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Abstract: Indonesia currently has 269 million people or 3.49% of the world’s total population and is
ranked as the fourth most populous country in the world. Analysis by the Ministry of Public Works
and Public Housing of Indonesia in 2010 shows that Java’s biocapacity is already experiencing a
deficit. Therefore, optimization needs to be done to reduce deficits. This study aims to optimize and
assess spatial allocation accuracy based on land-use/land cover suitability. In this study, the ecological
footprint (EF) is utilized as a spatial allocation assessment based on physiological needs. The concept
of land suitability aims for optimal and sustainable land use. Moreover, the land suitability model
was conducted using the support vector machine (SVM). SVM is used to find the best hyperplane by
maximizing the distance between classes. A hyperplane is a function that can be used to separate land-
use/land cover types. The land suitability model’s overall-accuracy model was 86.46%, with a kappa
coefficient value of 0.812. The final results show that agricultural land, plantations, and pastureland
are still experiencing deficits, but there is some reduction. The deficit reduction for agricultural
land reached 510,588.49 ha, 18,986.14 ha for plantations, and 1015.94 ha for pastures. The results
indicate that the SVM algorithm is efficient in mapping the land-use suitability and optimizing
spatial allocation.

Keywords: spatial allocation; land suitability; ecological footprint; SVM (support vector machine)

1. Introduction

The land can produce products in the form of goods and services (supply) to meet
human needs (demand). The needs in question include food, water, air, homeostasis, rest,
and excretion as the most basic human physiological needs that must be met based on
Maslow’s Hierarchy of Needs [1–4]. Products produced by land include food and fiber,
as well as environmental services such as water supply, water flow, and air quality control.
The land’s ability to make these products depends on ecological quality [5,6]. The decline
in ecological quality is influenced by environmental pressures due to ecosystem changes
to meet human needs, such as changes in land cover, resource retrieval and depletion
(such as logging and overfishing), disposal and pollution of emissions, and modification
and movement of organisms [7,8]. The resulting environmental impacts include, but are
not limited to, climate change, land degradation, loss of biodiversity, and environmental
pollution [9–11]. These ecological problems reduce land productivity, which has become
a global issue in recent decades [3,4]. Therefore, it is necessary to plan for sustainable
development in meeting human needs.

The fulfillment of human needs through development activities requires the allocation
of land. The spatial allocation represents the process of determining the amount of land for
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specific uses (or unused) through legal and administrative steps, which leads to the im-
plementation of planning [12]. Thus, spatial allocation determines economic development
performance and environmental quality. Land in spatial allocation terminology refers to
the terms of land cover and land use. Land cover is the various biophysical materials found
on the land, such as buildings, vegetation, and roads. Land use has a different definition
characterized by regulating and using multiple land-cover types [13,14]. This definition
of land use describes the direct relationship between land cover and human activities.
Along with developing the understanding of land-cover and land-use, there are still dif-
ferences in opinion regarding the classification division. Therefore, land cover and land
use are often used in a unified term, even though they have different definitions [15–17].
This study then uses the term land-use/land cover.

Several methods have been developed to calculate spatial allocation. One of the meth-
ods referred to is the life cycle analysis (LCA), a tool to assess and measure the total
environmental impact based on the entire life cycle of a good or service, including raw
materials, processes, products, and technology or relevant activities [18,19]. For exam-
ple, rice is assessed for its environmental impact from planting rice seeds, cultivation
and maintenance processes (irrigation, pesticides), harvesting, milling grains into rice
grains, processing food from rice, consumption, and waste disposal. However, this ap-
proach is too particular, so that each commodity will have a different valuation process.
Another approach that has been widely used is the ecological footprint (EF). This ap-
proach uses land-based indicators to assess resource sustainability, i.e., by comparing land
needs and availability to meet the needs of specific populations [5,6]. EF has transparent
metric units of calculation, generally available data needs, and standardized measure-
ment methods [20–22]. Based on existing developments, EF becomes a comprehensive,
but straightforward spatial allocation calculation method. Therefore, the EF approach is
used in this study to calculate the spatial allocation.

The availability of productive land and resource production each year is limited.
Therefore, the measurement of various ecosystem services and ecological resources uses
metric units of the area [23]. Galli et al. (2015) explained that there are three types of unit
area in the calculation of ecological footprint, namely, global hectares (gha), world-average
hectares (wha), and nation-specific actual hectares (ha) [24]. One global hectare (gha)
is equivalent to one hectare with the world average biological productivity of all land
use/land cover for a given year. World-average hectares (wha) is the area of a specific land
use/land cover (e.g., the area of wetland agriculture) with its world-average productivity
(e.g., the world-average productivity of wetland agriculture). Finally, actual hectares (ha)
are the physical area of a particular type of land use/land cover located in a particular area
characterized by productivity in that area. Actual hectares (ha) are useful for visualizing
the physical land area occupied for a particular activity. The calculation of the ecological
footprint includes six types/classes of productive land to meet human needs, namely,
cropland, grazing land, forest, fisheries, energy land, and built-up land [23,25]. Each type
of land use/land cover has a specific annual production amount, which can help meet
human needs.

