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Abstract: The continuous development of machine learning procedures and the development of new
ways of mapping based on the integration of spatial data from heterogeneous sources have resulted
in the automation of many processes associated with cartographic production such as positional
accuracy assessment (PAA). The automation of the PAA of spatial data is based on automated
matching procedures between corresponding spatial objects (usually building polygons) from two
geospatial databases (GDB), which in turn are related to the quantification of the similarity between
these objects. Therefore, assessing the capabilities of these automated matching procedures is key
to making automation a fully operational solution in PAA processes. The present study has been
developed in response to the need to explore the scope of these capabilities by means of a comparison
with human capabilities. Thus, using a genetic algorithm (GA) and a group of human experts, two
experiments have been carried out: (i) to compare the similarity values between building polygons
assigned by both and (ii) to compare the matching procedure developed in both cases. The results
obtained showed that the GA—experts agreement was very high, with a mean agreement percentage
of 93.3% (for the experiment 1) and 98.8% (for the experiment 2). These results confirm the capability
of the machine-based procedures, and specifically of GAs, to carry out matching tasks.

Keywords: machine learning; expert knowledge; automatic matching; spatial data accuracy; auto-
matic assessment

1. Introduction

With the rise of machines to human-level performance in many complex recognition
tasks—mainly due to the development of artificial intelligence (AI)—there have emerged
a huge number of studies focused on comparing information processing in humans and
machines [1–4], thereby reviving a longstanding debate and a competition between the
merits of both [5]. The main purpose of these studies is to develop a deeper understanding
of the mechanisms of human perception and to improve machine learning procedures.
These procedures are capable of addressing certain types of tasks that, either by their
complexity or by their volume, are difficult and costly to solve by humans, reaching
accuracy levels similar to them. Among these tasks we highlight object recognition [6,7],
depth estimation [8] and the most important one for our study: objects matching [1,9,10].

Matching techniques are basic tools for dealing with graphic information [11,12]
and specifically geographic information (GI), whose main defining feature is the spatial
position. Nowadays GI is very much in demand due to its use in many interest areas (such
as business, tourism, fleet management, military development, land management, etc.) and
to its economic importance [13]. This is why new cartographic products are continually
emerging in reply to the demands of an increasingly expanding market. These cartographic
products are usually obtained from new ways of mapping based on the integration of
spatial data from heterogeneous sources, and with different degrees of detail [14–16], so
their final quality levels—which are often unknown—depend on the quality levels of the
initial sources. In short, it could be said that these new ways of mapping require new
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and more efficient ways of assessing the positional accuracy of the resulting products for
which traditional measures of data quality are not applicable, which in turn requires the
automation of the associated processes.

According to the existing literature [17–19], the automation of the processes associ-
ated with the PAA of spatial data is based on the comparison between the locations of
corresponding spatial objects from two GDB (called Reference GDB and Tested GDB) with
different levels of accuracy and detail. In that regard, it must be noted that this method-
ological approach is based on the assumption that the accuracy of one of the GDB is high
enough to ignore the unmeasured difference between it and the real one [20]. In order to
automatically compare the locations of these corresponding objects links between them
are required [17]. In this context, an automatic PAA procedure is essentially reduced to
a pattern matching problem where there is a key issue: how to measure the similarity
between corresponding spatial objects from two heterogeneous datasets (in our case, GDBs)
in order to classify and match them in an automated way.

1.1. Automatic Matching as a Solution to PAA Procedures

Matching spatial objects from two heterogeneous datasets is a complex decision
process [9]. According to these authors, there are two main aspects to address in this process:
First, what is the most appropriate spatial object to determine the matching? Second, what
are the similarity measures to employ? In response, and in most cases, matching algorithms
use building polygons as spatial objects to match and geometric descriptors as similarity
measures to perform the matching process. With regard to the criteria applied for the
determination of the matching, these algorithms are based on the percentage of overlapped
area [10,21,22], the context by means of both the Delaunay triangulation [23] and the
Voronoi diagram [24], the distance between turning functions [25], the belief theory on
position and orientation [26] and probability classifiers over a set of “evidence”, both
geometric and attribute-based [27]. The results provided by most of the above-referred
studies show a high matching success ratio between objects belonging to heterogeneous
sources. However, despite this efficiency many aspects still need to be improved. These
aspects are closely linked both to the generation of false matching pairs in the cases of 1:n
or n:m correspondences—multiple matching cases often associated with generalization
processes suffered by building polygons with relatively complex contours (Figure 1)—and
to the manual selection of landmarks from within two datasets. In both cases, an increase
of the level of automation would contribute to improve matching processes, avoiding the
acceptance of erroneously-matched objects.
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In order to solve, as far as possible, the aspects discussed above, in [1] we developed an
innovative automated matching methodology for urban GDBs. These GDBs are presented
as a set of georeferenced vector covers distributed by layers including a vector layer
of buildings (city blocks). This methodology—initially proposed as a solution to PAA
procedures—quantifies the similarity between two building polygonal shapes and match
them by means of a weight-based classification procedure using the polygon’s low-level
feature descriptors and AI tools. Specifically, the weights assigned were calculated from a
supervised training process using a GA [28,29]. The use of a GA allowed us to perform
the categorization of the matching quality from a quantification of the similarity by means
of a match accuracy value (MAV) ranging from zero to one (see [1,18,19]). Thus, two
matched building polygons will be exactly equal if the MAV achieved is equal to one.
This indicator was of great relevance for our work because it allowed us to: (i) select
only 1:1 corresponding building polygon pairs among all the possible correspondences
(using a thresholded value of MAV), thus avoiding the acceptance of both erroneously
matched polygons and unpaired polygons; and (ii) set different similarity levels between
1:1 corresponding building polygon pairs. According to the results achieved, GA proved
to be an appropriate and efficient tool on automated matching procedures using low-level
feature descriptors for classifying data features as similar or nonsimilar to model features
and assigning probabilities to those classes. This efficiency was achieved not only from a
procedural perspective but also from both time and cost point of view. Both aspects were
addressed in [18,19]. In the specific case of runtime, our matching tests revealed that for
GDBs composed of between 2000 and 2500 polygons the average runtime reached was
150 s. This runtime must be multiplied by 110 in the case of a manual matching procedure.

