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Abstract: This paper examines OpenStreetMap data quality at different stages of a participatory
mapping process in seven slums in Africa and Asia. Data were drawn from an OpenStreetMap-based
participatory mapping process developed as part of a research project focusing on understanding
inequalities in healthcare access of slum residents in the Global South. Descriptive statistics and
qualitative analysis were employed to examine the following research question: What is the spatial
data quality of collaborative remote mapping achieved by volunteer mappers in morphologically
complex urban areas? Findings show that the completeness achieved by remote mapping largely
depends on the morphology and characteristics of slums such as building density and rooftop
architecture, varying from 84% in the best case, to zero in the most difficult site. The major scientific
contribution of this study is to provide evidence on the spatial data quality of remotely mapped
data through volunteer mapping efforts in morphologically complex urban areas such as slums; the
results could provide insights into how much fieldwork would be needed in what level of complexity
and to what extent the involvement of local volunteers in these efforts is required.

Keywords: OpenStreetMap; data quality; participatory mapping stages; slum; remote mapping and
fieldwork; completeness; volunteered geographic information; humanitarian mapping; Africa; Asia

1. Introduction

Slums, which are areas deprived of durable housing, acceptable sanitation, and
safe water as well as characterized by insecure land tenure and overcrowding generally,
hold about one-quarter of the world’s urban population [1]. Slum neighborhoods are
frequently characterized by a complex morphology of their physical characteristics [2],
which include the geometry of buildings and routes, density, and roofing material, among
others [3,4]. In recent years, the lack of high-quality spatial data of slums has received
renewed socio-political and academic interest [3,5,6]. One potential data source for making
spatial data available is Volunteered Geographic Information (VGI), which is opening up
new possibilities of data production in recent years and facilitating the emergence of a
global humanitarian mapping community [7] with several initiatives aimed at “putting
the most vulnerable people on the map” [8]. A key concern that arises from the use
of volunteered and crowdsourced geographic information to map vulnerable areas is
related to the quality of the data generated by non-experts. This has led to a plethora
of scientific studies for evaluating the quality of data in crowdsourced platforms such
as OpenStreetMap (OSM) [9–19]. The overall goal of the OSM project is aimed at the
creation of a free to use, and editable, world map according to the OSM Foundation (OSMF)
board which exists to protect the project [20]. Recent studies have investigated OSM
data quality without using any external data; the so-called intrinsic approach [9,10]. In
contrast to the intrinsic approach, other studies commonly used what is referred to as the
extrinsic approach where the OSM data are compared with external datasets such as the
UK Ordnance Survey data or National Park Service lists [21,22].

A major difficulty arises for evaluating the quality of OSM data for slums: since
these neighborhoods are frequently not present in official maps, there is seldom external
reference data to be used for extrinsic quality studies. Furthermore, intrinsic quality
analyses of the mapping in slums often offers limited insights about data quality since most
of these communities do not have organic growth in mapping activities. Implementing
participatory-based mapping activities within slum environments offers the potential to
assess the cumulative improvements of the data over time as in the OSM communities in
the Global North.
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Due to these challenges, very few studies have assessed the quality achieved by
collaborative mapping efforts of the global humanitarian OSM community (e.g., [11]),
particularly in slums, whose complex morphology raises particular challenges for mapping
from satellite imagery. To fill this gap, we examined OSM data quality at different stages
of a participatory mapping process leading to the final update of the OSM database. The
following research question is addressed in this study: What is the spatial data quality of
collaborative remote mapping achieved by volunteer mappers in morphologically complex
urban areas? By addressing this question, a multi-country case study associated with
an ongoing research project of the National Institute for Health Research (NIHR) Global
Health Research Unit on Improving Health in Slums is presented. The Unit focuses on
health services in slums through the study of seven slum sites across two continents (Asia
and Africa) with the ultimate aim of finding optimal ways to deliver health services to
slum dwellers [23]. This context enables us to overcome the challenges of previous studies,
by analyzing the results of the same mapping procedures systematically applied in seven
slums in four countries (Bangladesh, Kenya, Nigeria, and Pakistan). In this paper, we
present results from a spatial data quality assessment along various stages of mapping
process workflow used to map and update the OSM database in these sites and seek to
learn lessons for future humanitarian mapping initiatives.

The next section, Section 2, discusses related work covering intrinsic, extrinsic, analytical
platforms and identifies knowledge gaps which inform our research question. Section 3
presents the research question as well as materials and methods of the study. Section 4
presents results, and Section 5 presents the discussion and conclusion including limitations of
the study and potential directions for future work.