The ecological footprint approach is very sensitive to the spatial-temporal scale used.
This nature is due to the variation in the resources generated and needed in different
countries or regions [26–31]. Most research on ecological footprint uses units of global
hectares (gha). Several studies use actual hectares (ha) to suit the country or region
circumstances [32–37]. The ecological footprint approach using generalized gha and
wha metric units cannot represent the difference between local land supply and demand.
Meanwhile, the ecological footprint assessment using actual hectares (ha) can calculate the
land demand locally.

The spatial allocation of land use/land cover in this study was carried out using an
ecological footprint approach, as done by Lane et al. (2014) [38,39]. This model utilizes
actual hectares (ha) because the spatial allocation is specific for the study area according
to land productivity in Java Island and is specific for each type of land use/land cover.
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The land use/land cover types allocated were adopted from the classification of six main
types of productive land by the World Conservation Union [40]. Notably, in this study,
the land use/land cover is classified into eight types/classes by classifying agricultural land
(cropland) to be more specific, namely, wetland agriculture (rice fields), dryland agriculture,
and plantation.

Furthermore, the calculation of spatial allocation certainly needs to pay attention to its
suitability. The concept of land suitability aims for optimal and sustainable land use [41].
The aim is to identify the most appropriate spatial patterns for future land use [42,43].
Therefore, land suitability analysis is an essential part of urban planning and management.
The land characteristics can be used to assess land suitability, namely land attributes that
can be measured or estimated, such as slope, rainfall, soil texture, and vegetation [41].
The land characteristics in the assessment system are assumed to be able to determine
the direction of spatial allocation. More specifically, land suitability assessments pay
attention to the interactions between land characteristics. For example, land suitable
for paddy fields is not determined by the angle of slope alone, but by the interaction
between slope angle, slope length, permeability, soil type, rainfall intensity, and other
characteristics. Owing to these interaction problems, it is recommended that land use/land
cover suitability assessment should be carried out in terms of land quality. The quality of
land formation is one of the most influential parameters on the quality of land suitability
assessment and the reliability of land use plans [44]. Soil quality is an intricate attribute of
soil containing one or more soil characteristics. In recent decades, land suitability analysis
has been applied to agricultural land assessments [45], determination of land as habitat
for various species of flora and fauna [46,47], landscape evaluation and planning [48,49],
along with regional planning and environmental impact assessments [50,51].

In this study, the land suitability model was conducted using support vector machine
(SVM). SVM is used to find the best hyperplane by maximizing the distance between classes.
A hyperplane is a function that can be used to separate classes [52]. SVM separates land
suitability classes based on the land characteristics used as parameters. Although SVM has
been widely used for land mapping in recent years, only a few have used SVM to map land
suitability [53–56]. The use of SVM for land suitability in previous studies also focused
more on agricultural land, with accuracy and kappa reaching more than 75% or equivalent
to a very high level of suitability between the model and existing conditions. The results of
these studies are taken into consideration to choose SVM. The novelty that distinguishes
this study from previous research is the utilization of SVM to assess land suitability for
seven land use/land cover classes. The final result of the classification provides delineation
information on land suitability so that the fulfillment of spatial allocation can be calculated.
The research results are expected to provide an overview of policymaking related to land
use planning. Therefore, there are three specific objectives: (1) calculating land demand
based on physiological needs using ecological footprint (EF), (2) assessing land suitability
for seven land use/land cover using SVM, and (3) calculating the possible fulfillment for
spatial allocation.

2. Materials and Methods
2.1. Materials

The study was conducted in Java Island, Indonesia, which is 129,438.28 km2 (Figure 1).
This island is inhabited by more than 149 million people, making it the most populated
island in Indonesia [57]. The population growth rate in Java Island in 2018 reached 1.23%,
with a population density of 1317 people/km2, and 56.7% of the total population lives in
urban areas [58]. The population of Java Island is almost the same as the total population
of other islands in Indonesia. Energy consumption in Indonesia is focused on Java Island,
or more than 60% of the total national consumption, because 57% of its consumers are in
Java [59]. Based on the evaluation of the ecological footprint conducted by the Ministry of
Public Works of the Republic of Indonesia [37], the biocapacity of Java island has an overall
deficit. This condition is suitable for testing spatial allocation models. Biocapacity is the
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land’s ability to generate natural resources, and absorb and filter other materials such as
carbon dioxide from the atmosphere. The selection of this study area will provide a more
in-depth understanding related to spatial allocation and sustainability.
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The data collected in this study are secondary data identified based on the variables
in the hypothesis. The data are generally obtained from government agencies and re-
search institutes. Table 1 shows the information related to data types and data sources.
According to Maslow’s Theory, the basic needs to calculate spatial allocation include food,
clothing, housing, public space, and energy, while the land suitability model is conducted
using land characteristics as parameters. Land characteristics, according to the Food and
Agriculture Organization (FAO), are land attributes that can be measured or estimated.
The chosen land characteristics are altitude, slope, ecoregion, land surface temperature,
rainfall, soil type, soil pH, water availability, and soil organic content.

