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Abstract: Vehicle crashes on roads are caused by many factors. However, the influence of these factors
is not necessarily homogenous across locations, which is a challenge for non-stationary modeling
approaches. To address this problem, this paper adopts two types of methods allowing parameters
to fluctuate among observations, that is, the random parameter approach and the geographically
weighted regression (GWR) approach. With road curvature, curve length, pavement friction, and
traffic volume as independent variables, vehicle crash frequencies are modeled by two non-spatial
methods, including the negative binomial (NB) model and random parameter negative binomial
(RPNB), as well as three spatial methods (GWR approach). These models are calibrated in microlevel
using a dataset of 9415 horizontal curve segments with a total length of 1545 kilometers for a period
of three years (2016–2018) over the State of Indiana. The results revealed that the GWR approach can
capture spatial heterogeneity and therefore significantly outperforms the conventional non-spatial
approach. Based on the Akaike Information Criterion (AICc), geographically weighted negative
binomial regression (GWNBR) was proved to be a superior approach for statewide microlevel
crash analysis.

Keywords: spatial heterogeneity; random parameter negative binomial model; geographically
weighted regression; transportation; vehicle crash

1. Introduction

Road horizontal curves are a critical factor for vehicle crashes due to their dispro-
portional number of crashes. Traffic crashes cost over 30,000 lives in America every year.
According to the Federal Highway Administration (FHWA) [1], more than 25% of fa-
tal crashes are related to horizontal curves that occupy about 10% of the total system
of mileage.

To reveal the intrinsic law of this phenomenon, several prediction models have been
developed for curve crashes over the past decades. In terms of pavement condition, Bud-
dhavarapu et al. [2] developed a crash injury severity model on two-lane horizontal curves
in Texas. It was found that curve segments with smoother pavement are more likely to be
high-risk, while longitudinal skid measurement shows little correlation with curve crash
injury severity. To explore the influence of geometric features on curve crash frequency,
a negative binomial model was developed by Schneider et al. [3] on the single-vehicle
motorcycle crashes that occurred on curve segments of rural two-lane highways in Ohio.
Geometric feature variables that significantly influence the motorcycle crash frequency
were found to be curve radius, curve length, and curve shoulder width. Moreover, Musey
and Park [4] presented a model for predicting horizontal curve crash severity with pave-
ment friction and road curvature. The results demonstrated that serious injury occurs on
curves with a higher degree of curvature, and lower friction is closely correlated to wet
pavement crashes. Meanwhile, the correlation of crash frequency occurring at adjacent
curves correlation is found to be significant by Gooch et al. [5].
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All aforementioned models are global that assume parameter estimates are fixed
across the geographical region of analysis. However, as location information is collected as
a reference to crash data, some predicting variables may not be stationary. For example, the
geometry features (such as radius and length) of horizontal curves may cause observation
heterogeneity from unobserved factors such as various driver responses on curves, time-
varying traffic, and weather conditions [6]. The effect of pavement friction may also vary
across observations due to friction variations, a heterogeneous response in driver behavior,
and climate influence. In terms of the effect of traffic volume on crash likelihood, there
might also exist heterogeneous driver reactions to traffic as well as environmental factors [7].
Hence, modeling the relation between crash count and these explanatory variables with
the overall fixed coefficient for the entire study area may cause biased estimates of the
individual parameters. Thus, adding spatial variance with non-stationary models such
as geographically weighted regression (GWR) and random parameter approaches may
provide a better view for developing spatial dependency over space.

Traffic safety spatial studies are categorized as two levels of spatial aggregation:
macrolevel and microlevel analysis. Conventionally, micro-level analysis focuses on spe-
cific road entities of the road network, such as intersections, rails, corridors, and road
segments [3,8,9]. However, the macrolevel analysis focusing on zonal level crashes with
various spatial units is becoming popular as part of the transportation planning process
in recent research studies. The spatial units have been comprehensively developed re-
cently, such as traffic analysis zones (TAZs) [10–13], counties [14,15], census tracts [16],
wards [17,18], residential neighborhoods [19] and statistical area levels [20,21]. One of
the advantages associated with macrolevel crash modeling is that it does not count on
detailed data as much as microlevel crash models do [22]. However, it has been proved
that the micro-level models with less detailed data still provide an acceptable accuracy
when applying to non-stationary models [23]. It is, therefore, reasonable and promising
to employ non-stationary models (i.e., geographically weighted regression and random
parameter) for microlevel safety analysis.

2. Related Works

A number of road crash analysis methods have been developed to determine the
spatial dependency and heterogeneity of parameter influence and to find out high-risk
locations [24]. Among these methods, there was geographically weighted regression
(GWR) [25], Bayesian models with conditional autoregressive [17], autoregressive models
with spatial spillover effects [26], full Bayes multiple membership spatial model [27], and
random parameter models [28].