2. Related Work

There are several quality categories that one can study when considering data quality
of geographic datasets. According to the International Organization for Standardization
(ISO), there are five categories of geographic data quality comprising completeness, logical
consistency, positional accuracy, thematic accuracy, and temporal quality where, for example,
completeness is defined as: “[ . . . ] the presence and absence of features, their attributes
and relationships.” [12]. Among these quality categories, completeness is considered as a
fundamental measure of geographic data quality in OSM research [13], as this foundation is
paramount for the remaining quality elements to build upon. Some studies examined OSM
feature attributes such as speed [24], or focused only on the main aspect of completeness
(i.e., “presence and absence of features” where OSM feature extraction or determination
was based on primary feature tags, or attributes, such as building or highway), sometimes
relating outcome with the density of features but in a non-slum context [13–15]. Several
studies used intrinsic approaches, where only OSM data is used, to investigate OSM data
quality in recent years [9,10,16,21,25]. Some studies have used the concept of analyzing
activity stages based on the history of OSM data and heuristic rules for stage transitions
(e.g., no data, start, growth, and saturation), covering 12 representative metropolitan
areas [12] as well as globally at the regional scale [25]. Other studies have developed tools
to examine OSM line type feature data quality such as a plugin for Quantum Geographic
Information System (QGIS) [10] and Python-based tools [16]. Some of the studies have led
to a plethora of analytical platforms such as iOSMAnalyzer [9], OSM History Data Analytics
Platform [26], OSMStats [27], and OSM Analytics Tool [28] among others. Although these
platforms do show historical profiles of intrinsic quality indicators, they are unable to
clearly define the underlying mapping stages that led to the data produced for visualization
or descriptive statistics presented; this problem is partly due to a lack of information
about the data production process that led to the historical data. Additionally, most of
the services being offered by these platforms do not provide immediate latest analyses
based on the most recent historical data. Making data production processes visible to
researchers can help to identify whether the historical data available is produced via online
mapping processes alone or in combination with field validation. Understanding the



ISPRS Int. J. Geo-Inf. 2021, 10, 265 4 of 25

data production stages alongside the historical data in the database can be a very useful
way to systematically explore challenges of quality data production as well as relative
completeness (intrinsically) and absolute completeness (extrinsically).

In terms of extrinsic approaches, where OSM data is compared with other reliable
datasets to examine data quality, previous studies have mostly used authoritative data
as a reference and these studies were usually based on developed urban areas mostly
in the UK, France, Germany, Ireland, United States, New Zealand, and Canada among
others [13–15,17–19,21,22,29–32]. Where authoritative data are available, access and license
restrictions can make the study impossible. Additionally, the financial cost and ethical
appropriateness of the data for a given area to study can also be problematic. Finally,
the data production stages leading to the final version of the data being shared are not
transparent enough to allow systematic review in relation to identified stages of OSM data
production. For extrinsic analysis, completeness measures for routes are usually length
metrics and completeness is defined as the ratio of the total length of routes in OSM and
the total length of routes in the reference data (e.g., [22]). Similarly, completeness measures
for buildings are usually defined in terms of total number and/or area (e.g., [15]).

Related studies have used either unit-based or object-based comparative analytical
approaches for examining the completeness of buildings and routes [14,15,17,19,22]. For
example, the proportion of the total number of OSM buildings relative to the total number
of reference buildings per unit in percentage form is considered a unit-based comparison.
In the case of object-based comparison, an example is the proportion of the total number
of buildings in the reference data that are present in the OSM in percentage form where
the centroids of reference buildings intersect an OSM building [15]. These comparative
approaches are normally implemented extrinsically due to the need for reference data
to compare with the OSM data. Therefore, the historical OSM data is not used. In an
object-based approach, matching of corresponding elements in both the OSM data and the
reference is required prior to determining the proportion of the total number of reference
buildings that are represented in OSM in percentage terms [15]. Because external and
different reference data sets are compared with OSM data, it is impossible to establish a
correspondence between objects of the two datasets without using either centroid proximity
or overlapping area. As object-based matching is sensitive to positional mismatches of
objects and can be complicated and time-consuming, recent studies normally use the unit-
based approach that is much simpler [14,19]. The unit-based approach does not require
any form of object-based matching and relies on the proportion of the total number (or
area) of OSM buildings, or total length of OSM routes relative to the reference buildings
(or routes) per unit in percentage terms [14,15,17,19,22]. However, in the case of building
completeness estimation, the unit-based approach is reported to be sensitive to disparities
in estimates depending upon whether the total number or area is used and therefore an
object-based approach is recommended [15]. Although completeness and other quality
indicators are examined in the aforementioned cases, the emphasis rarely focuses upon
slum areas. The lack of suitable data in such areas often impede systematic analysis [17].
This is partly because authoritative or reliable data is usually not available for slums and
it is consequently impossible to undertake extrinsic studies. Moreover, in cases where
reliable secondary data is available, the completeness of OSM data could be so low that it
would not make any sense to conduct either extrinsic or intrinsic study. Collecting data
in slums is time-consuming and the data production process can be even more complex
than in a non-slum area. For example, identification of building footprints and footpaths in
slums can be daunting. This study contributes to this gap and investigates the stages of the
mapping process leading to the final update of the OSM database. Because historical data
from different time points and data sources exist in the OSM, lessons can be learned by
examining the impact of different data production processes on data quality. Such work can
help advance transparency and inform future work on OSM. Mapping stages undertaken
by remote or local mappers need to be visible to inform OSM data quality assessment and
decisions. In a situation where both intrinsic and extrinsic quality assessments are difficult



ISPRS Int. J. Geo-Inf. 2021, 10, 265 5 of 25

to undertake, a research-based experimental approach might be the best option. There
are very limited studies that adopt a research-based experimental approach. For example,
Eckle and Albuquerque [11] designed an experimental approach to the assessment of OSM
data quality in crisis mapping but recommended a bigger study. Until now, no systematic
OSM-based experimental studies exist for mapping and surveying of slums across multiple
countries using the same open-source-based methodological framework.