Some of the secondary data that were collected in this study were pre-processed.
Elevation and slope were extracted from Shuttle Radar Topography Mission (SRTM) data
data. Land surface temperature (LST) was retrieved using bands 4, 5, and 10 with an
algorithm created in ERDAS IMAGINE 2014 [60]. Land characteristics were selected as
land suitability parameters based on literature studies and significance tests. The results
of the Kolmogorov–Smirnov statistical test showed a significance value between 0 and
0.024 for all parameters. These significance values indicate the level of confidence in the
correlation hypothesis between parameters and land-use/land cover to be rejected between
0% and 0.024% (significance <0.05%). Thus, for the 95% confidence level, the hypothesis
that all parameters have a relationship with land-use/land cover is accepted. These
land characteristics can determine suitable land-use/land cover. The spatial unit used in
deciding the land-use/land cover location is a grid with a resolution of 30′′ × 30′′ (≈0.9 km
× 0.9 km). Each grid has the values of these nine parameters. Normalization was conducted
on the land suitability parameters (value range 0–1) by the min–max normalization method.
Filling in each parameter’s value into each grid was done using the maximum combined
area (MCA) method. The MCA principle, namely the type or value of polygons (can be
more than 1) in each grid with the largest total area considered dominant, will be the grid’s
value. The visualization of the land suitability parameters can be seen in Figures 2–5.
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Table 1. Secondary data to calculate spatial allocation based on physiological needs and land suitability.

Parameter/Data Source(s)

Land cover (1:250,000, in 2016) Ministry of Environment and Forestry—Kementerian Lingkungan
Hidup dan Kehutanan (KLHK), Indonesia

Province statistics in Java (in 2016) Central Bureau of Statistics, Indonesia

Agriculture Statistics (in 2016) Ministry of Agriculture, Indonesia
Animal Husbandry and Health Statistics (in 2016)

Electrical Statistics (2016) Ministry of Energy and Mineral Resources, Indonesia

Elevation (resolution 90 m, in 2016) Shuttle Radar Topography Mission (SRTM) data from NASA,
provided by USGS Earth Resources Observation and Science

(EROS) Data CenterSlope (resolution 90 m, in 2016)

Ekoregion (1:500,000, in 2017) Ministry of Environment and Forestry, Indonesia

Land surface temperature (resolution 90 m, in 2016) Landsat 8 OLI from NASA, provided by USGS EROS Data Center

Rainfall Central Bureau of Statistics, Indonesia

Soil type, soil pH, soil organic content (resolution 90 m)
International Soil Reference and Information Centre

(ISRIC)—World Soil Information, Wageningen University and
Research (WUR)

Water availability (per WD, in 2016) Ministry of Public Works, Indonesia
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Figure 5. The water supply.

2.2. Methods

This research’s nature is descriptive-quantitative, which describes the relationship
between phenomena systematically, factually, and accurately. This study aims to determine
the spatial allocation and suitability of land use/land cover deductively. In order to solve
the research problem, several stages must be carried out in Figure 6. These stages generally
consist of the following:

1. Perform the calculation of land use/land cover spatial allocation based on physiologi-
cal needs using an ecological footprint approach with land use/land cover data and
statistical data. The spatial allocation can also be carried out using several scenarios
of meeting the needs.
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2. Conduct land suitability analysis using the SVM with kernel trick. There are nine
parameters and several sample points. The number of sample points and the sampling
method refer to the standards set for geospatial information, namely SNI ISO 19157.
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2.2.1. The Calculation of Spatial Allocation with the Ecological Footprint (EF) Approach

A widely used approach developed to calculate spatial allocation is the ecological
footprint (EF) approach. This approach uses land-based indicators to assess resource
sustainability, i.e., by comparing land needs and availability to meet the needs of specific
populations [5,61]. EF can provide information on the long-term ecological status and early
warning for potential ecological risks. Furthermore, EF advantages include transparent
metric units of calculation, generally available data needs, and standardized measurement
methods [22,62]. Based on existing developments, EF is a simple, but comprehensive
method of environmental sustainability.

The EF concept discusses how to reduce the population’s impact on nature in at least
two ways [63]. First, the ecological footprint measures the total ecological cost (within the
land area) of the supply of all goods and services to the population. This cost shows that
residents directly need land to produce agriculture, roads, buildings, and others. Still,
indirectly, the land also contributes to the realizing goods and services consumed by the
population. In this way, ecological footprints can be used to structure the ecological costs
of population activity. Second, the ecological footprint is an indicator of sustainability,
namely, environmental carrying capacity, which is the maximum population supported by
a specific land area. This concept refers to all members of the ecosystem.

According to Maslow’s Theory, there are some basic human needs: food, clothing,
shelter and public space, and energy. Ecological footprint (EF) capable of quantifying land
requirements to meet human needs [6]. Land requirements using the EF approach are
calculated based on the amount of population consumption per capita. Each type of land
cover/land use can provide specific resources. Therefore, calculating each land use/land
cover’s needs is explicitly carried out for every basic need. According to Wackernagel et al.
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(2019), the equations for calculating ecological footprints in global hectares (gha) or global
m2 (gm2) units are as follows:

EF = ∑
i

Pi
YN,i
×YFN,i × EQFi = Pi × FIi ×YFN,i × EQFi (1)

where

EF = ecological footprint or land requirements (gm2);
P = number of basic human needs (kg);
Y = productivity

(
kg/m2) = 1

FI ;
FI = footprint intensity (m2/kg);
YF = yield factor (wm2/m2);
EQF = equivalence factor (gm2/wm2).