GWR approach is the most promising technique to reveal the variables’ heterogenous
effect over space in many fields (e.g., disease analysis [29], crime modeling [30]). Moreover,
some highly scaled GWR tools (e.g., CUDA-based Parallel GWR [31] and FastGWR [32])
have been developed to process large volumes of data these years. We applied the GWR
approach in this paper to address the issue that some variables have more impacts in certain
spatial locations but fewer impacts in others. Moreover, the random parameter method is
also utilized for comparison, as it also allows parameters varying from each other but has
no spatial relationship involved. Since Fotheringham et al. [33] systematically illustrated
GWR theory, this technique has often been applied to road safety analysis [34]. Hadayeghi
et al. [25] explored GWR application to count data modeling for traffic safety analysis at the
TAZ level. Li et al. [35] evaluated the performance of a geographically weighted Poisson
regression (GWPR) model in comparison to a traditional generalized linear model (GLM)
on county level crash data. Based on the semi-parametric GWPR model study of Nakaya
et al. [36], where some variables may not significantly vary over space while others are
spatially heterogeneous, Xu and Huang [28] examined the macrolevel crash data in Florida
with random parameter negative binomial model (RPNB) and semi-parametric GWPR.
Silva and Rodrigues [37] extended GWPR to model over-dispersed data by geographically
weighted negative binomial regression (GWNBR) and geographically weighted negative



ISPRS Int. J. Geo-Inf. 2021, 10, 286 3 of 17

binomial regression with global overdispersion parameters (GWNBRg). Gomes et al. [12]
and Soroori et al. [13] applied GWNBR to model over-dispersed crashes for traffic zones,
which outperformed GWPR and traditional global models. Amoh-Gyimah et al. [22] found
that comparing with RPNB models and GLM models, the GWR approach provides better
performance on macroscopic over-dispersed traffic crash frequency modeling. Neverthe-
less, only a few existing studies have investigated modeling state-wide microlevel regional
safety on over-dispersed crash data. State-wide non-stationary crash frequency modeling
involves coefficient variance on a larger number of observations and spacious areas. It
is, therefore, necessary to study spatial heterogeneity of larger-scale crash data by the
GWR approach.

The RPNB model, which also addresses unobserved heterogeneity in regional safety
over-dispersed data modeling, assumes that the parameters draw from some random
distributions and vary randomly from case to case. To investigate unobserved heterogeneity
across highway segments for crash count prediction, Shaon et al. [38,39] and Chen et al. [40]
applied random parameters Poisson-based models in their safety studies. As a branch of
random parameter Poisson-based modeling, RPNB has been widely used to account for
data overdispersion and has been widely conducted by Venkataraman et al. [6,41,42], Chen
and Tarko [43], and Saeed et al. [44]. Xin et al. [45,46] have developed an RPNB model for
Florida horizontal curves along two-lane, undivided highways motorcycle crashes with
curve design factors. However, it is always a challenge to model spatial heterogeneity of
large-scale over-dispersed crash count data and analyze their local differences.

Considering the fact that previous research studies were mostly conducted at the
macro-level (zonal level), this paper explores different strategies for modeling local vari-
ation of over-dispersed crash count data in state-wide highway horizontal curves with
relation to curve segment characteristics at a microlevel (each observation). The paper is
organized as follows: Section 2 introduces the methodologies used in this paper, while
Section 3 describes data preparation. Section 4 presents the estimation results, compares
results from different models, and interprets the results locally. Section 5 summarizes the
findings of our work and recommends future efforts.

3. Methodologies

This section presents the general forms of the five models of two types to be used
in this paper: negative binomial (NB), RPNB; GWPR, GWNBR, and GWNBRg. We also
provide a brief description of the estimation procedures. These models are discussed in two
groups: non-spatial models and spatial models (GWR approach). The section starts with
a description of two non-spatial methods: the traditional NB regressions and the RPNB
model. The other three GWR types of models, that is, GWPR, GWNBR, and GWNBRg, are
calibrated as spatial regression. At last, a brief illustration of the goodness of fit measures
is presented.

3.1. Non-Spatial Models

For non-negative integer crash count data, Poisson regression is the most basic one [47].
However, the property of Poisson distribution that variance is identical to the mean is
often violated in crash count data [48]. NB regression model has been generally applied
to account for the issue of over-dispersion. NB regression model can be presented using
log-linear function while the Poisson parameter (λi) is composed of systematic terms and a
random term as following:

ln(λi) = β0 + ∑p
k=1 βkXik + θi (1)

where λi is the expected number of crashes in observation i, β0, β1, . . . , βk are the model
parameters, Xik is the kth explanatory variable for observation i, p is the number of model
parameters, eθi is a gamma-distributed error term with mean 1 and variance α. The addition
of the gamma-distributed error term allows the variance of the dependent variable Yi to
differ from its mean (λi) such that var(Yi) = λi + αλ2

i . When α approaches zero, negative
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binomial regression is the same as Poisson regression. The negative binomial regression is
appropriate when α significantly differs from zero [49].