3. Materials and Methods

The following research question guided this study, which covers seven slums across
four countries: What is the spatial data quality of collaborative remote mapping achieved
by volunteer mappers in morphologically complex urban areas? Within this overarching
question, we focus on the following measures: (1.1) completeness of remote mapping
(Stage 1) based on additional field data collected from fieldwork (Stage 2); (1.2) growth
in data completeness during remote mapping of slums based on field data; and (1.3)
completeness contributions per mapper during remote mapping and fieldwork.

3.1. OSM-Based Mapping Process for Slums

The overall methodological framework for mapping urban slum communities in the
project has been published elsewhere [33,34]. In this section, an overview of the participa-
tory method and process is provided along with details of the mapping process workflow
and the stages at which data sets were captured for the analysis in this study. Table 1
describes the overview of the methodological framework of the mapping process, which
builds upon the typology of tasks of geographic crowdsourcing presented in Albuquerque
et al. [35].

Table 1. Overview of the main steps of the mapping process.

Main Steps Brief Description

Preparation Preparing materials, engaging stakeholders, and defining responsibilities for the subsequent steps. This
involves clarifying who the persons are that will fulfil the roles for each local partner team, as well as

preparing materials for the digitization and mapping phases.

Digitization To produce detailed base maps of the slum locations by tracing all streets and building structures from
high-resolution optical satellite imagery. It involves digitization by remote and local teams and

validation by experts.

Participatory mapping To validate and enrich the digital maps obtained in the previous steps with the local communities by
correcting potential inaccuracies and, most importantly, conflating the map with local knowledge

of residents.

Analysis To consolidate the geospatial data obtained in the previous steps into data products and visualizations
that will be useful for end-users and researchers.

Figure 1 depicts graphically the activities that were part of the different mapping
stages of our OSM-based participatory mapping process. Stage 0 consisted of preparatory
activities and was useful for setting the agenda prior to the start of the online mapping.
The preparation period mainly covered creating training materials, defining responsibil-
ities with local core teams in each partner country, training local teams, procuring high-
resolution satellite imagery, identifying neighborhood boundaries with local core teams at
partner institutions, and setting up of the online mapping platforms. Securing access to
the slum sites was also negotiated during this period. All data collectors who took part
in the mapping process but were not familiar with the tools were trained. Stage 1 was for
online mapping. We used the Humanitarian OSM Team (HOT) Tasking manager (TM) and
this served as an interface for coordination of mapping tasks [36]. The TM provided links
to OSM editors (e.g., iD Editor/JOSM), which in turn directed all edits by mappers to be
recorded in the OSM database [37]. The online mapping and validation activities ensured
the capture of geometrically valid vector data from optical satellite imagery for fieldwork
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in Stage 2. Beyond online mapping and validation, field-mapping was undertaken to verify
the digitized features. Stage 2 period was for fieldwork until the time by which the OSM
data was extracted and prepared as a sampling frame. The sampling frame was made up
of building structure geometry and names of household heads or representatives. Stage
2 involved using portable global positioning system (GPS) devices to track routes (roads
and footpaths); uploading the data onto the OSM database; generating quick reference
(QR) coded field paper maps based on Fieldpapers.org technology; annotating the paper
maps (Fieldpapers) in the field after checking building structure geometry along with a
tablet-based structured questionnaire for building geometry verification and enumeration;
scanning the annotated paper maps; and, conflating scanned annotated maps into the
OSM database to obtain final field data (reference data). Two key open-source technologies
were integrated into the questionnaire template development using OpenDataKit (ODK)
and OpenMapKit (OMK) technologies for the household-heads listing survey to inform
sampling frame generation [38,39]. ODK server and client tools provided means for mobile
a-spatial data collection and management while OMK tools allowed the collection of, and
linking to, spatial data as part of the questionnaire administration.
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Figure 1. Participatory mapping process workflow with defined stages in grey background.