Pre-processing is carried out on several variables in Equation (1). The amount of
production divided by the harvested area gives the productivity value. The productivity
value is inversely related to the intensity footprint. YF and EQF values for the Indonesian
region are available for download on the Ecological Footprint Explorer—http://data.
footprintnetwork.org (accessed on 10 March 2021) by the Global Footprint Network [25,64].

2.2.2. Land Suitability Model with Support Vector Machine (SVM)

Land suitability assessment is an essential part of urban planning and management.
The goal is to identify the most appropriate spatial patterns for future land use [42,43].
The quality of land information is one of the most influential parameters on the qual-
ity of land suitability assessment and the reliability of land use plans [44]. There is a
data-driven approach that is commonly used to assess land suitability. A data-driven ap-
proach is a quantitative approach based on the relationship between dependent variables
(the suitability of seven land cover) and independent variables (land suitability parameters).
The data-driven approach that can be used is a supervised probabilistic approach, namely
machine learning. In recent decades, machine learning algorithms have been widely used
in various land classification cases. The typical machine learning algorithms are artificial
neural networks (ANNs), k-nearest neighbors (kNNs), decision trees (DTs), support vector
machines (SVMs), and random forest (RF) [17,65–70].

SVM is one of the highest accuracy methods for land classification [17,66]. SVM is
used to find the best hyperplane by maximizing the distance between classes. A hyperplane
is a function that can be used to divide between classes. Functions used for classification
between classes in 2D are referred to as a line, and 3D ones are called planes. In comparison,
the functions used for classification within the higher dimensional class are called hyper-
planes. Sampling with the Slovin approach was carried out before classification. In the case
of land suitability in Java, there are 159,757 grids, so the sample taken is 399 grids. Sample
data are represented in {(x1, y1), . . . (xi, yi) . . . , (x399, y399)}, where xi represents sample
input and yi represents sample output (land-use/land cover type, i.e., forest). Classifying
unclassified data is vital to find a function (x) that is maximally close to yi. Moreover, it can
later be generalized to find land suitability. The function for entering sensitivity to bias
(noise) is defined first as a variable used to fit the model’s accuracy. This function is called
the insensitive loss ε, which uses the linear regression function f (x) = ω . x + b:

f (x) =
m

∑
i=1

(α∗i − αi)(xi . x) + b (2)

α∗i − αi a is obtained from the quadratic programming method based on optimization
theory, where α∗i − αi 6= 0 is the sample in SVM. The constant b is determined based on
the Karush–Kuhn–Tucker (KKT) condition of the quadratic convex polygon programming.
This land suitability classification uses a kernel trick because the data samples are non-linear.
This kernel function is used to project a non-linear function ϕ into a high dimensional space
and then form an optimal class separator (hyperplane). The number of land suitability
parameters determines the spatial dimension. The kernel function refers to the existence

http://data.footprintnetwork.org
http://data.footprintnetwork.org
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of the function K(x, x′) = (ϕ(x). ϕ(x′)) in the sample input function. After a non-linear
transformation is performed, the xi. xj from Equation (2) is replaced by K(xi. xj).

3. Results
3.1. Spatial Allocation Based on Physiological Needs Using Ecological Footprint (EF)

The allocation of land cover/land use in Java is calculated based on the population’s
basic needs. The ecosystem provides these needs through various land-use/land cover
types, namely, forest, wetland agriculture, dryland agriculture, plantations, built-up land,
pastureland, and inland fish grounds (Table 2). The land-use/land cover area required
to meet basic human needs is calculated using an ecological footprint approach in each
sector [61,71]. Sectors that are taken into account include food, clothing/textiles, infrastruc-
ture, and energy. The land requirement per person in one year is calculated by Equation (1).
Table 3 shows the yield factor (YF) and equivalent area factor (EQF) values [64]. Further-
more, the needs per sector are obtained by multiplying the needs per person/capita by the
total population of Java Island.

• Indonesia’s food sector is grouped into eight categories: grains, tubers, animal food,
oils and fats, oily fruits/seeds, nuts, sugar, and vegetables and fruit [72,73]. The food
sector is produced from wetland agriculture, dryland agriculture, and plantations.
The calculation results of the ecological footprint per person for the food sector can be
seen in Table 4.

• The clothing/textile sector is produced with raw materials from natural fibers and
synthetic fibers [74,75]. The raw material for textiles in Indonesia, which uses natural
fibers (cotton), reaches 42%, and the rest is produced from synthetic fibers [76,77].
Therefore, the raw material for clothing/textiles taken into account in this model is
cotton made from plantation land. The calculation results of the ecological footprint
per person for the clothing/textile sector can be seen in Table 5.