NB model can depict the over-dispersion character of traffic crash data; however,
possible spatial dependency among curve segments may be ignored, as stated before.
By incorporating a random term into the NB model function, that is, Equation (2), an
RPNB model can be employed in response to the non-stationary explanatory variables in
count models:

ln(λi) = βi0 + ∑p
k=1 βikXik + θi (2)

βik = βk + ϕik (3)

where βik is the parameter of the kth explanatory variable for observation i, βk is the mean
parameter across all observation, and ϕik is a randomly distributed term with an analyst-
specified distribution (like normal distribution with mean 0 and variance σ2

k ) that describes
unobserved heterogeneity. If some of the variances of the distribution are tested as not
significantly different from zero for an individual explanatory variable, the conventional
fixed-parameter across all observations is statistically appropriate. If the constant term
is the only random parameter, a random parameter model is equivalent to a random
effect model.

In most cases, observations are structured to groups to capture heterogeneity among
groups for random parameter models, and ϕik can be rewritten as ϕgk, where ϕgk is a
random term that describes unobserved heterogeneity across analyst-specified groups
regarding the kth explanatory variable [7]. Namely, an analyst-specified group shares the
same random term for explanatory variables.

3.2. Spatial Models

To deal with spatial non-stationarity, the GWR approach is considered in this paper.
The basic model to interpret spatial heterogeneity problems is the GWPR model developed
by Nakaya et al. [36], which allows estimated regression parameters to vary over space.
The following framework forms the model:

ln(λi) = β0(ui) + ∑p
k=1 βk(ui)Xik (4)

where the estimated coefficients βk are determined by location ui = (uxi, uyi) denoting
curve segment midpoint coordinates, and implies that the parameter βk varies among
curve segments.

The parameters matrix for each spatial unit are estimated as follows:

β̂(ui) = (XTW(ui)X)
−1

XTW(ui)Y (5)

where β̂(ui) is local regression coefficients for the spatial unit i, X is the design matrix of
explanatory variables, XT is the transposed X, Y is dependent variables, and W(ui) denotes
an n × n spatial weighting matrix which is defined as:

W(ui) = diag(wi1, wi2, · · · , win) (6)

where wij(j = 1, 2, . . . , n) is the geographical weight of the jth observation at the ith regres-
sion point. In GWR approach theory, estimating the parameters of each regression point is
based on the other observations within an appropriate bandwidth. These nearby obser-
vations are assigned weight according to the distance from observations to the regression
point in the regression process. For each regression point, observations locating from the
edge of the bandwidth to the egression point would yield more weight. The weight wij is
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commonly calculated by two types of conventional kernels, that is, the Gaussian and the
bi-square (adaptive) functions defined as follows:

Gaussian: wij = exp

(
−0.5

d2
ij

b2

)
(7)

Adaptive bi-square: wij =


(

1 −
(

d2
ij

bi(k)

))2
dij ≤ bi(k)

0 dij > bi(k)

(8)

where dij is the distance between neighbor observations i and j, b is the fixed bandwidth,
and bi(k) is an adaptive bandwidth size defined by the k-th nearest neighbor distance [50].
The bandwidth is constant in the Gaussian function (fixed kernel), while the bandwidth of
the adaptive bi-square function varies in response to sample location density.

The Corrected Akaike Information Criterion (AICc), AIC with a correction for small
sample sizes, is applied to select optimum bandwidth and model comparison illustrated
in the next section. The lower AICc a model can generate, the better performance it
provides [25,36,50].

Similar to traditional count models, the violation of the Poisson distribution also
happens when variance differs from the mean. The negative binomial form is also applied
to the GWR approach to account for the overdispersion problem. Silva and Rodrigues [37]
developed an algorithm to model over-dispersed data in a non-stationary way by GWNBR.
The proposed GWNBR model is defined as:

ln(λi) = β0(ui) + ∑p
k=1 βk(ui)Xik + θi (9)

where the gamma-distributed error term eθi is the same with Equation (1), but only α(ui)
varies over spatial units. The other terms are as defined in Equation (4). A modified
Iteratively Reweighted Least Squares (IRLS) procedure is used to estimate the parameters
βk and α. Applying the Newton-Raphson (NR) algorithm, a subroutine with the maximum
likelihood (ML) method can be carried out in this procedure. (Silva and Rodrigues, 2014).

