the percentage of samples predicted to the positive class that were TPs.
This curve plots sensitivity or recalls to the x-axis and precision to the y-axis. Similar
to ROC, it is possible to generate an area under the curve (AUC PR) metric to obtain a
single summary statistic [101,107,108]. This analysis was completed using the yardstick
package [109] in R [99].

Variable importance measures produced by RF have been shown to be biased if
predictor variables are highly correlated with one another [110,111]. As a result, and to
offer a more rigorous evaluation and comparison of variable importance between the
MLRAs, we used a measure of variable importance based upon conditional random forests
that take into account correlation in the importance calculation as implemented in the R
party package [94,95]. Importance ranges, means, and medians for each variable were
created by running 10 separate assessments using different subsets of the training data.

4. Results
4.1. Model Performance within Same MLRA

Table 4 provides the validation statistics for each MLRA validation dataset predicted
using the trained model from the same MLRA, while Figure 5 shows the distribution of
predicted probabilities of slope failure occurrence for the slope failure and pseudo absence
classes using kernel density functions. Generally, the slope failures and pseudo absence
data are well separated with all OAs above 0.84, all Kappa statistics above 0.68, all F1 scores
above 0.83, and all AUC ROC and AUC PR metrics above 0.90. However, the degree of
overlap between the two distributions, summarized by precision (1—commission error for
the slope failure class), recall (1—omission error for the slope failure class), and specificity
(1—commission error for the pseudo absence class), vary between the four MLRAs. For
example, the kernel density plots suggest that the separation of the classes is strongest for
the EAPM and weakest for the CAP. This is further confirmed in Table 4, as OA, Kappa,
F1 score, and AUC ROC for the EAPM are highest, and those for the CAP are lowest or tied
with the CPM. Specifically, the EAPM has an OA of 0.890 and an AUC ROC of 0.957 while
the CAP has an OA of 0.843 and an AUC ROC of 0.912.

Using the 0.50 probability threshold to classify the data, for each MLRA other than
CAP recall is higher than precision, suggesting higher rates of FPs as opposed to FNs (i.e.,
higher commission error than omission error relative to the positive class). Specificity,
which relates to rates of FPs, is lower than precision and recall for all MLRAs other than the
CAP. Generally, the models tend to overestimate the extent of slope failure occurrence as
opposed to overpredicting the extent of non-occurrence. It should be noted that assessing
the models at different positive case probability thresholds will result in varying degrees of
difference between precision, recall, and specificity [101].
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Table 4. Accuracy assessment metrics for predicting each validation dataset using the model trained
in the same MLRA. OA = Overall Accuracy, AUC ROC = Area Under the Receiver Operating
Characteristic Curve, AUC PR = Area Under the Precision-Recall Curve.

MLRA OA Kappa Precision Recall Specificity F1
Score

AUC
ROC

AUC
PR

CAP 0.843 0.686 0.870 0.806 0.880 0.837 0.912 0.911
CPM 0.843 0.686 0.836 0.854 0.832 0.845 0.914 0.905

EAPM 0.890 0.780 0.864 0.926 0.854 0.894 0.957 0.949
NAVR 0.879 0.758 0.858 0.908 0.850 0.882 0.952 0.952ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 14 of 26 
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Figure 5. Probability distribution of withheld slope failure and pseudo absence validation samples
for each region. Probability relates to the likelihood of slope failure occurrence. (a) Central Allegheny
Plateau, (b) Cumberland Plateau and Mountains, (c) Eastern Allegheny Plateau and Mountains,
(d) Northern Appalachian Ridges and Valleys.

4.2. Model Generalization to Different MLRAs

Table 5 provides the summary statistics for predicting each validation dataset with all
four models to provide an assessment of model generalization to new geographic extents.
The rows in which the validation set and model are the same are identical to the data
provided in Table 4. For all validation datasets, the model trained using data from that
same MLRA provided the highest reported OA, Kappa statistic, F1 Score, AUC ROC, and
AUC PR. However, the model from the same MLRA as the validation dataset did not
always provide the highest precision, recall, and/or specificity. Generally, this suggests that
models extrapolated to new geographic extents tend to either overpredict or underpredict
the land area of slope failure occurrence, whereas they offer a better balance between
omission and commission error within the region in which they were trained.
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Table 5. Accuracy assessment metrics for predicting each validation dataset using each model. The highest metrics for each
validation dataset are shaded gray.