1.2. Research Approach

Despite the positive and encouraging results above mentioned, there is a key issue
that still needs to be analyzed in order to make automation a fully operational solution in
matching techniques: to explore its capabilities in comparison with human capabilities.

There are many studies that analyze the way in which closed polygonal shapes
are perceived by the human perceptual system and which are crucial to understanding
differences in inferential processes when comparing humans and machines [2,4,30–36].
According to some of these authors, the overarching challenge in comparison studies
between humans and machines seems to be the strong internal human interpretation
bias [4]. In this sense, appropriate analysis tools such as AI tools and their training
procedures help rationalize the interpretation of findings and put this internal bias into
perspective. All in all, care has to be taken not to impose our human systematic bias when
comparing human and machine perception [4].

The present study has been developed in response to the need to explore the real
capabilities of our machine-based matching approach to quantify the similarity between
two geographically referenced polygonal features (building polygons) and then match
them. Thus, although our automated tool could emulate human operators, it is necessary to
analyze its performance compared to them within a specific application and using concrete
data. Specifically, using a GA, a group of human experts and two official cartographic
databases, a comparison between a manual and an automated one matching procedure
has been carried out. To this end, two different experiment have been developed: (i) to
compare the similarity values between building polygons assigned by both the GA and the
human experts; and (ii) to compare the matching procedure developed in both cases.

2. Materials and Methods

In order to improve the robustness of the results of the comparative approach applied
in this study, we have used the same typology of data employed in the automated matching
methodology developed in [1], that is to say, the locations of building polygons extracted
from two official cartographic databases in Andalusia (southern Spain) (Figure 2a) with dif-
ferent levels of accuracy and which cover the same area: (i) the BCN25 (“Base Cartográfica
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Numérica E25k”), the tested dataset, and (ii) the MTA10 (“Mapa Topográfico de Andalucía
E10k”), the reference dataset (Figure 2b).
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The MTA10 is produced by the Institute of Statistics and Cartography of Andalusia
(Spain) and referenced to the ED50 datum. It is a topographic vector database with complete
coverage of the Andalusian territory, which is obtained by manual photogrammetric
restitution. As mentioned above, the MTA10 includes a vector layer of buildings (city
blocks), which contains a sufficient quantity of geometrical information to be able to
compute both the shape and geometric measures employed for assessing the geometric
form of polygons. On the other hand, the BCN25 is produced by the National Geographic
Institute of Spain and referenced to the European Terrestrial Reference System 1989 ETRS89
datum. This dataset covers the whole national territory of Spain—which logically includes
the Andalusian territory. As in the previous case, the BCN25 is presented as a set of vector
covers distributed by layers, including a vector layer of buildings (city-blocks) that contains
the same type of geometrical information as the MTA10, thus allowing us to determine the
degree of similarity between both data sets at building polygons level.

Finally, both databases must be interoperable, which means that they must be com-
parable both in terms of reference system and cartographic projection. In addition, they
must be independently produced and neither of them, in turn, can be derived from another
cartographic product of a larger scale through any process [37].

After describing the urban GDBs and their requirements, we must formally define
the specific data used in the present study. These data were composed of pairs of building
polygons (city-blocks) matched according to the accuracy criteria described in the next
section and obtained from nine urban areas included in three sheets of the MTN50k
(National Topographic Map of Spain at scale 1:50,000) (Figure 2a) in compliance as far as
possible with all the variability requirements with regard to the typologies of buildings,
that is to say, a wide geographical distribution and a large variety in their typology. In
addition, we must note that these data were different from those employed to carry out the
supervised training procedure of the GA.

2.1. Automatic Matching Process by Means of a GA

As mentioned in the introduction section, our automated matching methodology
quantified the similarity between two building polygonal shapes and matched them by
means of a weight-based classification methodology using the polygon’s low-level feature
descriptors and a GA. Figure 3 shows the workflow of the process.
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Specifically, each building polygonal shape was characterized by means of its mini-
mum bounding rectangle (MBR), defined by the coordinate values of its corners, number of
angles (concave and convex), perimeter, area, moment of inertia and the area of the region
below its turning function (see [1]). With regard to the GA, we used a GA based on real
number representation (called real coded GA (RCGA)). Once again, we must note that all
these aspects are addressed in detail in [1], so they will be not discussed here. There is
however an important issue for the development of the present study: how to perform the
discretization of the MAV values obtained. As stated previously, for the categorization of
the matching quality the use of an RCGA allowed us to quantify the similarity by means of a
MAV ranging from zero to one. However, it is necessary to discretize these results, defining
ranges—adapted to the visual perception limit-based human discrimination capability—
which allow a human operator to develop an external evaluation of such results. In this
sense, the pairs of building polygons matched were classified into three different levels of
similarity: low level (MAV < 0.5) (bad matching results), middle level (0.5 ≤MAV < 0.8)
(intermediate matching results) and high level (MAV ≥ 0.8) (good matching results). These
thresholds between the levels were computed by assigning a confusion matrix to the GDB
used to train the GA. All of them represent the shape similarity measure between two
matched polygons—1:1 correspondences—regardless of the matching success. However,
the confusion matrix showed that (i) a MAV greater than or equal to 0.8 allowed to avoid
the acceptance of erroneously matched polygons (error of commission), (ii) the absence of
this type of error was not guaranteed for values of MAV between 0.8 and 0.5 although its
occurrence was unlikely, and (iii) a MAV lower than 0.5 did not guarantee the acceptance
of erroneously matched polygons with a high degree of reliability [1]. Finally, and with
regards to unmatched polygons (1:0 correspondences), these types of cardinality in the
matching process were classified as unpaired or unmatched.