Set the predicted mean as µi, parameterizing this model in terms of µi/ti, ti gives the

offset variables. Thus, this model can be expressed as λi ∼ NB
[

ti exp
(

∑
k

βk(ui)Xik

)
, α(ui)

]
or λi ∼ NB[µi, α(ui)]. The parameter vector for each spatial unit is determined by:

β̂(ui) = (XTW(ui)A(ui)
(m)X)

−1
XTW(ui)A(ui)

(m)z(ui) (10)

where A(ui)
(m) is an n×n GLM diagonal weighting matrix for iteration m and location i,

z(ui) are adjusted dependent variables. The other terms are as defined earlier in the GWPR
model. The effective number of parameters of the GWNBR (k) can be calculated by adding
effective numbers of parameter in response to β and α.

To simplify the calculation of GWNBR, GWNBRg introduces a global overdispersion

parameter. It can be noted as λi ∼ NB
[

ti exp
(

∑
k

βk(ui)Xik

)
, α

]
or λi ∼ NB[µi, α], where

the parameters are the same as in GWNBR. The estimation of the overdispersion parameter
in GWNBRg is the same as that obtained from the non-spatial negative binomial model.
Because of no spatial variation for α, the effective number of the parameters contributed
from α equals 1.
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3.3. Measures of Goodness of Fit

To provide the average magnitude of the variability of prediction, the median absolute
deviation (MAD) is employed:

MAD =
1
n ∑n

i=1

∣∣λ̂i − yi
∣∣ (11)

where n is the number of observations (i.e., the number of curve segments in this paper),
and λ̂i is the predicted crash frequency and yi is the observed crash frequency. The smallest
value of MAD is the best result in prediction.

Another goodness of fit measure—AICc is also adopted to consider the model com-
plexity as follows:

AICc = D + 2K +
2K(K + 1)
N − K − 1

(12)

where D represents the deviance, K is the number of parameters estimated in the model,
N is the number of observations. The deviance of the Poisson regression model can be
expressed as:

D = 2 ∑n
i=1

[
yiln

(
yi

λ̂i

)
+
(
λ̂i − yi

)]
(13)

With regard to spatial regression estimation, the number of parameters is replaced to
the effective number of parameters, which can be defined as (Fotheringham et al. 2002):

K = trace(S) (14)

where matrix S is computed by [36]:

S = X(XTW(ui)A(ui)X)
−1

XTW(ui)A(ui) (15)

4. Data Description

We use crash data in the state of Indiana in the US to evaluate the performance of
different models. The data include US and State Highways in Indiana from 2016 to 2018.
They were retrieved from the Automated Reporting Information Exchange System (ARIES)
portal (https://www.ariesportal.com/, accessed on 26 April 2021). As there are errors in
GPS coordinates recorded by police officers [51], we applied the CLIP software developed
by the Center for Road Safety [52] to correct crash occurrence location by geocoding
position description for each crash record. It is not perfect to apply three years of crash
data but the data used in this paper include around 7000 crashes, which is sufficient for a
traffic safety study.

The horizontal curve segments are generated as the primary data. To do so, the
road network database provided by FHWA Highway Performance Monitoring System
(https://maps.indiana.edu/layerGallery.html?category=Streets, accessed on 26 April 2021)
was used to detect and extract horizontal curve segments by ROCA (ROad Curvature Ana-
lyst) [53] tool in ESRI ArcGIS. Figure 1 shows state-wide curve segment distribution and two
typical road curve identification examples at the plain area and mountain area. Out of a total
17,381 km road network for Indiana State Route and US Highway, 1545 km curve segments
were identified and adopted as the base units. Four independent variables were selected
for crash count modeling. Among them, the radius and length of curves are calculated by
the ROCA software as geometric variables. Although curve radius and curve length are
designed by a certain correlation in the planning process. In this paper, curve segments are
identified from the road network shapefile, meaning that the length of a curve segment is
not correlated with its radius (correlation efficiency between them is 0.337).

https://www.ariesportal.com/
https://maps.indiana.edu/layerGallery.html?category=Streets
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Figure 1. Curve segments distribution in Indiana (left) and typical examples on SR-114 (upper right)
and SR-450 (lower right).

The third independent variable is pavement friction. Pavement friction data mea-
sured at 40 mph with standard smooth tires were retrieved from the network pavement
friction database of the Indiana Department of Transportation (INDOT). The AADT (Annual
Average Daily Traffic) was selected as the fourth independent parameter. The AADT
shapefiles from 2016 to 2018 were downloaded from the INDOT traffic flow website
(https://www.in.gov/indot/2469.htm, accessed on 26 April 2021), where road sections that
have relatively uniform travel characteristics are assigned the same value.