Validation Set Model OA Kappa Precision Recall Specificity F1 Score AUC
ROC

AUC
PR

CAP CAP 0.843 0.686 0.870 0.806 0.880 0.837 0.912 0.911
CAP CPM 0.641 0.282 0.851 0.342 0.940 0.488 0.847 0.812
CAP EAPM 0.795 0.590 0.814 0.764 0.826 0.788 0.860 0.848
CAP NAVR 0.751 0.502 0.727 0.804 0.698 0.764 0.821 0.809

CPM CAP 0.734 0.468 0.750 0.702 0.766 0.725 0.800 0.749
CPM CPM 0.843 0.686 0.836 0.854 0.832 0.845 0.914 0.905
CPM EAPM 0.734 0.468 0.662 0.958 0.510 0.783 0.869 0.840
CPM NAVR 0.662 0.324 0.604 0.944 0.380 0.736 0.769 0.739

EAPM CAP 0.836 0.672 0.891 0.766 0.906 0.824 0.918 0.901
EAPM CPM 0.796 0.592 0.925 0.644 0.948 0.759 0.935 0.933
EAPM EAPM 0.890 0.780 0.864 0.926 0.854 0.894 0.957 0.949
EAPM NAVR 0.849 0.698 0.794 0.942 0.756 0.862 0.931 0.916
NAVR CAP 0.758 0.516 0.919 0.566 0.950 0.700 0.897 0.890
NAVR CPM 0.677 0.354 0.959 0.370 0.984 0.534 0.893 0.887
NAVR EAPM 0.830 0.660 0.886 0.758 0.902 0.817 0.928 0.927
NAVR NAVR 0.879 0.758 0.858 0.908 0.850 0.882 0.952 0.952

The OA, Kappa statistic, AUC ROC, and AUC PR metrics reported in Table 5 are
further visualized in Figure 6, which also provides the estimated 95% confidence intervals
for OA and AUC ROC. Although the model trained within the same MLRA as the valida-
tion dataset provided the best performance for all four MLRAs, as measured with these
four assessment metrics, the confidence intervals do overlap between some of the models,
and some models offer accuracies that are only slightly lower in comparison to the model
trained within the MLRA represented by the validation dataset. For example, the NARV
model performed well when predicting to the EAPM validation dataset (OA = 0.849, Kappa
statistic = 0.698, F1 score = 0.862, AUC ROC = 0.931, and AUC PR = 0.916) in comparison to
the EAPM model (OA = 0.890, Kappa statistic = 0.780, F1 score = 0.894, AUC ROC = 0.957,
and AUC PR = 0.949). MLRAs showed variable levels of disparity between the four models.
For example, the CAP MLRA was generally poorly predicted by all other models whereas
the EAPM was generally predicted well by all models. The CPM was predicted well by the
CPM and EAPM models, but more poorly by the CAP and NARV models.

Similar patterns are evident in the ROC curves (Figure 7) and P-R curves (Figure 8),
and the two assessment methods reinforce each other in regards to model performance
and model variability for predicting the same MLRA validation datasets. All four models
performed more similarly for the EAPM in comparison to the other three MLRAs. Gener-
ally, these curves, and the associated AUC metrics, support the findings from the binary
assessment metrics and extend the results across the spectrum of binary classification deci-
sion thresholds, as the models trained and applied to the same MLRA generally resulted in
higher recall at any given specificity or higher precision at any given recall.
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ISPRS Int. J. Geo-Inf. 2021, 10, 293 17 of 24
ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure 8. P-R curves for predicting each MLRA validation dataset using each model. Each plot represents the MLRA area 
predicted, while each curve represents the model used to make the predictions. Inset boxes provide the associated AUC 
for each curve. (a) Central Allegheny Plateau, (b) Cumberland Plateau and Mountains, (c) Eastern Allegheny Plateau and 
Mountains, (d) Northern Appalachian Ridges and Valleys. 

4.3. Comparison of Variable Importance Between MLRAs 
Figure 9 compares variable importance for each model calculated using the condi-

tional variable importance methods after Strobl et al. [112]. Generally, the results suggest 
variable importance does vary between the regions. However, some key variables are con-
sistently highlighted as important for the predictions, including Slp, SAR, CSC, and PlC. 
These findings generally support those from our prior study [18], where Slp, SAR, CSC, 
and PlC were also found to be important. Slp was the most important variable on average 
for all the models, except the CPM, where SP calculated with a radius of 7 m was found 
to be most important followed by Slp. Some variables were also consistently shown to be 
of low importance, including HLI and LnAsp. In contrast to our prior study [18], the im-
pact of window size was variable between the MLRAs. Lastly, the EAPM and NARV 

Figure 8. P-R curves for predicting each MLRA validation dataset using each model. Each plot represents the MLRA area
predicted, while each curve represents the model used to make the predictions. Inset boxes provide the associated AUC
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4.3. Comparison of Variable Importance Between MLRAs

Figure 9 compares variable importance for each model calculated using the conditional
variable importance methods after Strobl et al. [111]. Generally, the results suggest variable
importance does vary between the regions. However, some key variables are consistently
highlighted as important for the predictions, including Slp, SAR, CSC, and PlC. These
findings generally support those from our prior study [17], where Slp, SAR, CSC, and PlC
were also found to be important. Slp was the most important variable on average for all
the models, except the CPM, where SP calculated with a radius of 7 m was found to be
most important followed by Slp. Some variables were also consistently shown to be of
low importance, including HLI and LnAsp. In contrast to our prior study [17], the impact
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of window size was variable between the MLRAs. Lastly, the EAPM and NARV MLRAs,
which had the highest reported OA, Kappa, AUC ROC, and AUC PR, had a small subset
of variables that were found to be of high importance while all remaining variables were of
low importance (Figure 9c,d).
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5. Discussion

In support of the findings from our prior study [17], this study generally suggests that
the RF ML algorithm is capable of generating accurate slope failure occurrence probabilistic
models from point-based inventories and digital terrain variables derived from high spatial
resolution and detailed LiDAR data without the need to include additional, non-terrain
variables. Expanding upon the prior study, this research suggests that models trained in
different landscapes generally do not provide comparable accuracies to models applied
to new data in the same landscape. Or, these ML models did not generalize well to
new landscapes.