2.2. Manual Matching Carried Out by an Expert Group

Our comparative approach requires carrying out a manual matching procedure—
expert conducted matching. To that end, first it is important to analyze the way both
human and machines learn relationships between visual shapes. In this regard, a controlled
experiment named synthetic visual reasoning test (SVRT) was developed in [2]. This SVRT
was composed by 23 classification problems based on abstract reasoning and evaluated by
20 human experts and a machine-learning technique. By this method, these authors worked
with planar random shapes and the classification was carried out at level of relationships,
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such as “inside”, “in between”, “same”, etc. Specifically, one of the problems belonging
to category 1 of their SVRT was about how to solve the question: Are there two identical
shapes in the image? (Figure 4). This problem is closely related with matching procedures
and, as will be seen below, it is the main goal of one of our experiments.
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With regard to the results, these authors obtained two important conclusions for our
work: (i) humans needed only few examples to learn relationships between shapes and
to solve a very high percentage of the problems, while the machine learning algorithm
needed many more to reach a lower percentage; (ii) similarity criteria are easier to learn in
complex shapes than in simple shapes. The first conclusion suggests that humans and their
expert knowledge may be, a priori, a valuable tool for assessing an automated matching
procedure which is—as mentioned in the next subsection—one of the objectives of our
comparison process and the main hypothesis of the present work. With regard to the
second conclusion, it suggests us a parallel hypothesis which must be also addressed in
our study: similarity is easier to assess in complex shapes than in simple shapes.

After analyzing learning processes in humans and machines, there are three key
aspects for defining manual matching procedures: (i) the selection of a representative
sample of the elements for their evaluation (in our case, building polygons, city-blocks,
that have been previously matched automatically by the GA), (ii) the selection of the group
of experts that will carry out the procedure, and (iii) the definition of what has been termed
agreement measures. These measures represent numerical values that can be used to
analyze the efficiency of the results obtained from the proposed procedure. With regard to
this last aspect, the measures can be classified into the following two categories:

• Level of agreement. Defined as the degree of similarity between the judgments issued
independently by the different experts;

• Consistency. Defined as the degree of similarity between the judgments issued by the
experts and the results provided by the automatic matching process (GA).

2.2.1. Objectives of the Comparison Process

As a first step, it was necessary to formulate the main objectives pursued by carrying
out the experiments with the group of experts, which are:

• Provide an alternative MAV (expert value) to the MAV provided by the GA assessing
the similarity between building polygons;

• Provide an alternative element matching to those provided by the GA assessing the
level of effectiveness of the automatic matching process.

2.2.2. Selection of the Group of Experts

Expert knowledge plays an integral role in many fields of science. Thus, where
empirical data are scarce or unavailable, expert knowledge is often regarded as the best or
only source of information [38]. In addition, with the rise of machine learning procedures
the role of expert knowledge has become ever more important. A deeper understanding of
the mechanisms of human perception in order to improve machine learning procedures
will require appropriate consideration of expert opinions. Therefore, selecting experts and
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eliciting their opinions must be performed and handled carefully, with full recognition of
the uncertainties inherent in those opinions [39].

As in other sciences, expert knowledge is very important for GIScience. However,
although expert knowledge has long been a value input into geographical inquiry, in
the context of automatic PAA procedures it has not been explored in detail. Traditional
approaches to the PAA of GI are dominated by a paradigm borrowed from transactional
data architectures where discrepancy metrics can be formulated easily [40]. Unfortunately,
this approach has limited utility for automatic PAA procedures, where these metrics are
highly dependent on the matching techniques previously employed. That is why these
techniques must be subjected to external assessment processes.

There are many methods to select a panel of experts, highlighting quantitative selection
methods. They are based on the calculation of coefficients of competence. In our case,
the experts were selected employing this method and on the basis of their professional
qualification, experience and prestige. With regard to the size, using a group as numerous
as possible allowed us to improve the consistency of the results as well as to assess
human consistency. Thus, we counted on the active participation of 24 experts from the
following countries and institutions: Brazil (Universidade de Sao Paulo), Finland (National
Land Survey of Finland), France (Institut Géographique National), Germany (Institut für
Kartographie), Scotland (University of Edinburgh), Spain (from several institutions), Swiss
(Iniversität Zurich), United States (University of Ohio) and Uruguay (Universidad ORT).

2.2.3. Working Framework and Documentation Provided

The working framework employed was strongly conditioned by the geographic spread
of the participants. This circumstance did not allow us to carry out assessment procedures
of a face-to-face nature, it being necessary to implement remote assessment methods. There
are two basic ways to apply this type of method [38]: by analogue support (the traditional
way) or by digital support. In our case, this last option was applied.