Crashes were filtered with a horizontal curve segment 50 m buffer. Crash counts are
summed for three years of crash frequency for each curve segment. Curve segments were
aggregated with the nearest pavement friction shapefile and AADT shapefile by ArcGIS.

The variables used for model specification and their descriptive statistics are sum-
marized in Table 1. Because of a closer linear relationship with the dependent variable
being observed on the logarithmic scale, the logarithmic transformation is applied to the
independent variable in this research. The Variance Inflation Factor (VIF) is employed to
assess multicollinearity among variables in this data. The VIF’s of all the variables have
values lower than two, indicating that there is no significant multicollinearity [54]

Table 1. Variable description and summary statistics.

Variables Description Mean Std. dev Min Max

N Number of crashes occurred during
2016–2018 per curve segment 0.740 1.755 0 34

R(m) Radii of curve segments in meter 354.10 199.61 25.21 999.64

F Friction of pavement on curve
segments at 40 mph 43.80 15.12 8.20 104.20

L(m) Length of curve segments in meter 104.05 109.92 30.49 1249.77

A Mean of Annual Average Daily
Traffic in 2016–2018 4214.16 5393.82 32.21 82,244.85

https://www.in.gov/indot/2469.htm
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5. Results and Discussion

Curve crash frequencies at the microlevel were estimated by the representatives of
spatial (GWPR, GWNBR, and GWNBRg) and non-spatial (NB, RPNB) models using the
dataset described in Section 4. The estimation of the RPNB model and GWR approach
were performed by NLOGIT6 and Golden macro in SAS®9.4 [55], respectively.

5.1. Model Comparison

For the GWR approach, a fixed Gaussian function is applied as kernel function curve
segments were identified from the road network. Assuming that the unobserved hetero-
geneity of curve crashes comes from climate, terrain, and driver behavior, their spatial
correlation matrix should be independent of the number of neighbors. Thus, the bandwidth
is set to be Gaussian fixed kernel functions as defined in Equation (7), and the distance
between a pair of curve segments midpoint is set as Euclidean distance in the kernel
function. Moreover, the optimum bandwidths with the lowest AICc for the GWR approach
were selected by SAS Golden macro.

We estimate the RPNB model by using the normal distribution as a parameter density
function. It is worked out by 100 Halton plots simulation-based maximum likelihood.
This model is applied to account for heterogeneity among individual curve segments to
compare with the GWR approach that assumes parameters varying among curve segments.
Although specifying groups in the random parameter model are popular, as mentioned in
Section 3.1, there is no need to divide the data into groups in this research.

The results of the model estimations are presented in Table 2. Several general obser-
vations are worth noting. GWNBR performs best with the lowest value of AICc and the
highest value of log likelihood, indicating that by accounting for the spatial heterogeneity
of all variables and dispersion parameters, curve crash frequency is depicted best by the
GWNBR model. Concerning the MAD metric, GWPR surprisingly observed a smaller
MAD value than GWNBR models. One explanation of this result is that the GWPR model
with the smallest MAD tends to have a bandwidth much smaller than the GWNBR model’s.
Smaller bandwidth size allows GWPR to depict local varying parameters and makes it
less vulnerable for extreme values. Furthermore, RPNB and GWNBRg have similar perfor-
mance for log likelihood and AICc, where both assume that the dispersion parameter does
not vary over space. Finally, the traditional NB model expectedly performs worst for every
goodness of fit measure.

Table 2. Goodness of fit and residual spatial dependency for different models.

Model Bandwidth
(km)

# of
Parameter MAD Log

Likelihood AICc Dispersion
Parameter Moran’s I p-Value

NB - 5 0.881 −9978.4 19,968.0 1.88 0.0769 10−43

RPNB - 11 0.847 −9917.1 19,856.2 1.31 0.0753 10−41

GWPR 15.45 295.1 0.845 −10,805.9 22,219.9 - 0.0297 10−7

GWNBR 34.65 76.5 0.859 −9780.7 19,715.6 - 0.0569 10−24

GWNBRg 76.01 22.7 0.869 −9900.9 19,847.4 1.88 0.0634 10−30

Note: p-value is the possibility of model residual random distribution over space.

To quantify the spatial autocorrelation of the predicted residuals for these models
over curve segments, Moran Global Index (I) [56] is employed. Moran’s I value varies
between -1 to 1, where 0 indicates a perfect random spatial distribution. A positive value
implies similarity among the neighbors and residual are concentrated, while a negative
value means discrepancy among neighbors and residuals are dispersed. In summary, the
higher the absolute value Moran’s I is, the stronger the spatial autocorrelation data has.
The results are presented in Table 2.