• The infrastructure sector includes residents’ needs for housing and public spaces
classified into built-up land types. Calculation of the required built-up land area
uses the standard of space requirements per person [78,79]. Infrastructures that
require wood include infrastructure with a physical structure, namely, a residence
(house), cultural and recreational facilities, shopping and commercial centers, religious
facilities, health facilities, and educational facilities. Therefore, the proportion of wood
demand for buildings must be considered in this model (m3 of wood/m2 of buildings).
Wood as a building material is produced from forest land. The calculation results of
the ecological footprint per person for the infrastructure sector can be seen in Table 6.

• The energy sector involved in modeling includes electricity, gas, and fuel oil. The amount
of energy needed per person is the average of the total energy use in Java. Energy use
data are obtained from the Electricity Statistics provided by the Ministry of Energy
and Mineral Resources of the Republic of Indonesia. The energy sector is produced
from built-up land and pastureland. The calculation results of the ecological footprint
per person for the energy sector can be seen in Table 7.

Spatial allocation is generated by the multiplication of ecological footprint per person
and population. The total population of Java Island was 171,829,900 [80]. The unit area
used is hectares (ha). Spatial allocation as demand should be compared with land supply.
The differences show that several land-use/land cover types have deficits and surpluses
(Table 8). The surplus shows the condition that the area of land supply is greater than the
land demand.

Meanwhile, the deficit indicates that the area of land supply is smaller than the land
demand. Those still in deficit include wetland agriculture, dryland agriculture, plantations,
and pastureland. Land-use/land cover experiencing a deficit can be met by changing the
surplus land-cover/land. However, land-use/land cover changes must pay attention to
the suitability of the land.
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Table 2. The basic needs and land-use/land cover types required for production.

Product
Land-Use/Land Cover Type(s)

Global Footprint Network KLHK *

Food

Rice and other grains

Cropland

Wetland agriculture and dryland agriculture

Tubers

Dryland agricultureNuts and legumes

Vegetables and fruit

Sugar

PlantationOil and fat

Oily fruit/seeds

Meat, fish, poultry, eggs Grazing land and inland
fishing grounds Pastureland and inland fishing grounds

Clothing Cotton Cropland Plantation

Infrastructure
Housing

Infrastructure and forest Built-up land and forest
Public space

Energy

Electricity

Forest ForestGas fuel

Fuel oil

* Kementerian Lingkungan Hidup dan Kehutanan (Ministry of Environment and Forestry, Indonesia).

Table 3. The yield factor (YF) and equivalent area factor (EQF) values for the Indonesian region
(Global Footprint Network, 2018).

Land-Use/Land Cover Type(s) Factor

Global Footprint Network KLHK YF (wm2/m2) EQF (gm2/wm2)

Cropland

Wetland agriculture 0.98551 2.493307631

Dryland agriculture 0.98551 2.493307631

Plantation 0.98551 2.493307631

Forest Forest 0.61317 1.275881855

Grazing land Pastureland 2.79968 0.458242686

Infrastructure Built-up land 0.98551 2.493307631

Inland fishing grounds Inland fishing grounds 1 0.368610417

3.2. Land Suitability Classification Using SVM

Fulfillment of land-use/land cover allocation that is still in a deficit is carried out by
considering the land suitability. Land-use/land cover whose area allocation is smaller
than the available area (surplus) includes forest, built land, and inland fishing grounds.
Meanwhile, the four other types of land-use/land cover experience a deficit. The spatial
allocation is based on the nine physical characteristics of the land in each grid. The four
types of land-use/land cover requiring additional locations cannot be converted into
other types. This condition is also applied to conservation/protected areas. The grids of
surplus land-use/land cover, suitable for the deficit land-use/land cover, are candidates
for additional locations.

Figure 7 shows the comparison of land-use/land-cover patterns in the existing condi-
tions with the modeling results. Visually, the model had the same pattern as the existing
land-use/land cover in 2016. Wetland agriculture and dryland agriculture areas dominate
Java. This fact is following the physical characteristics of Java Island. The region conquered
by wetland agriculture is a fluvial plain with alluvium as its constituent material. Allu-
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vium material can form potential aquifers with flat morphology support to have abundant
water availability throughout the year and fertile soils. Dryland agriculture-dominated
areas are structural plains and hills. The dominant soil types are latosol and podzolic
with deep solum and low to moderate fertility. Therefore, this area is suitable for farming
and raising livestock. The highest probability on each grid shows the logical suitability of
land-use/land cover based on the visual analysis.

Table 4. Ecological footprint or land demand per person of the food sector in Java Island.

Needs per Person

Food Sector Kkal/day Kkal/capita Wetland
Agriculture *

Dryland
Agriculture * Plantation * Pasture-Land *

Inland
Fishing

Grounds *

Rice and
other grains 1264.86 461,675.03 345.766

285.328

0.000 0.000 0.000

Tubers 328.53 119,913.78 0.000 0.000 0.000 0.000

Meat, fish,
poultry, eggs 281.33 102,686.45 0.000 0.000 3.083 4.202

Nuts and
legumes 65.69 23,978.07 0.000 0.000 0.000 0.000

Vegetables
and fruit 104.02 37,966.72 0.000 0.000 0.000 0.000

Oil and fat 117.88 43,026.90 0.000 0.000

51.131

0.000 0.000

Oily
fruit/seeds 34.84 12,716.34 0.000 0.000 0.000 0.000

Sugar 191.69 69,966.31 0.000 0.000 0.000 0.000

* Unit area in square meters (m2).