In comparison with traditional methods, assessment methods based on digital support
have experienced an exceptional growth during recent years through the development of
information and communication technologies (ICTs) and web services-based technologies
(WSTs). Thus, the capacity to interact across the network provided by these technologies
allows us to share resources such as data, processing modules and applications quickly and
efficiently. WSTs are used widely in the geospatial domain, expanding the traditional focus
on discovery and access to geospatial data. Geospatial WSTs are designed to integrate,
edit and store a large amount of geospatial information and their corresponding metadata,
promoting collaborative working and fulfilling users’ requests [41]. However, our working
framework does not include a volume of information large enough to implement a web
service whose architecture is defined to support complex data infrastructures. With this in
mind, we opted to develop an application which is easy to use in order to make the experts´
work easier and to obtain the highest possible number of assessments. Our application was
implemented in Visual-Basic.NET, and hosted in a virtual machine. Finally, access to the
virtual machine—and therefore to our application—was carried out by means of a remote
desktop connection. This way of working allowed us to enjoy the advantages of WST,
avoiding the drawbacks associated with its architecture. Some of these advantages are:

• Simultaneous multiple access so that all experts can enter into the application at
any time;

• Access restriction. This restriction was established at two different levels: (i) access
restriction to any other type of information or software stored in the host computer—
with any another way of working, this information would be totally exposed; and
(ii) access restriction to the user accounts of other experts.

Finally, and together with the aforementioned application, the group of experts was
provided with a matching guide consisting of a single document in which the guidelines to
be followed to complete the experiments proposed were briefly presented. An important
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section of this guide was composed by graphical examples of pairs of polygons with
different degrees of similarity (Figure 5).
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With this document we aimed to guide the experts in carrying out the different tasks.
Since the final success of the evaluation will depend on its perfect understanding its writing
must be clear and concise. This document was hosted together with the application in the
virtual machine which can be retrieved through remote desktop connection.

2.2.4. Design of the Experiments

In order to accomplish the objectives proposed in Section 2.2.1, the assessment proce-
dure was composed of two different experiments. An important aspect to take into account
for their design was the time required to complete them. In this respect, there are two
requirements that must be fulfilled: (i) the time required should be as short as possible,
without affecting the achievement of the objectives, and (ii) the total number of cases to be
evaluated by each expert should be as small as possible without affecting the significance of
the results. According to these requirements, it was estimated that the time required should
not exceed in any case 20 min. This is the maximum time interval recommended because
the user´s attention and therefore the quality of the response decreases after 20 min [42].
In addition and according to these last authors, it is very difficult to get a user to stay
online for more than 20 min by filling out a questionnaire. Logically, this response time
conditioned the final number of polygons used, which in any case were enough to reach
statistically significant results.

MAV Experiment

This first experiment was applied over a sample of 18 pairs of homologous building
polygons. In this case, each expert should provide an alternative MAV to the MAV provided
by the GA when assessing the similarity between building polygons during the automatic
matching process. To that end, two graphic windows were used so that each of the two
building polygons was shown in a different graphic window (Figure 6a). After a visual
check, the MAV provided by each expert could be included into the three discretized
levels: low, medium and high level—depending on the degree of similarity between the
polygons matched. The pairs of building polygons used were selected so that all the
possible values of MAV were represented and in compliance, as far as possible, with all
the variability requirements with regard to the typologies of polygons considering the
variability with regard to the number of vertices. The use of this parameter allowed us
to characterize intuitively the results, determining if there is some type of geometry to be
especially problematic when assessing the degree of similarity between polygons.
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In order to ensure the robustness of the results corresponding to this first experiment, it
was necessary to transfer to the experts some of the results provided by the GA, explaining
to them that not all descriptors used have the same importance in the weight-based
classification methodology developed by the GA. The information related to this set of
weighting criteria was provided to experts through various examples, ensuring that all
of them give the same importance to each of the descriptors, and in this way it will be
possible to homogenize the answers.

Matching Experiment

This second experiment was also applied over a sample of 18 pairs of homologous
polygons. These polygons must be different to those belonging to the MAV experiment.
The goal of this second experiment was to assess the efficiency achieved by the GA related
to the tasks of identification and matching of homologous building polygons. As in the
previous experiment, two graphic windows were used (Figure 6b). In this case, the left
window shows the polygon whose homologue must be found by the expert in the right
window, thus providing an alternative element matching to those provided by the GA
assessing the level of effectiveness of the automatic matching process. The work of the
experts in this case was of great simplicity; therefore, it was not necessary to provide them
with any other type of additional information. However, in this case, visual assessment
plays a very important role. That is why several editing options, such as zoom tools,
grid system, buttons for overlapping the polygons according to their coordinates, etc.,
were implemented.

Experimental Design

With regard to the experimental design, the sample of building polygons included a
total of 54 pairs of polygons for each of the two experiment types (MAV and matching), with
which four different tests were performed. For the first three tests (numbers 1, 2 and 3),
18 pairs of different polygons were employed (18+18+18=54). These tests were assessed by
a random selection of 15 experts from those included in the initial group. Test number 4
was performed with 18 pairs of polygons selected from those employed in the first three
tests with each of them contributing six pairs of polygons. This last test was evaluated by
the total number of experts included in the aforementioned group. Finally, we must note
that the goal of this type of distribution was to increase the assessing pressure on certain
cases, analyzing their statistical behavior in situations with different number of experts.
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3. Results
3.1. Results Derived from the MAV Experiment

Table A1 (Appendix A) presents all the results obtained through the GA for each of
the tests that were carried out (1, 2, 3, and 4). This table shows both the MAV computed—
ranging from zero to one—and the discretized values corresponding to these MAV (high→ 2,
middle→ 1, low→ 0). These results have been summarized in Figure 7. Specifically,
Figure 7a shows the percentage distribution of matched polygons for each level of MAV—
as mentioned above, this distribution was homogeneous—while Figure 7b sets out the
results of the percentage distribution of matched polygons for each interval of MAV
grouped by number of vertexes.
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With regard to the agreement results derived from the group of experts, and according
to the experimental design, 612 assessments were conducted (270 assessments from the
experiments 1, 2 and 3; and 342 new assessments from the experiment 4). Tables A2 and A3
(Appendix A) present the discretized MAV provided by the experts, which have also been
summarized in Figure 8. For its processing, a double entry table model was used. This
type of table shows all the options (Cij) chosen by the n experts considered, and for the m
pairs of polygons finally assessed. In addition, the MAV provided by the GA is also shown,
therefore from the several Cij values the levels of agreement and the consistency reached in
the assessment were calculated and expressed as percentages of agreement. In order to
facilitate the interpretation of the results, Figure 9 shows an example of the MAV computed
by the GA (Figure 9c) and the discretized values assigned by an expert (Figure 9d) for five
polygons (Figure 9b) belonging to the sample used in the present study.