Moran’s I result shows that NB has the highest value, reflecting that relatively high spa-
tial autocorrelation without considering spatial variation. GWPR, GWNBR, and GWNBRg
show decreasing Moran’s I values but all smaller than those from NB and RPNB, which may
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be related to their different optimum bandwidth (GWPR < GWNBR < GWBNRg). Namely,
local patterns depicting from the model can strongly reduce residual prediction autocorre-
lation. However, none of these models shows significance on the non-autocorrelation of
prediction residuals. From Table 2, the reduction of residual autocorrelation from NB to
GWNBR models shows 99% significance, indicating that GWNBR is possible to produce a
relatively non-biased estimation comparing to the global model.

5.2. Statistics of Estimated Parameters

Estimated parameters are summarized in Table 3. Parameters are denoted as LOGR,
LOGL, LOGF, and LOGA, representing the logarithms of radius, length, friction, and
AADT, respectively. The local parameters in RPNB and GWR approach were described
by the minimum, lower quartile, median, upper quartile, and maximum of values, while
only point estimation of coefficients in the NB model is provided. The parameters of
global NB show positive signs for curve length and traffic volume (LOGL and LOGA),
which represents that crash frequency rises with the increase of curve segment length
and traffic count. The estimations of the curve radius and pavement friction (LOGR and
LOGF) have shown negative global parameters, which do make sense and agree well with
the recent research findings [57,58]. As shown in Tables 3 and 4, the parameter statistics
reveal that: (1) Mean and median values of estimated parameters generated from all these
non-stationary models are close to that obtained from the global negative binomial model,
indicating that the global model generally reflects the average impact of these factors in
non-stationary models. (2) The range of var ying parameters can be ranked as GWPR >
GWNBR > GWNBRg > RPNB, which accords with the discussion in the next section.

Table 3. Estimated parameters of NB, RPNB, GWPR models.

Model NB RPNB GWPR

Mean Min Lwr Med Upr Max Mean Min Lwr Med Upr Max

Intercept −5.96 −6.25 −6.33 −6.26 −6.25 −6.23 −5.82 −6.14 −22.17 −8.21 −6.00 −4.32 3.56
LOGR −0.24 −0.30 −0.33 −0.31 −0.30 −0.29 −0.14 −0.23 −1.04 −0.36 −0.24 −0.10 0.61
LOGL 0.87 0.96 0.94 0.95 0.96 0.96 1.07 0.87 0.137 0.68 0.85 1.05 1.98
LOGF −0.36 −0.40 −0.46 −0.42 −0.41 −0.39 0.08 −0.29 −2.24 −0.44 −0.25 −0.04 0.94
LOGA 0.49 0.48 0.46 0.48 0.48 0.49 0.61 0.47 −0.34 0.35 0.51 0.61 1.24

Table 4. Estimated parameters of GWNBR and GWNBRg models.

Model GWNBR GWNBRg

Mean Min Lwr Med Upr Max Mean Min Lwr Med Upr Max

Intercept −5.80 −9.19 −6.82 −5.64 −5.16 −1.79 −5.82 −7.07 −6.42 −6.01 −5.66 −3.45
LOGR −0.24 −0.55 −0.30 −0.25 −0.18 0.04 −0.24 −0.33 −0.27 −0.24 −0.23 −0.15
LOGL 0.85 0.46 0.76 0.85 0.93 1.18 0.84 0.73 0.80 0.83 0.87 0.94
LOGF −0.31 −0.97 −0.33 −0.28 −0.24 −0.03 −0.33 −0.68 −0.34 −0.30 −0.27 −0.26
LOGA 0.46 0.07 0.36 0.47 0.57 0.73 0.48 0.24 0.40 0.51 0.55 0.60

It is also worth noting that there exist counterintuitive signs in GWPR and GWNBR.
The GWPR model had counterintuitive signs of coefficients for some observations for
the regression intercept and the LOGR, LOGF, and LOGA. The GWNBR model also had
some counterintuitive signs of coefficients for the LOGR. Since the spatial coefficient
multicollinearity has been proved to be not responsible for the counterintuitive signs [59],
this result can be explained by the hypothesis that some variables may not be significant
in certain areas. These local areas may have insignificant counterintuitive signs for some
variables [12]. This can be confirmed by observing the coefficient spatial distribution of
the GWPR and GWNBR in Figure 2. Unexpected significant counterintuitive signs among
variables in GWPR might be caused by the failure considering data overdispersion [28].
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5.3. Spatial Heterogeneity of Estimated Parameters

The distributions of local coefficient estimates and their significance interpolated by
Inverse distance weighted (IDW) for GWPR, GWNBR, GWNBRg are plotted in Figure 2.
Using the known parameter values for the 9415 curve segments, the IDW algorithm predicts
values for unmeasured locations using the values of surrounding measured locations.
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The areas with a significance level of less than 90% are not considered in parameter
analysis and covered up with gray color. Generally, each of the coefficient distributions
of GWPR, GWNBR, or GWNBRg is more homogeneous as a result of their different
optimum bandwidth. The larger their optimum bandwidth is, the more homogeneous
their coefficient distributions will be.