Figure 2 shows example photographs of an online remote mapping event held during
Stage 1 and fieldwork activities in Stage 2 (building geometry verification and enumeration)
of the mapping process. An important variable in the definition of the stages is the actual
dates for the start and end of the stages. Without the time intervals of the mapping
stages, it is impossible to undertake systematic analyses as shown in this study. With
careful planning, it might be possible to determine the Stage 1 period from the new
version of the tasking manager but not that of the fieldwork. Identification of stage dates
independently from the OSM database without any input from the mapping team can be
inaccurate. For example, the use of annual stages by Gröchenig et al. [12] to estimate OSM
completeness is not applicable to this study. Using the raw data, we defined the following
indicators for analysis. Three measures were constructed comprising (1) completeness of
building structures and routes, (2) completeness growth at each mapping stage as well as
(3) completeness growth per mapper per stage. The next section presents the study sites,
data, and analytical approach used in this study.
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3.2. Study Sites

The seven study sites were as follows (see Figures 3 and 4): a slum in Pakistan, city of
Karachi anonymized as Karachi site; a slum in Bangladesh, city of Dhaka anonymized as
Dhaka site; three slums in Nigeria, cities of Lagos and Ibadan anonymized as Lagos site,
Ibadan site 1 and 2; and, two slums in Kenya, city of Nairobi anonymized as Nairobi site 1
and 2 [33,40]. Karachi site is centrally located in a well-established area with permanent and
multi-story buildings undergoing vertical levels of new construction. Dhaka site is centrally
located in a well-established area with semi-permanent structures, undergoing regular
demolitions and reconstructions. Ibadan site 1 is centrally located within a historical area,
which is along an old, tarred road with permanent structures in poor condition. Ibadan
site 2 is a resettled community at the edge of the city with a well-spaced clear layout and
mostly permanent structures. Nairobi site 1 has a settled community and is located about
12 km from the Central Business District (CBD) of the city; the slum structures are made up
of mud, timber or tin-roof materials and are mostly in rows. Nairobi site 2 is located about
7 km from the CBD; the slum structures are made up of either iron sheet or tin walls with
iron sheet roofs. Figure 4 shows the qualitative sample characteristics of the seven slums
in terms of geographical location, satellite imagery, buildings, and routes. The satellite
imagery and the photographs also show sample characteristics of the layout of structures
as well as rooftop architecture and height qualitatively.
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3.3. Data

We used the full history dump of OSM data that is normally referred to as Planet
OSM [41]. There are three types of elements in the database: Nodes which define points in
space; Ways which defines linear features and area boundaries; and Relations which are
usually used to explain how other elements work together [42,43]. Another dimension of
the history data is the information about contributors. Any changes made by contributors,
or mappers, such as geometry changes or deletions or creation of new elements during
an editing session are saved into the OSM database; all these editing information are
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saved in what is called Changeset [16]. All edits in the OSM history data were extracted
using a computational framework for spatio-temporal analysis of OSM history database
(OSHDB) in combination with the application programming interface of the “ohsome” big
data analytics platform [26,44]. The scripts for the data extraction are available on Gitlab
space [45].

3.4. Analytical Approach

In this study, an object-based approach was used with the updated OSM history file
and relies upon using OSM object identifiers (OSM-IDs) of buildings and routes to match
OSM objects at timestamp k with OSM objects at the last timestamp of the final stage of
the mapping process (i.e., timestamp at end of Stage 2). We examined the “true sense” of
completeness at each timestamp during the mapping process for seven slums in multiple
countries, across Africa and Asia, by exploring four novel completeness definitions shown
in Equations (1)–(4) (Equations (2) and (4) are used for sensitivity analyses to provide
additional information; we expect the same conclusion in this study). The definitions
allowed the possibility of obtaining completeness of buildings and routes at any time
during the mapping process retrospectively. The final stage in the equations refers to the
end of Stage 2 (fieldwork). To our knowledge, this is the first time building and route
completeness have been studied at the level of urban slum settlements in multiple countries
and in such detail simultaneously.

Cbc_k =
Bck
Bc f

(1)

where Cbc_k is building count completeness at timestamp k; Bck was the total number of
buildings at timestamp k which were also present at the final stage (i.e., end of fieldwork)
and were never edited between timestamp k and the final stage; and, Bc f was the total
number of buildings at the final stage.

Cba_k =
Bak
Ba f

(2)

where Cba_k is building area completeness at timestamp k; Bak was the total area of buildings
at timestamp k which were also present at the final stage (i.e., end of fieldwork) and were
never edited between timestamp k and the final stage; and, Ba f was the total area of
buildings at the final stage.

Crc_k =
Rck
Rc f

(3)

where Crc_k is road count completeness at timestamp k; Rck was the total number of roads
at timestamp k which were also present at the final stage (i.e., end of fieldwork) and were
never edited between timestamp k and the final stage; and, Rc f is the total number of roads
at the final stage.

Crl_k =
Rlk
Rl f

(4)

where Crl_k is road length completeness at timestamp k; Rlk was the total length of roads at
timestamp k which were also present at the final stage (i.e., end of fieldwork) and were
never edited between timestamp k and the final stage; and, Rl f was the total length of
roads at the final stage.