3.2. Results Derived from the Matching Experiment

Table A4 (Appendix A) presents the polygon assigned as homologous in the matching
process developed by the GA. With regard to the results derived from the group of experts,
the tables of results have a similar structure to those of the previous section, responding to
the double entry model in the data processing described above. Thus, in Tables A5 and A6
(Appendix A) each entry represents the building polygon (through its identifier) selected
by the expert as homologous to another belonging to the selected sample. As in the MAV
Experiment, in this experiment, 612 assignments were conducted. With regard to Table A4,
it must be noted that for polygon numbers 7, 9, 13, 16, 24, 29 and 32, the GA was not able
to find homologues to match these polygons, so they have been labelled as unmatched
polygons. In the same way, none of the experts was able to match them (Tables A5 and A6).
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Unmatched polygons are associated mainly with one type of cardinality, 1:0. That is
to say, polygons represented only in one of the data sources (Figure 10a). Specifically, this
case corresponding to the polygon number 7 belonging to Tables A4 and A5. On the other
hand, unmatched polygons can be also associated with m:n correspondences between
polygons with a relatively complex contours which have been subjected to cartographic
generalization processes (Figure 10b).
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4. Discussion
4.1. MAV Experiment

The bar charts from Figures 7b and 8b can help give a better interpretation of the results
derived from the MAV experiment when polygons are characterized by their number
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of vertices. Both bar charts show a similar behavior both in the case of the similarity
assessment developed by the GA and in the case of the similarity assessment developed
by the group of experts. In both cases, the proportion of low, middle and high MAV tends
to be reversed as the number of vertexes increases. Specifically, the percentage of pairs of
polygons assessed by the GA as having low level of similarity is 25% in the case of polygons
with a number of vertexes lower than five. However, this percentage is practically nil for
polygons with a number of vertices higher that twenty. This trend is even much sharper
in the assessment carried out by the group of experts. In this last case, there are not any
pairs of polygons with a number of vertices higher than twenty that have been assessed
as low level of similarity. In the view of the above, one may conclude that both for GA
and for human experts it is easier to assess the similarity between two matched polygons
when they have a high number of vertex. This confirms one the conclusions reached in [2]
and verifies one of the hypothesis considered in our study, the similarity is easier to assess
in complex shapes than in simple shapes. In the specific case of humans, it is due to the
intuitive trend of decomposing pairs of complex objects into their constituent parts—that
are individually recognizable—in order to facilitate identifying common shapes between
these objects and then match them [43].

Regarding the agreement measures, it can be said that the consistency achieved
for this first experiment (in all the tests performed) was very high, with a GA–experts
mean agreement percentage—calculated over the total number of assessments of 612—
of 93.3%, while for 75.9% of the building polygon pairs a 100% agreement percentage
between the similarity results provided by the experts and those obtained through the AG
was reached. Together with these high consistency percentages, the level of agreement
between experts reveals an important aspect of the study; the confusion (disagreement GA–
expert and expert–expert) when assessing the similarity between pairs of polygons whose
MAV—computed by the GA—is close to the threshold values of 0.5 and 0.8. This type of
behavior—the increase of uncertainty around threshold values—was already discussed
in [44]. These authors analyzed the impact of estimation errors on reference data collected
to validate land-cover maps, and concluded that these errors are more prevalent when
the class proportions are close to the class definition threshold. Taking into account the
particularities of our experiments—mainly related to the uncertainties inherent in the
experts’ opinions—and with all due caution, one might argue that our case is similar to that
addressed in [44]. Thus, Figure 11a shows that the lowest values of agreement correspond
to pairs of polygons whose MAV is close to the threshold values of 0.5 and 0.8. Specifically,
the grey line represents the mean value of agreement for each interval of 0.1 MAV units.
On the other hand, Figure 11b represents the agreement reached in relation to the distance
to the MAV threshold (DMT). In this last case, each blue point represents a pair of matched
polygons, of which similarity was assessed with a certain level of agreement between the
GA and the experts, and its distance to the nearest threshold value—0.5 or 0.8. Here the
grey line represents the trend line followed by the data.

As a solution to minimize this type of error, the authors propose to carefully select the
classification system with threshold values as far as possible from the modes of the distri-
butions of land-cover proportions [44]. However, in our case this way to proceed makes no
sense. We must recall that the location of the threshold values is already optimized by a
confusion matrix whose aim is to avoid the acceptance of erroneously matched polygons
(error of commission).
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With regard to the specific cases, the polygons with highest level of disagreement in
Figure 11 correspond to the numbers 1, 2, 9, 20, 21, 28, 31, 48 and 49 (Tables A2 and A3).
Specifically, the cases of the polygons number 9 and 49 are particularly remarkable. In the
case of polygon number 9, the MAV assigned by the GA is 0.79—just below the threshold
of 0.8. This case corresponding to the polygon labeled as D in the Figure 9c. The case of
polygon number 49 is very similar. In this case, which correspond to the polygon labeled
as A in the Figure 9c, the MAV assigned by the GA is 0.78—also close to the threshold 0.8.