Table 5. Ecological footprint or land demand per person of clothing/textile sector in Java Island.

Needs per Person

Clothing/Textile Sector kg/capita Plantation *

Cotton 7.5 121.039604

* Unit area in square meters (m2).

Table 6. Ecological footprint or land demand per person of the infrastructure sector in Java Island.

Needs per Person

Infrastructure Sector Per Capita Forest * Built-up Land *

Housing and public space 34,781 m2 0.000 28.755

Wood demand 0.214 m3 0.321 0.000

* Unit area in square meters (m2).

Table 7. Ecological footprint or land demand per person of the energy sector in Java Island.

Needs per Person

Energy Sector per day per Capita Built-up Land * Pasture Land *

Electricity 2.785 kWh 1016.52 kWh

2.344 0.000
Gas fuel 0.399 kg 145.63 kg

Fuel oil (household) 0.0185 lt 6.7525 lt

Fuel oil (transportation) 0.499 lt 182.135 lt

* Unit area in square meters (m2).
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Table 8. Spatial allocation (ha) based on physiological needs and the fulfillment in Java Island: (1) forest, (2) wetland
agriculture, (3) dryland agriculture, (4) plantation, (5) built-up land, (6) pastureland, and (7) inland fishing grounds.

1 2 3 4 5 6 7

Food 0.00 5,941,290.02 4,902,791.44 878,581.02 0.00 52,972.67 72,209.85

Clothing/Textile 0.00 0.00 0.00 2,079,822.30 0.00 0.00 0.00

Infrastructure 5,512.92 0.00 0.00 0.00 494,096.88 0.00 0.00

Energy 0.00 0.00 0.00 0.00 40,275.42 7.47 0.00

Land Demand (ha) 5,512.92 5,941,290.02 4,902,791.44 2,958,403.33 534,372.30 52,980.15 72,209.85

Land Supply (ha) 2,157,003.69 3,867,820.97 4,296,050.04 377,052.80 1,112,210.77 50,635.94 162,895.49

Difference (ha) 2,151,490.77 −2,073,469.05 −606,741.40 −2,581,350.52 577,838.47 −2344.20 90,685.65
ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 13 of 23 
 

 

 376 
Figure 7. Comparison of land suitability model with existing conditions (the year 2016). 377 

The modeling accuracy was obtained from the confusion matrix between the existing 378 
land-use/land cover and the model (Figure 8). The model has the same pattern as the ex- 379 
isting land-use/land cover (LULC). Dryland and wetland agriculture is the most extensive 380 
land-use/land cover in Java. However, the area from the land suitability model with a 381 
deficit is still smaller than the LULC allocation requirement, especially for plantation ar- 382 
eas. The site suitable for the plantation area based on the modeling results is only 383 
377,052.80 ha, while the need is 2,581,350.53 ha. The difference in area between the models 384 
and the existing shows the land suitability model's accuracy. The overall accuracy of land 385 
suitability modeling results is 87.728%. The kappa coefficient value from modeling is 386 
0.812, with a significance value of 0.00. The kappa coefficient value shows a very high 387 
agreement between the existing land-use/land cover and the model in assessing the land 388 
suitability [81]. The significance value is also smaller than the significance level used of 389 
5% (0.00 < 0.05). Thus, there is a significant agreement between the existing land-use/land 390 
cover and the model at the 5% significance level. 391 

 392 

 
(a) 

 
(b) 

Figure 8. The confusion matrix of the existing land-use/land cover (LULC) and land suitability model: (a) land suitability 393 
model (hectares) and (b) land suitability model (%). 394 

1 2 3 4 5 6 7 8 9
1 1,663,664.81 30,943.12 436,862.14 18,986.14 4,726.81 1,015.94 804.73 2,157,003.69
2 30,293.87 3,630,322.64 94,556.33 1,420.53 104,362.95 190.57 6,674.08 3,867,820.97
3 268,667.60 88,976.97 3,827,830.07 23,059.43 85,447.98 1,672.22 395.77 4,296,050.04
4 32,683.57 4,319.02 167,938.12 170,380.44 1,018.81 677.41 35.43 377,052.80
5 9,133.43 52,591.41 88,454.53 928.82 959,171.51 679.64 1,251.44 1,112,210.77
6 11,291.95 720.60 10,789.77 1,265.43 2,084.34 24,332.57 151.28 50,635.94
7 837.57 41,600.25 1,182.97 0.00 2,333.11 0.00 116,941.59 162,895.49
8 1,198,021.13 1,198,021.13
9 43,259.79 43,259.79

2,016,572.80 3,849,474.01 4,627,613.92 216,040.78 1,159,145.51 28,568.35 126,254.32 1,198,021.13 43,259.79 13,264,950.62