Since GWNBR performs best with regard to the goodness of fit in terms of AICc, the
parameter estimations are mainly illustrated according to the GWNBR model. Observations
with significant coefficients account for 54.9%, 100%, 22.0%, and 96.2% for LOGR, LOGL,
LOGF, and LOGA, respectively. A high percentage of parameter significance of LOGL and
LOGA appear as expected due to the predominant influence of exposure factors in crash
frequency prediction.

Observing from the curve radius (LOGR) coefficient distribution from GWPR in
Figure 2a, the central area presents the highest coefficients, but only a small area shows
positive signs. However, central and northwestern regions with high coefficients do not
present enough significance to be considered in the GWNBR model. In the GWNBR model,
lower values mainly distribute in the southern part of Indiana state, indicating a significant
influence of curve radius in these regions. For the GWPR model, Figure 2a shows several
significant regions that are hard to summarize spatial patterns of the radius coefficient.
GWNBRg in Figure 2a presents a smooth decrease from the northwest to the southwest,
which may be caused by some extreme values. Hence, although 93% of observations show
significant coefficients for the GWNBRg model of LOGR, the coefficient varying trend may
not be reliable.

For the curve segment length (LOGL) in Figure 2b, the GWNBR coefficient distribution
presents two relatively lower coefficients regions in southern Indiana and the area close to
Chicago. Similar to the LOGR coefficient distribution, Figure 2b GWPR presents a broken
distribution of LOGL coefficient with no apparent pattern, and Figure 2b GWNBRg shows
a decrease of the coefficient from center to north and south.

When analyzing the spatial distribution of GWNBR coefficients for curve friction
(LOGF) in Figure 2c, it is observed that there are only two separate regions showing signifi-
cant coefficients. The one located in the southern area that almost coincides with LOGL
southern low coefficient area in Figure 2b GWNBR has coefficient values around −0.25,
while the other one located in the north area has significantly lower friction coefficients.

In Figure 2d, the AADT (LOGA) coefficient distribution of GWNBR demonstrates
high values in the south and southeast of Indiana. There also exists a small area of the
non-significant coefficient area in the northeast. About the GWPR model in Figure 2d, an
insignificant coefficient area is mainly located in the north of Indiana. GWNBRg (bottom
row) presents a more general coefficient decreasing trend from south to north.

In summary, coefficient distributions in GWPR and GWNBRg have their disadvan-
tages associated with parameter explanation. All coefficients display a very heterogeneous
pattern in the GWPR modeling, while the distribution of the coefficient of GWNBRg is very
homogeneous. Even without considering its worst goodness of fit, the GWPR coefficient
distributions are excessively detailed for analysis. On the contrary, the GWNBRg coefficient
distributions show a state-wide smooth surface with small variation, and almost all obser-
vations have significant coefficients for these four parameters. However, this characteristic
drives GWNBRg closer to a global model that could not elaborate spatial heterogeneity of
the parameters. The optimum bandwidth of GWNBR is moderate and thereby shows a
more explainable parameter distribution map than the other two GWR models.

5.4. Local Analysis of GWR Results

Observing the differences between coefficient distributions in north and south Indiana,
it is necessary to take local examples to analyze possible factors that caused the hetero-
geneity. As described in the introduction, there are plenty of unobserved factors, including
driver’s response, climate, and landcover. This paper found that the landcover pattern
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coincides with the coefficient distribution of pavement friction and curve length, which can
be illustrated by two typical regions of Indiana with different land covers and topographies.

Taking southern Indiana with an area of forest and northern Indiana with cultivated
crops for comparison, there are some coefficient distribution patterns matching the land-
cover in Figures 3a and 4a. In the southern Indiana forest region, this area has a higher
absolute value for AADT coefficients and low absolute values for curve length and pave-
ment friction coefficient, which reflects the relatively strong influence of traffic volume on
the curve crash frequency in forest curve segments. In northern Indiana, with homoge-
nous land cover, the parameters vary over space. Comparing with the southern Indiana
forest area, the coefficients of AADT and the coefficients of pavement friction in areas
with significant coefficients are significantly lower at a 95% confidence level. The absolute
value of pavement friction coefficient in the forest area is around 75% less than that of the
northern plain area. However, landcover could not serve as a variable in models as all
of these curve segments are located in developed open space without varying landcover
distributed around them.