Furthermore, the disparity between models was inconsistent between MLRAs. For
example, model accuracies were more similar between all four models when applied to
the EAPM than the CAP. Some models provide higher recall, precision, or sensitivity for
predicting to new study area extents than the models trained in those extents. However,
OA, the Kappa statistic, F1 score, AUC ROC, and AUC PR were always highest for the
model trained in the same MLRA as the validation data. This suggests that models
will underpredict or overpredict the occurrence of slope failures in new landscapes in
comparison to models trained in that landscape.

Despite the poorer performance when applied to new landscapes, several variables
were found to be consistently important between models, including Slp, SAR, CSC, and
PlC. The EAPM and NARV MLRAs were predicted with the highest accuracies and also
had a smaller subset of the variables that were predicted to be of higher importance than all
other variables provided. This could be a result of a more distinctive slope failure signature
that can be described with a smaller number of variables to differentiate these features
from the rest of the landscape. However, it was not possible to test this assertion.

These findings are similar to the findings of Maxwell et al. [28]. They investigated the
probabilistic prediction of palustrine wetland occurrence using digital terrain variables and
the generalization of these models to new physiographic regions. Their results suggested
that models trained in different physiographic regions did not perform as well as models
trained within the region of interest.

Although this study quantified reduced model performance when generalized to new
landscapes, the reasons for this reduction cannot be determined. For example, it is possible
that reduced performance relates to differences in landscape characteristics between regions
and/or differences in the characteristics or causes of slope failures. For example, visual
inspection of the slope failure inventory within the CPM suggests that many failures occur
near mine or reclaimed mine sites, an anthropogenic driver of landscape change and
potential slope instability that is not abundant in the other MLRAs studied. There are
also key differences in underlying geology. For example, the NARV is geomorphically
characterized by long linear ridges and valleys resulting from folding and mountain
building and subsequent erosion. In contrast, the landscapes of the CAP and CPM are less
controlled by geologic structure, since the rock units are flat to gently folding [67,70].

In order to address the specific question of model generalization to new landscapes
without introducing bias into the comparison, we used the same sample size (1200 ran-
domly selected slope failure locations and 1200 pseudo absence samples) to minimize the
impact of the number of training samples. We also created non-overlapping validation sets
and employed a hexagon tessellation for geographic stratification to minimize the impact
of model overfitting. Assuming overfitting was minimized by our training and sampling
methods, we argue that lack of generalization to new study area extents may be explained
by a difference in landscape characteristics and/or slope failure characteristics between
the regions. Or, new, withheld validation samples within an MLRA are more similar to
training samples within that MLRA than samples from a different MLRA, resulting in
differences in model fit.

Future studies should investigate generalization to more disparate landscapes. Al-
though our regions were different, they all occurred within West Virginia and were adja-
cent. It would be interesting to perform similar analyses using very different landscapes,
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such as young mountain belts, eroded mountains, regions impacted by recent glaciation,
paraglacial landscapes, and regions underlain by very different lithologies (e.g., sedimen-
tary vs. metamorphic units). It is also of interest to explore DL methods for generating
slope failure occurrence and susceptibility predictions and to assess model generalization.
Recent research has suggested that DL methods can generalize better than traditional
ML methods [31,32]. However, such assumptions have not been widely explored for
geomorphic mapping and probabilistic modeling specifically.

Practically, this research highlights the value of large landslide inventories covering
different landscapes, such as the US Landslide Inventory [112], for training and validating
region-specific models. It also highlights the value of high spatial resolution and detailed
digital terrain data, such as the data made available by USGS 3DEP [23,24], since generating
large training and validation datasets and being able to describe key terrain characteristics
are necessary for generating spatially detailed probabilistic models. If models trained in one
area must be applied to new areas due to a lack of training data, it is important that some
form of validation be applied since the accuracy obtained in new landscapes will likely not
be characterized by a validation in the original landscape. This study will be informative
for practitioners planning and undertaking operational, large area hazard risk assessments,
especially if the area of interest has variable terrain and geomorphic characteristics. Within
West Virginia, our models have already proved useful for risk assessment and management
activities, and we hope that this work will inform the application of similar methods in
new states or regions.

6. Conclusions

This study documents reduced performance of slope failure models when extrapolated
to new geographic extents, as defined by MLRAs. Models trained in disparate geographic
extents were not able to obtain the level of accuracy provided by a model trained and
validated to the same geographic extent. Errors of commission or omission were sometimes
reduced when predicting using a model from a different MLRA. However, the model
trained in the same region as the validation data provided the best balance between
omission and commission errors, as measured with the F1 score. This study highlights
the importance of training models relative to specific geographic extents. It should not be
assumed that models will generalize well, which highlights the value of region-specific
datasets for training and validation.
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