LAND SUITABILITY MODEL (HECTARES)
TOTAL

LU
LC

 2
01

6 
(H

EC
TA

R
ES

)

TOTAL

1 2 3 4 5 6 7 8 9
1 12.542% 0.233% 3.293% 0.143% 0.036% 0.008% 0.006% 16.261%
2 0.228% 27.368% 0.713% 0.011% 0.787% 0.001% 0.050% 29.158%
3 2.025% 0.671% 28.857% 0.174% 0.644% 0.013% 0.003% 32.386%
4 0.246% 0.033% 1.266% 1.284% 0.008% 0.005% 0.000% 2.842%
5 0.069% 0.396% 0.667% 0.007% 7.231% 0.005% 0.009% 8.385%
6 0.085% 0.005% 0.081% 0.010% 0.016% 0.183% 0.001% 0.382%
7 0.006% 0.314% 0.009% 0.000% 0.018% 0.000% 0.882% 1.228%
8 9.031% 9.031%
9 0.326% 0.326%

15.202% 29.020% 34.886% 1.629% 8.738% 0.215% 0.952% 9.031% 0.326% 100%

LAND SUITABILITY MODEL (%)
TOTAL

LU
LC

 2
01

6 
(%

)

TOTAL

Figure 7. Comparison of land suitability model with existing conditions (the year 2016).

The modeling accuracy was obtained from the confusion matrix between the exist-
ing land-use/land cover and the model (Figure 8). The model has the same pattern as
the existing land-use/land cover (LULC). Dryland and wetland agriculture is the most
extensive land-use/land cover in Java. However, the area from the land suitability model
with a deficit is still smaller than the LULC allocation requirement, especially for plan-
tation areas. The site suitable for the plantation area based on the modeling results is
only 377,052.80 ha, while the need is 2,581,350.53 ha. The difference in area between the
models and the existing shows the land suitability model’s accuracy. The overall accuracy
of land suitability modeling results is 87.728%. The kappa coefficient value from modeling
is 0.812, with a significance value of 0.00. The kappa coefficient value shows a very high
agreement between the existing land-use/land cover and the model in assessing the land
suitability [81]. The significance value is also smaller than the significance level used of
5% (0.00 < 0.05). Thus, there is a significant agreement between the existing land-use/land
cover and the model at the 5% significance level.
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Figure 8. The confusion matrix of the existing land-use/land cover (LULC) and land suitability model: (a) land suitability
model (hectares) and (b) land suitability model (%).

4. Discussion
4.1. The Overall Performance of Land Suitability Model in Java Island

Thematic accuracy is one of the elements of geospatial data quality [82]. Thematic ac-
curacy is defined as the accuracy of quantitative attributes and non-quantitative attributes
in feature classification and the relationship between features. There are many different
ways to look at the thematic accuracy of classification. The confusion matrix allows the
calculation of some accuracy metrics, i.e., accuracy, precision, recall, and F1-score. These in-
dicators are used to assess model performance objectively. Classifier, in this case, SVM,
can predict which land is suitable (true-positive) and not suitable (true-negative) for a
particular LULC type. The SVM classifier can also make mistakes or errors when predicting
suitable (false-positive) and unsuitable (false-negative) locations for certain LULC types.
Confusion matrix components in the form of true-positive (TP), true-negative (TN), false-
positive (FP), and false-negative (FN) can be used to calculate thematic accuracy indicators.

Table 9 shows the value indicators or standard measures to assess the land suitability
model’s performance in Java Island. The indicators were the accuracy, precision, recall,
specificity, and F1-score calculated for the seven LULC types whose suitability is predicted.
The seven types of LULC calculation results are then averaged to measure the land suitabil-
ity model’s average macro performance. The highest accuracy value is owned pasturelands
by an almost perfect value, which is 99.75%. Accuracy indicates the model’s ability to
predict land suitability and unsuitability correctly. LULC type with high accuracy does
not mean the precision and recall values will be automatically high too. For example, for-
est land has an accuracy of 92.97%, but the precision and recall values are only 82.46% and
77.26%. This condition is inversely proportional to dryland agriculture, where the accuracy
is only 89.50%, but the precision and recall values are more significant than the forest
land. The value of precision shows the consistency level of the classification determined
by comparing the classification results with the conditions in the field. In comparison,
recall shows prediction correctness level for all identifiable objects. The precision and recall
for any given LULC type typically are not the same. In Table 9, the plantations’ precision
was 97.90%, while the recall was 77.87%. This fact means that even though 97.90% of
the reference plantations areas have been correctly predicted as suitable for ‘plantations’,
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only 77.87% percent of the areas predicted suitable for “plantations” in the classification
were actually suitable for plantations.

Table 9. The model performance of the land suitability model in Java Island using SVM.