These four definitions of completeness, or completeness ratio, partly conform to
the definition of completeness offered by Gröchenig et al. [12] who suggested that “the
completeness measure of the geographical dataset D, where D is defined by geographical
region R [slum area] and for purpose P [slum health mapping], depends on the degree
of correspondence between the existence of objects and properties in the real world and
the presence of their representing features in dataset D.” Using these equations based
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on the three metrics (total number, length, and area) will allow estimation of disparities
of completeness to situate the results in a better context. The different mapping stages
are defined in Figure 1 and Table A1 (see Appendix A). The estimated completeness is
presented using descriptive statistical tables and graphs. Understanding the growth of
OSM elements has the potential to serve as a foundation for data quality assessment [12,46].
Using the resulting data from completeness analysis, we calculate completeness growth
(CG) of a stage which is defined as the difference, or gap, in completeness estimate resulting
from the subtraction of the start estimates from the end estimates between stages expressed
in percentage terms (see equation 5). Additionally, the number of mappers per stage
together with the completeness growth estimates are used to compute completeness growth
per mapper per stage (see equation 6). This information is used to compare the densities
(i.e., number of elements per square kilometers) of OSM elements across the sites. OSM
completeness measure is one of the most important components of quality and pertinent to
our study, and, according to ISO, completeness measure indicates the presence or absence
of real-world features in the database [47]. The presence or absence of real-world features
in the slums during the different stages of the participatory mapping process is what
we sought to explore in this study without consideration to feature attributes beyond
building and highway primary tags used to identify buildings and routes (such as speed
on routes [24]).

Cge_s = (Ce_stage_end − Ce_stage_start) ∗ 100 (5)

where Cge_s is the completeness growth of OSM element E (i.e., building or route) at Stage
S in percentage form, Ce_stage_end is the completeness of E at end of S, and Ce_stage_start is the
completeness of E at start of S.

Cge_m_s =
Cge_s

Ms
(6)

where Cge_m_s is completeness growth of OSM element E per mapper at stage S in percent-
age form, Cge_s is the completeness growth of OSM element E at stage S in percentage form,
and Ms is the total number of active mappers in Stage S.

4. Results
4.1. Completeness of Buildings and Routes

Figure 5 shows the completeness of buildings during the mapping stages in all the
seven slums. The results provide empirical evidence suggestive of the possibility to achieve
up to 84% building completeness during remote mapping of some slums. In this case, for
the slums in Asia, Karachi site, and Dhaka site, no building completeness was achieved
which means none of the remotely mapped buildings was used in the updated map after
fieldwork (or all of them had to be corrected). At the time of remote mapping, Karachi
site was characterized by complex rooftop architecture, making it difficult for mappers
to interpret satellite imagery and digitized building footprints. The rooves were mainly
concrete and made up of other small structures. This meant that almost all buildings had
to be edited during Stage 2 (fieldwork). Dhaka site had "extreme" building density, which
meant that buildings were close to each other, impeding satellite imagery interpretation
and digitization of building footprints. Except Karachi site, the slums had mostly roofing
sheets and relatively well defined building footprint interpretation in which Dhaka site was
the worst case. Ibadan site 2, unsurprisingly, achieved the highest completeness during
remote mapping due to its clear layout which had not changed substantially from its
resettlement layout for the past few decades. Overall, during remote mapping, Ibadan
sites 2 and 1 achieved the highest completeness of 84% and 59% respectively. In the case of
the two slums in Asia, Stage 2 mapping was essential in achieving 100% completeness as
shown in Figure 5b.
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Figure 5. Completeness of buildings. (a) During remote mapping stage; (b) During fieldwork stage.

Figure 6 shows the completeness of routes during the mapping stages in all the seven
slums. The results provide empirical evidence suggestive of the possibility to achieve
up to 73% route completeness during remote mapping of slums. Graphs showing how
route count completeness compares with route length completeness are presented in
Appendix A (i.e., Figures A1–A7). Additionally, graphs showing how building count
completeness compares with building area completeness are presented in Appendix A
using the same figures showing route count versus length comparisons. The next section
presents completeness growth per mapper at each mapping stage showing results of
disparities in completeness growth using all four completeness definitions outlined in
Section 3.4.
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Figure 6. Completeness of routes. (a) During remote mapping; (b) During fieldwork stage.

Figure 7 shows sample completeness maps of Ibadan site 2 which achieved the highest
building and route completeness. Figure 7a shows that prior to remote mapping (Stage 1)
in this study, there was some level of completeness for buildings and routes although not at
the desirable level required for any serious work or decision-making. Another contrasting
sample completeness map is shown in Figure 8 using Karachi site, which achieved nearly
zero building completeness in Stage 1.
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4.2. Completeness Growth per Mapper at Each Mapping Stage

We used the number of mappers per stage shown in Table 2 together with the complete-
ness growth estimates in Table 3 to compute completeness growth per mapper per stage in
Table 4. Only mappers who edited during a stage were counted and used for the calculation.
Slum residents mapped Nairobi sites after prior training by the project team. Mostly experi-
enced OSM mappers mapped Dhaka site; these mappers were already using OSM tools to
update the database for other areas prior to remote mapping as part of our study. A mix of
local and remote mappers including some slum residents mapped Karachi site. Postgraduate
students mostly mapped slums in Nigeria. All inexperienced mappers who had not been
exposed to OSM mapping techniques received training prior to remote mapping.