On the other hand, and with regard to the variability of the assessments provided—
which represents the level of agreement between the judgments issued independently by
the experts—it should be noted that in none of the pairs of polygons were the three types of
values (0, 1 or 2)—belonging to MAV assessment—simultaneously assigned by the experts.

Finally, the results obtained increasing the evaluation pressure on certain cases (test 4)
showed certain variability in the percentages of agreement reached in the following polygons:

• Polygon number 1. This polygon reached 100% agreement in test number 1, while in
the number 4 it did not reach 80% (79.1%).

• Polygon number 4. In this case, the level of agreement reached decreased from 100%
(test 1) to 91.6% (test 4).

• Something similar happened with polygons number 48 and 49. Both reached 100%
agreement in test number 3, while in test number 4 they dropped to less than 80%.

As mentioned above, these last cases corresponded to building polygons whose degree
of similarity is close to the two threshold values, which define the three different levels,
established after the MAV discretization process.

4.2. Matching Experiment

The consistency achieved for this second experiment was even higher than for the
case of the first one, with a GA–expert mean agreement percentage of 98.8%—calculated
over the total number of assignments, 612. In this case the results were very strong, with a
percentage of agreement of 100% in most cases. Even polygons that the AG was unable to
match were recognized by experts as unmatched. However, there are striking exceptions.
Such is the case of expert number 21—in the specific case of polygon number 9—and
particularly the case of expert number 11. According to Table A6, this last expert was
unable to assign a homologous element to the following polygons: 10, 26, 28, 31, 50 and
52. All these polygons are polygons with a square or rectangular shape for which it is
helpful to employ the edition tools—such as the grid system or the button for overlapping
the polygons according to their MBRs—in order to facilitate the assignment procedure.
Therefore, the fact of not being able to carry out any assignation might be due to either
some misinterpretation of the matching guide or not to use it.
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Figure 12 presents an example that illustrates this situation: an urban area where
predominates a constructive typology characterized by rectangular city-blocks. Specifically,
it corresponds to the case of the polygon number 10. First, Figure 12a shows the graphical
user interface used for assigning the homologous polygon (from the screen 2) correspond-
ing to the polygon shown in the Screen 1. In this case, the assignment procedure can be
very difficult if edition tools are not employed. Figure 12b shows the usefulness of these
tools. Specifically, we have used the overlapping button. By this way, the uncertainty in the
assignment is reduced significantly. Accordingly, and as discussed in Section 4.1, it can be
concluded that it is not only easier to assess the similarity between two matched polygons
when they have a high number of vertex but also is easier to match them. This reconfirms
the conclusions reached in [2], and verifies the hypothesis considered in our study.
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Finally, the results obtained increasing the evaluation pressure on certain cases (test 4)
showed certain variability in the percentages of agreement reached in the following polygons:

• Polygon number 31. This polygon reached 100% agreement in test number 2, while in
test number 4 it did not reach 87.5%.

• Polygon number 52, whose level of agreement remained constant in tests 3 and 4. In
addition, this case reached the lowest agreement level (79.1%) in test number 4. This
polygon belongs to the polygons´ typology described above, that is to say, polygons
with a square or rectangular shape for which is advisable to employ the edition tools.
As stated, the fact that the experts 2, 5, 7, 9 and 11 were not able to match it might be
due to a failure to follow the guidelines established by the matching guide.

5. Conclusions

The present study explores the real capabilities of a machine-based matching approach
to assess the similarity between two geographically referenced polygonal features (building
polygons) and then match them. To that end, we selected a group of experts—composed of
professionals of recognized prestige and with lengthy professional careers in the field of
cartography—whose main objective was to provide alternative assessments (of similarity
and matching) to those provided by our automated matching mechanism (GA). In both
cases, our results show high levels of consistency, that is to say, a high degree of agreement
between the judgments issued by experts and the results provided by the GA. Specifically,
93.3% in the case of the MAV experiment (similarity assessment) and 98.8% in the case of the
matching experiment (homologous polygon assignment). In addition, the characterization
of the pairs of polygons according to the number of vertices allowed us to corroborate
the hypothesis that, in general, the similarity is easier to assess in complex shapes than in
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simple shapes. It might be related with the fact that in complex shapes is easier to identify
what is known as principles of perceptual organization [2], such as proximity, similarity,
symmetry, inclusion, collinearity, etc.

However, and despite the high levels of consistency aforementioned, there are two
aspects that must be highlighted: (i) the cases of disagreement between GA and expert
and expert and expert are strongly linked to pairs of polygons whose MAV is close to the
stipulated threshold values; and (ii) the matching experiment has revealed that human
operators encounter difficulties in matching polygons with square or rectangular shapes
when the geolocation of these polygons is not taken into consideration. Both aspects
underline the dependence of the results on both the prevailing constructive typology in
a certain urban GDB, and the experimental design itself. In this sense, efforts must lead
towards the improvement of the experiments by a significant increase in both the number
of polygons used in the study, and the number of experts who assess their similarity and
match them.

In any case, and being careful with the interpretation of the results, we can conclude
that the main hypothesis of the present work has been corroborated. That is to say, GAs
have proved to be an efficient tool when assessing the similarity between polygonal features,
and therefore in automated matching procedures using low-level feature descriptors.

Finally, and despite the guarantees provided by expert knowledge in general and by
our group of experts in particular, our study does not cover an entire experimentation with
automation tools, but confines itself to the use of one tool in particular (GAs). In addition,
it has been applied on a specific spatial data set. In this sense, more studies using other
tools of AI and other case studies are required to further understand the mechanisms of
human perception and to improve machine learning procedures.