In respect of curve distribution density, there are also patterns observed from Figure 4.
For the area with significant coefficients in Figure 4c, the locations with sparse curve segment
distribution show higher absolute values of pavement friction coefficient than the rest area at
a 95% confidence level. Considering it is also a low population density cultivated cropland, it
is explainable that pavement friction highly influences the curve crash frequency in sparsely
populated fields, where highways are mostly straight.
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Based on the three-years of curve crash records on Indiana highways, we can draw a
conclusion that crash frequency depends less on friction and curve length but has much to
do with AADT in the southern forest area. The rest of Indiana state with mostly cultivated
crop landcover still has some other unobserved factors, like curve density, that may affect
the curve crash frequency. This paper indicates that higher friction surface treatment
(HFST) is highly recommended for highway curve segments in Indiana plain areas for
safety improvement.

Generally, planners can directly use the results obtained from the spatial distribution
analysis of GWNBR coefficients to develop security enhancement strategies in curve design
and evaluate and prioritize these strategies from the perspective of security effects.

6. Conclusions

Over-dispersed crash frequency with spatial heterogeneity was employed to quan-
titively investigate its relationship with curve segment characteristics aggregated at mi-
crolevel (each observation). Two types of methods, non-spatial models and spatial models,
were utilized to account for the spatial heterogeneity of coefficients due to unobserved
factors over space. To consider data overdispersion, the traditional NB model is specified
as a basic global model. RPNB and GWR spatial approaches, including GWPR, GWNBR,
and GWNBRg were used to find out the preferable model for explaining road crash occur-
rence. The estimated model to determine the crash frequency occurring on the curves uses
explanatory variables of curve radius, curve length, pavement friction, and traffic volume,
aggregated in individual curve segments.

The GWPR yields the lowest MAD (0.845) and the smallest absolute value of Moran’s
I (0.0297) by overfitting to extreme values with its coefficient heterogeneity, while the
GWNBR model outperforms others in terms of log-likelihood (−9780.7) and AICc (19,715.6).
Since none of these models proves non-autocorrelation of residual spatial distribution,
GWNBR was the best approach that was able to capture the spatial heterogeneity between
the frequency of curve crashes and the explanatory variables. Although the RPNB model
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can incorporate unobserved heterogeneity in the modeling process and has been widely
employed, it fails to account for the spatial correlation that existed across adjacent ob-
servations, which may result in biased parameter estimates and incorrect inference. The
calibration process of the GWR approach is based on the First Law of Geography, which is
implemented as all attribute values over the area of interest are correlated, but near values
are more related than distant values. The GWPR model can minimize MAD by heteroge-
neous coefficient distribution pattern, but with significant incorrect signs for radius and
friction, there might exist overfitting issues. The GWNBR model has better performance
than the GWNBRg model with a global dispersion parameter; it is selected as the best local
model depicting non-stationary curve crash frequency coefficients state-wide.

The GWNBR model presents a moderate fluctuation of curve segments radius and
pavement friction influence for crash frequency over space, suggesting spatial heterogeneity
on both parameters. For the southern Indiana forest area, pavement friction and curve
length play a less critical role in reducing crash occurrence than other landcover regions,
but AADT is more crucial in this area. In plain areas, parameters still vary over space
without considering other unobserved factors such as weather and driver behavior. It was
found that pavement friction effect on crash reduction in south forest area is 75% less than
north plain area. These findings will help safety professionals to more accurately estimate
the safety of horizontal curves, allocate funds to reduce or prevent potential crashes, and
design better road segments based on existing horizontal curve crash data to minimize
crash risk. For example, HFST is suggested to be implemented to highway curves in the
plain region. In the hilly areas, some countermeasures such as limiting traffic volume in
peak hours should be considered at the same time while implementing HFST if the terrain
does not allow the curve radius to decrease.

This paper has some limitations. Since Indiana is dominated by cultivated crops and
forests, it is difficult to reliably infer the effects of parameters in other less represented
land covers. Furthermore, speed limit data are an important factor for a curve safety study.
Although a non-stationary model could compensate for unavailable variables, adding
speed limit data would possibly lead to more realistic modeling.

There are several areas recommended for future work. It is not always true that all
parameters are spatial-varying when too many variables are involved. Hence, a semi-
parametric model can be considered for setting variables without strong spatial variation.
To account for local effects in both space and time, the extension of the GWR approach
to the temporal domain, that is, the GTWR model [33,60], might be a reasonable model
for traffic safety studies. Finally, as there are excessive zero count observations, a zero-
inflated model might be combined with the conventional GWR model, that is, a zero-
inflated geographically weighted negative binomial regression (ZIGWNBR) model can
be considered.
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