Ibadan site 2, with the least building density of 1706 buildings per sq. km, achieved max-
imum building completeness growth of 66% during remote mapping (Stage 1). Conversely,
Dhaka site, which has the highest building density of 22,407 buildings per sq. km, achieved
zero building completeness growth during remote mapping (Stage 1). This trend also applies
to completeness growth contribution per mapper at Stage 1. Building completeness growth
contribution per mapper in Ibadan site 2 during remote mapping (Stage 1) was nearly 4%
(maximum) and zero in the case of Dhaka site. Building completeness growth per mapper
during remote mapping was zero percent for both slums in Asia. These results suggest that
there are contextual factors that influence the extent to which mappers can contribute to
completeness growth. The differences in the study areas was partly due to the degree of
complexity of morphological features (i.e., building density) and the inability to interpret
correctly building footprints due to complex rooftop architecture), but there may be other
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contextual factors that need further exploration in future studies. Further work is needed to
investigate factors influencing the heterogeneous nature of completeness growth estimates
across sites. As noted in a recent study [14], due to the possible variation in building density
in urban areas, there is a need to develop a method to “adaptively establish the mathematical
relationship between OSM building density and OSM building completeness”.

Table 2. Number of mappers for buildings and routes.

Site
(Country)

Overall Total Stage 1
Mappers

Stage 2
Mappers Area No. of

Buildings
(Routes)Building (Route) Building (Route) Building (Route) Sq. km

Karachi site
(Pakistan) 24 (18) 17 (22) 10 (12) 0.4 2566 (150)

Ibadan site 1
(Nigeria) 14 (19) 13 (18) 7 (11) 0.4 1882 (105)

Ibadan site 2
(Nigeria) 17 (16) 11 (13) 15 (14) 1.2 2047 (170)

Lagos site
(Nigeria) 15 (20) 15 (16) 11 (15) 0.3 911 (51)

Dhaka site
(Bangladesh) 21 (14) 17 (10) 20 (12) 0.3 6722 (163)

Nairobi site 1
(Kenya) 44 (37) 39 (33) 31 (27) 0.5 6444 (188)

Nairobi site 2
(Kenya) 53 (28) 49 (24) 33 (18) 0.6 7470 (73)

Table 3. Completeness growth per mapping stage and density of OSM elements.

Site
(sq. km)

Stage 1
Completeness Growth in %

Stage 2
Completeness Growth in %

Final Density
(no./sq. km)

Building
Count
(Area)

Route
Count

(Length)

Building
Count
(Area)

Route
Count

(Length)
Building Route

Karachi site (0.4) 0 (0) 7 (10) 100 (100) 93 (90) 6415 375
Ibadan site 1 (0.4) 59 (51) 8 (1) 41 (49) 92 (99) 4705 263
Ibadan site 2 (1.2) 66 (60) 70 (72) 16 (16) 30 (28) 1706 142

Lagos site (0.3) 55 (30) 37 (29) 45 (70) 63 (71) 3037 170
Dhaka site (0.3) 0 (0) 39 (33) 100 (100) 61 (67) 22,407 543

Nairobi site 1 (0.5) 32 (15) 9 (12) 68 (85) 88 (88) 12,888 376
Nairobi site 2 (0.6) 64 (64) 1(0) 36 (36) 96 (100) 12,450 122

A recent study [14] in non-slum areas has shown that it is possible to achieve about
69% linear relationship between building completeness and building density based on
an extrinsic approach; no consideration was given to building completeness growth and
number of mappers. Figure 9a shows a better linear relationship between building count
completeness growth per mapper during remote mapping (Stage 1) and building density
with two outliers (Dhaka site and Karachi site), when compared with Figure 9b. The
same trend was realized in terms of building area completeness. The results in Table 3,
Table 4, Figure 9, and Figure 10) suggest that there should be no expectation of any mapper’s
contribution to building completeness at the remote mapping stage in “extremely” complex
morphological conditions (e.g., the two outliers) and there are other explanatory factors
that future research needs to explore to understand the distinction across stages regarding
a density versus completeness-growth relationship. The new “field” knowledge gained
and used during field mapping may have influenced the distinction across stages. For
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example, regarding building density versus building completeness-growth relationship,
the identified two “extreme” conditions (i.e., the two outliers; complex rooftop architecture
and high density) are less impactful at Stage 2. As shown in Table 2, the total number of
mappers differed across stages in all the sites and the difference in mappers’ experience
gathered in the course of mapping may differ which in turn may influence buildings and
routes completeness-growth contribution behavior (future work should look into this).
Additional analysis showed an increase in the linear relationship between building density
and building completeness growth without consideration to the number of mappers
(Figure 10). The same was not found for routes and future work should investigate these
differences further. Moreover, the relationship between route count completeness growth
per mapper and route density in both stages does not show a linear trend (Figure 11).
However, it is important to note that given that the sample sizes (number of data points)
for generating Figure 9, Figure 10, and Figure 11 are small, these relationships described
are only indicative and we are not claiming that the relationship between the variables is
statistically significant (which should be investigated in future work).