Author Contributions: Conceptualization, Francisco Javier Ariza-López; Methodology, Juan José
Ruiz-Lendínez and Francisco Javier Ariza-López; Software, Juan José Ruiz-Lendínez and Manuel
Antonio Ureña-Cámara; Investigation, Juan José Ruiz-Lendínez; Writing-original draft preparation,
Juan José Ruiz-Lendínez; Writing-review and editing, Juan José Ruiz-Lendínez; Supervision, Juan
José Ruiz-Lendínez, Francisco Javier Ariza-López and Manuel Antonio Ureña-Cámara; Project
administration, Juan José Ruiz-Lendínez. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the data also forms part of an
ongoing study.

Acknowledgments: Authors acknowledge experts for accepting to take part in this study.

Conflicts of Interest: The authors declare no conflict of interest.



ISPRS Int. J. Geo-Inf. 2021, 10, 289 17 of 20

Appendix A

Table A1. Results provided by the GA. MAV Experiment.

Test 1 Test 2 Test 3 Test 4

Pol. MAV Computed/
Discreticed Pol. MAV Computed/

Discreticed Pol. MAV Com-
puted/Discreticed Pol. MAV Computed/

Discreticed

1 0.82/2 High 19 0.17/0 Low 37 0.83/2 High 1 0.82/2 High
2 0.51/1 Medium 20 0.46/0 Low 38 0.09/0 Low 4 0.38/0 Low
3 0.71/1 Medium 21 0.39/0 Low 39 0.10/0 Low 5 0.55/1 Medium
4 0.38/0 Low 22 0.88/2 High 40 0.81/2 High 6 0.74/1 Medium
5 0.55/1 Medium 23 0.81/2 High 41 0.15/0 Low 7 0.86/2 High
6 0.76/1 Medium 24 0.70/1 Medium 42 0.57/1 Medium 8 0.11/0 Low
7 0.86/2 High 25 0.22/0 Low 43 0.90/2 High 22 0.88/2 High
8 0.11/0 Low 26 0.64/1 Medium 44 0.66/1 Medium 23 0.81/2 High
9 0.79/1 Medium 27 0.83/2 High 45 0.76/1 Medium 25 0.22/0 Low

10 0.83/2 High 28 0.49/0 Low 46 0.95/2 High 26 0.64/1 Medium
11 0.91/2 High 29 0.90/2 High 47 0.95/2 High 28 0.49/0 Low
12 0.89/2 High 30 0.60/1 Medium 48 0.38/0 Low 31 0.78/1 Medium
13 0.42/0 Low 31 0.78/1 Medium 49 0.78/1 Medium 43 0.90/2 High
14 0.59/1 Medium 32 0.46/0 Low 50 0.81/2 High 44 0.66/1 Medium
15 0.18/0 Low 33 0.97/2 High 51 0.42/0 Low 48 0.38/0 Low
16 0.90/2 High 34 0.82/2 High 52 0.35/0 Low 49 0.78/1 Medium
17 0.21/0 Low 35 0.73/1 Medium 53 0.70/1 Medium 50 0.81/2 High
18 0.22/0 Low 36 0.74/1 Medium 54 0.55/1 Medium 52 0.35/0 Low

Table A2. Results provided by the experts vs GA. MAV Experiment (Tests 1, 2 and 3).

Test 1 Test 2 Test 3

Pol
ID. GA

Expert ID. Agreement
[%]

Pol
ID. GA

Expert ID. Agreement
[%]

Pol
ID. GA

Expert ID. Agreement
[%]16 5 2 21 8 12 9 1 14 15 3 4 7 6 24

1 2 2 2 2 2 2 100 19 0 0 0 0 0 0 100 37 2 2 2 2 2 2 100
2 1 0 1 1 1 0 60 20 0 1 0 0 1 0 60 38 0 0 0 0 0 0 100
3 1 1 1 1 1 1 100 21 0 0 1 0 0 0 80 39 0 0 0 0 0 0 100
4 0 0 0 0 0 0 100 22 2 2 2 2 2 2 100 40 2 1 2 2 1 2 60
5 1 1 1 1 1 1 100 23 2 2 2 2 2 2 100 41 0 0 0 0 0 0 100
6 1 2 1 1 1 1 80 24 1 1 1 1 1 1 100 42 1 1 1 1 1 1 100
7 2 2 2 2 2 2 100 25 0 0 0 0 0 0 100 43 2 2 2 2 2 2 100
8 0 0 0 0 0 0 100 26 1 1 1 1 1 1 100 44 1 1 1 1 1 1 100
9 1 1 2 2 1 2 40 27 2 2 2 2 2 2 100 45 1 1 1 2 1 1 80
10 2 2 2 1 2 2 80 28 0 0 0 1 0 0 80 46 2 2 2 2 2 2 100
11 2 1 2 2 2 2 100 29 2 2 2 2 2 2 100 47 2 2 2 2 2 2 100
12 2 2 2 2 2 2 100 30 1 1 1 1 1 1 100 48 0 0 0 0 0 0 100
13 0 0 1 0 0 0 80 31 1 1 1 2 1 1 80 49 1 1 1 1 1 1 100
14 1 2 1 1 1 1 100 32 0 0 0 0 0 0 100 50 2 2 2 2 2 2 100
15 0 0 0 0 0 0 100 33 2 2 2 2 2 2 100 51 0 0 0 0 0 0 100
16 2 3 2 2 2 2 100 34 2 2 2 2 2 1 80 52 0 0 0 0 0 0 100
17 0 0 0 0 0 0 100 35 1 2 1 1 1 1 80 53 1 1 1 1 1 1 100
18 0 0 0 0 0 0 100 36 1 1 1 1 1 1 100 54 1 1 1 1 1 1 100

Table A3. Results provided by the Experts vs GA. MAV Experiment (Test 4).