Table 4. Completeness growth per mapper per mapping stage.

Site

Stage 1
Completeness Growth per Mapper in %

Stage 2
Completeness Growth per Mapper in %

Building
Count (Area)

Route
Count (Length)

Building
Count (Area) RouteCount (Length)

Karachi site 0.0 (0.0) 0.3 (0.5) 10 (10) 7.8 (7.5)

Ibadan site 1 4.5 (3.9) 0.4 (0.1) 5.9 (7.0) 8.4 (9.0)

Ibadan site 2 6.0 (5.5) 5.4 (5.5) 1.1 (1.1) 2.1 (2.0)

Lagos site 3.7 (2.0) 2.3 (1.8) 4.1 (6.4) 4.2 (4.7)

Dhaka site 0.0 (0.0) 3.9 (3.3) 5.0 (5.0) 5.1 (5.6)

Nairobi site 1 0.8 (0.4) 0.3 (0.4) 2.2 (2.7) 3.3 (3.3)

Nairobi site 2 1.3 (1.3) 0.0 (0.0) 1.1 (1.1) 5.3 (5.6) 
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Figure 9. Comparison of building completeness growth per mapper and density. (a) During remote mapping stage;
(b) During fieldwork stage.
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Figure 10. Comparison of building completeness growth and density. (a) During remote mapping stage; (b) During
fieldwork stage.
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Figure 11. Comparison of route completeness growth per mapper and density. (a) During remote mapping stage; (b) During
fieldwork stage.

5. Discussion and Conclusions

This study has for the first time presented empirical evidence on completeness of
data on buildings and routes of seven different slums in four countries across Africa and
Asia at different stages of a systematic OSM-based participatory mapping process. The
following research question was explored: What is the spatial data quality of collaborative
remote mapping achieved by volunteer mappers in morphologically complex urban areas?
In addressing this question, we focused on the possible extent to achieve completeness
during remote mapping of slums based on field data; completeness growth during remote
(and field) mapping of slums; and completeness growth contributions per mapper during
remote mapping and fieldwork while providing additional perspective on how they relate
with the density of buildings and routes. This section frames the discussion and conclusion
in terms of collaborative remote mapping and spatial data quality of morphologically
complex urban areas, lessons learnt from the mapping process, and limitations of the study
and future outlook.
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5.1. Collaborative Remote Mapping and Spatial Data Quality

The results presented in this study could provide insights into how much fieldwork
would be needed in what kind of complexity and to what extent the involvement of local
volunteers in these efforts is required. The major scientific contribution of this study is on
the spatial data quality of remotely mapped data through volunteer mapping efforts in
morphologically complex areas. This study advances our understanding of spatial data
quality dimension in humanitarian remote mapping collaboration, providing a foundation
for the improvement and use of OSM in future transdisciplinary studies in health and other
fields. Humanitarian OSM-based collaborative mapping projects are exclusively based
on digital imagery of the mapped areas, but this type of remote mapping may produce
an uncertain data quality [11], since the mappers may not have the tacit knowledge on
the local spatial context. There is an emergence of multiscale crowdsourced digital maps
to help inform equitable urban planning where local knowledge is paramount for critical
decision-making [48]. In this study, it has been shown that even with the local knowledge
of local mapping teams, data quality is still not one hundred percent achievable in the
remote mapping stages. This finding raises further questions, such as to what extent can
data emerging from remote mapping should be trusted. In some cases, it is impossible
to trust the generated data from remote mapping, such as areas with complex rooftop
architectures (e.g., Karachi site) and extreme building density (e.g., Dhaka site). The
influence of rooftop architectures and density in this study is in line with other studies
suggesting that roof characteristics (e.g., surfaces, and densities) can pose a problem when
mapping complex morphological features where systematic studies on slum mapping are
encouraged [3]. The findings in this study show that it is possible to achieve completeness
during remote mapping of slums for buildings (up to 85%) and routes (up to 73%) for sites
with morphology that are more regular with less building density. The contribution to
spatial data quality per mapper varied considerably across sites, reaching a maximum of 6%
at the remote mapping stage and a maximum of 10% at the fieldwork stage. This finding is
relevant within the context of humanitarian remote mapping of morphologically complex
urban areas, like slum environments, where the completeness of the generated map is
generally unknown. This study may therefore be used as a guide for future investigations
on the expected contribution of individual mappers.

5.2. Lessons Learnt from the Mapping Process

This study employed a systematic OSM-based mapping approach for the production,
curation, and analysis of volunteered geographic information (VGI) on urban communities
based on a combination of collaborative satellite-imagery digitization and participatory
mapping which relies upon geospatial open-source technologies and the collaborative
mapping platform OSM. Findings across Stages 1 and 2 show that our method gener-
ated promising completeness results: particularly showing the heterogeneous nature of
completeness growth during remote mapping. The participatory mapping process is repro-
ducible given that the same mapping workflow and open-source technologies were used
across all the study sites with different mapping teams. However, the process still requires
technical expertise and future work should focus on optimizing the integration of the tools
used to make it easier to implement for survey research. It is important to note that the
overall goal of the mapping approach that we designed and implemented was to produce
a high-quality spatial data sampling frame for a health survey and research in slums. Some
of the lessons learnt are as follows.