Test 4

Pol
ID. GA

Expert ID. Agreement
[%]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 79.1
4 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91.6
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
6 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 91.6
7 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 95.8
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 100
23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 100
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
26 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 91.6
28 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 75
31 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2 1 1 1 79.1
43 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 100
44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100
48 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 83.3
49 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 2 2 1 2 1 1 1 2 2 1 66.7
50 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 95.8
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
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Table A4. Results provided by the GA. Matching experiment.

Test 1 Test 2 Test 3 Test 4

Pol.
ID.

Matched
Polygon ID.

Pol.
ID.

Matched
Polygon ID.

Pol.
ID.

Matched
polygon ID.

Pol.
ID.

Matched
Polygon ID.

1 247 19 286 37 312 1 247
2 113 20 236 38 251 4 252
3 27 21 176 39 87 8 283
4 252 22 88 40 73 9 Unmatched
5 231 23 130 41 204 10 133
6 33 24 Unmatched 42 250 13 Unmatched
7 Unmatched 25 153 43 140 22 88
8 283 26 258 44 22 26 258
9 Unmatched 27 14 45 276 27 14
10 133 28 114 46 47 28 114
11 128 29 Unmatched 47 43 31 304
12 89 30 208 48 61 32 Unmatched
13 Unmatched 31 304 49 108 43 140
14 172 32 Unmatched 50 313 44 22
15 188 33 319 51 214 49 108
16 Unmatched 34 225 52 191 50 313
17 285 35 316 53 230 52 191
18 36 36 154 54 106 53 230

Table A5. Results provided by the experts vs GA. Matching experiment (Tests 1, 2 and 3).

Test 1 Test 2 Test 3

Pol
ID. GA

Expert ID. Agreement
[%]

Pol
ID. GA

Expert. ID. Agreement
[%]

Pol
ID. GA

Expert. ID. Agreement
[%]16 5 2 21 8 12 9 1 14 15 3 4 7 6 24

1 247 247 247 247 247 247 100 19 286 286 286 286 286 286 100 37 312 312 312 312 312 312 100
2 113 113 113 113 113 113 100 20 236 236 236 236 236 236 100 38 251 251 251 251 251 251 100
3 27 27 27 27 27 27 100 21 176 176 176 176 176 176 100 39 87 87 87 87 87 87 100
4 252 252 252 252 252 252 100 22 88 88 88 88 88 88 100 40 73 73 73 73 73 73 100
5 231 231 231 231 231 231 100 23 130 130 130 130 130 130 100 41 204 204 204 204 204 204 100
6 133 133 133 133 133 133 100 24 - - - - - - 100 42 250 250 250 250 250 250 100
7 - - - - - - 100 25 153 153 153 153 153 153 100 43 140 140 140 140 140 140 100
8 283 283 283 283 283 283 100 26 258 258 258 258 258 258 100 44 22 22 22 22 22 22 100
9 - - - - 74 - 80 27 14 14 14 14 14 14 100 45 276 276 276 276 276 276 100
10 133 133 133 133 101 133 80 28 114 114 114 114 114 114 100 46 47 47 47 47 47 47 100
11 128 128 128 128 128 128 100 29 - - - - - - 100 47 43 43 43 43 43 43 100
12 89 89 89 89 89 89 100 30 208 208 208 208 208 208 100 48 61 61 61 61 61 61 100
13 - - - - - - 100 31 304 304 304 304 304 304 100 49 108 108 108 108 108 108 100
14 172 172 172 172 172 172 100 32 - - - - - - 100 50 313 313 313 313 313 313 100
15 188 188 188 188 188 188 100 33 319 319 319 319 319 319 100 51 214 214 214 214 214 214 100
16 - - - - - - 100 34 225 225 225 225 225 225 100 52 191 191 191 - 191 191 80
17 285 285 285 285 285 285 100 35 316 316 316 316 316 316 100 53 230 230 230 230 230 230 100
18 36 36 36 36 36 36 100 36 154 154 154 154 154 154 100 54 106 106 106 106 106 106 100

Table A6. Results provided by the experts vs GA. Matching experiment (Test 4).

Test 4

Pol
ID. GA

Expert ID. Agreement
[%]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 247 100
4 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 100
8 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 283 100
9 - - - - - - - - - - - - - - - - - - - - - - - - - 100
10 133 133 133 133 133 133 133 133 133 133 133 - 133 133 133 133 133 133 133 133 133 101 133 133 133 91.6
13 - - - - - - - - - - - - - - - - - - - - - - - - - 100
22 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 100
26 258 258 258 258 258 258 258 258 258 258 258 - 258 258 258 258 258 258 258 258 258 258 258 258 258 95.8
27 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 100
28 114 114 114 114 114 114 114 114 114 114 114 - 114 114 114 114 114 114 114 114 114 114 114 114 114 95.8
31 304 304 - 304 304 - 304 304 304 304 304 - 304 304 304 304 304 304 304 304 304 304 304 304 304 87.5
32 - - - - - - - - - - - - - - - - - - - - - - - - - 100
43 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 100
44 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 100
49 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 100
50 313 313 313 313 313 313 313 313 313 313 313 - 313 313 313 313 313 313 313 313 313 313 313 313 313 95.8
52 191 191 - 191 191 - 191 - 191 - 191 - 191 191 191 191 191 191 191 191 191 191 191 191 191 79.1
53 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 100
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