Careful training of volunteer mappers on mapping tools is essential for the success
of implementing OSM-based mapping for slum health surveys and research. The use of
portable Global Positioning System (GPS) devices alone did not work at the household
level during field mapping. In this study, GPS location functionality in the tablet was
used as a guide along with the FieldPapers for orientation and identification of the actual
building structure pre-loaded in the tablet as tiles. The use of FieldPapers played a key role
in data collection and cleaning. FieldPapers served as a reference for solving any building
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identification disputes. Using the FieldPapers technology requires careful planning but
ensures that buildings are identified and coded correctly as well as scanned properly to
make it easier to upload and link to OSM editors for conflation. In this study, a 13-digit
code was used to ensure unique structure codes. Routes are easy to interpret, useful in
the field, and must always be mapped during remote mapping to facilitate fieldwork.
Where the interpretation of satellite imagery is difficult during remote mapping (Stage
1), it is best not to attempt to map the individual buildings but to focus on well-known
monuments (e.g., churches, mosques, and police stations) for orientation together with
the mapping of routes. Online mapping of road networks and well-known monuments
proved very useful for orientation in the field in this study. The rooftop architecture of
building structures can create difficulties during mapping, and it is essential that consensus
is reached regarding their interpretability prior to setup for remote mapping on Tasking
Manager. Another important consideration is the security of mappers in the field; this could
be ameliorated by working with the slum residents and community leaders. Although it is
less unanticipated that experienced OSM-mappers in developed urban areas can generate
high-quality data [49], our observations of the mapping process (as well as results from the
quantitative analysis in this study) suggest that inexperienced but trained OSM-mappers
in slums can also produce high quality data.

5.3. Limitations of the Study and Future Work

The study is limited by the scope, which is about slums. There is likely to be a plethora
of other potential open-source technologies, which could have been extensively tested
and used; familiarity with the technologies influenced the design and choices. Future
work should examine how mappers (especially slum residents) perceive such mapping
processes, sociodemographic profiles of mappers, and attribute accuracy to deepen our
understanding of slum mapping for health research. Future research should look at
methods for auto-defining the different stages of participatory mapping by using online
mapping platforms to provide the basis for conducting a comparative systematic study
of data quality at different geographic regions. Initial consideration could be to use the
remote mapping period on HOT Tasking Manager as Stage 1 and explore OSM Changesets
to identify data-source declarations and determine a Stage 2 timeframe. Such an endeavor
will require a careful and systematic approach throughout the mapping stages to ensure
explicit identification of objects and their validation. Although this study partly contributed
to the temporal quality (another quality element looking at the validity of changes in the
database in relation to real-world changes and also the rate of updates [22]), based on the
completeness growth estimates, future work could examine the actual rate of modifications
(e.g., deletes) and how they are reflected in space. Another possibility for future studies is to
explore the remaining quality elements by considering their evolution across the two stages.
Other emerging research is the use of participatory mapping and automated methods (e.g.,
machine learning) for structure detection and population estimation within slum regions.
It is important to note that the participatory mapping approach used in this study is part
of many approaches for slum mapping, which should be ideally combined towards an
integrated deprived area “Slum” mapping system in the Global South [2]. Additionally, we
see the current work as a step for the improvement of OSM-based workflows and mapping
tools in support of a methodological framework for geospatial mapping of health and
wellbeing in urban poor areas. Such improvement can facilitate impactful and potential
future collaboration with local partners, OSM community, and other researchers for data
production, usage, and analytics.
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Appendix A

Table A1. Time intervals of defined stages.

Site Stage 1 (Start–End Dates 1) Stage 2 (Start–End Dates 1)

Karachi site 21 May 2018–19 August 2018 20 August 2018–05 April 2019

Ibadan site 2 21 January 2018–28 March 2018 29 March 2018–30 October 2018

Nairobi site 1 25 January 2018–11 May 2018 12 May 2018–28 February 2019

Nairobi site 2 21 December 2017–30 June 2018 01 July 2018–14 August 2019

Ibadan site 1 26 February 2018–26 June 2018 27 June 2018–12 December 2018

Lagos site 02 March 2018–04 June 2018 05 June 2018–17 November 2018

Dhaka site 20 December 2017–18 April 2018 19 April 2018–21 February 2019
1 These periods covers the natural progression of activities including breaks. Calendar days.
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Figure A1. Completeness of buildings and routes during mapping in Karachi site.
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Figure A2. Completeness of buildings and routes during mapping in Ibadan site 2.
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Figure A3. Completeness of buildings and routes during mapping in Ibadan site 1.
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Figure A5. Completeness of buildings and routes during mapping in Dhaka site.
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Figure A6. Completeness of buildings and routes during mapping in Nairobi site 2.
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