Code LULC Type Accuracy Precision Recall Specificity F1-Score

1 Forest 92.97% 82.46% 77.26% 96.41% 79.78%

2 Wetland agriculture 96.20% 94.26% 93.92% 97.29% 94.09%

3 Dryland agriculture 89.50% 82.92% 88.94% 89.82% 85.82%

4 Plantations 97.90% 77.87% 46.32% 99.57% 58.09%

5 Built-up land 97.06% 82.76% 86.14% 98.17% 84.41%

6 Pastureland 99.75% 82.09% 51.28% 99.95% 63.12%

7 Inland fishing grounds 99.54% 92.03% 72.11% 99.91% 80.86%

MACRO (Average) 96.13% 84.91% 73.71% 97.30% 78.02%

Figure 9 shows the distribution patterns of accuracy, precision, and recall values for
the seven types of LULC. Visually, the accuracy value distribution pattern has the most
stable pattern, with values always above 90%. Meanwhile, the precision and recall values
have a similar pattern. The pattern of recall values fluctuated, especially in plantation and
pastureland. This condition causes macro-precision and macro-recall values to be below
90%. That pattern shows there might be a class imbalance. Moreover, the F1-scores were
calculated to assess model performance. The F1-score is an average of precision and recall
by weight. Therefore, this score considers both false positives and false negatives. F1 is
typically more useful than accuracy, especially if there is an imbalanced class distribution.
Macro-F1 of the model shows an increase in macro-recall value, but it is still below 80%.
Therefore, it is necessary to calculate the average micro performance, such as the overall
accuracy value.
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Figure 9. The plot of accuracy, precision, and recall values based on the average of seven land-
use/land cover types.

The micro-average performance aggregates the contributions of all land-use/land
cover types to compute the average metric. An overall accuracy is a form of micro average
performance. The precision, recall, and F1-score indicators on the micro average perfor-
mance will always have the same value as the overall accuracy (Table 10). Overall accuracy
is essentially taken from of all of the reference sites whose proportions were mapped
correctly. The diagonal elements on the confusion matrix represent the areas that were
correctly classified. Overall accuracy was calculated by adding the number of correctly
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classified sites and dividing it by the total number of reference sites. The calculation results
show the overall accuracy of the land suitability model is 86.46%. This fact means that the
model’s error percentage reaches 13.54% (100% − overall accuracy). The model also has a
kappa value of 0.812 or equivalent to a very high level of agreement between the model
and existing conditions.

Table 10. The overall accuracy of the land suitability model in Java Island using SVM.

Overall Accuracy 86.46%

Micro-F1 86.46%

Micro-Precision 86.46%

Micro-Recall 86.46%

The land suitability model’s overall performance, summarized over all possible thresh-
olds, is given by the receiver operating characteristics (ROC) curve. The name “ROC” is
historical and comes from communications theory. ROC curves are used to see the classi-
fier’s ability, in this case, SVM, to separate the positive and negative classes and identify
the best threshold for separating them. The ROC curve is plotted using a false positive
rate (FPR) as the X-axis obtained from 1 – specificity and a true positive rate (TPR) data or
sensitivity as the Y-axis. Specificity has the same definition as the recall value. The model’s
performance is considered inferior if the resulting curve approaches the baseline or a line
that crosses from point 0.0 and good if the curve approaches 0.1. Figure 10 shows a blue
curve that shows promising performance because the TPR value continues to approach
0.1 for the FPR value from zero to 76.20%. In addition, the calculation of the area under
the curve (AUC) is also carried out. An excellent model has AUC near 1.0, which means it
has a good separability measure. The land suitability model’s AUC value reaches 0.842,
which can be classified as an excellent model.
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4.2. Fulfillment of Spatial Allocation Based on Land Suitability

The land requirements (demand) can be met using the available land-use/land cover
(supply). The comparison between the supply and demand of land-use/land cover (LULC)
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in Java Island shows that four LULC classes experience deficits. LULC classes that have
deficits are wetland agriculture, dryland agriculture, plantations, and pastures. Mean-
while, LULC classes that experience a surplus are forest, built-up land, and inland fish-
ing grounds (Table 11). These results have the same pattern as the ecological footprint
study conducted by the Ministry of Public Works of the Republic of Indonesia (2010) and
Nathaniel (2020) [83,84]. LULC classes that have a deficit must be met to meet the needs of
the population in Java.

Table 11. Allocation fulfillment of land-use/land cover in Java Island based on the land suitability.

Code LULC Type Supply (hectare) Demand (hectare) Difference (hectare)

1 Forest 2,157,003.69 5512.92 2,151,490.77

2 Wetland agriculture 3,867,820.97 5,941,290.02 −2,073,469.05

3 Dryland agriculture 4,296,050.04 4,902,791.44 −606,741.40

4 Plantations 377,052.80 2,958,403.33 −2,581,350.53

5 Built-up land 1,112,210.77 534,372.30 577,838.47

6 Pastureland 50,635.94 52,980.15 −2344.21

7 Inland fishing grounds 162,895.49 72,209.85 90,685.64

8 Conservation/Protected Area 1,198,021.13 1,198,021.13 0.00

9 Water body 43,259.79 43,259.79 0.00

Total 13,221,690.83 15,665,581.14 −2,443,890.31

Land suitability modeling results can be used to find new candidate locations for the
deficit land-use/land cover. The land-use/land cover (LULC) experiencing a deficit should
not be converted into another type of land-use/land cover (Figure 11). This constraint
also applies to built-up land because it is mostly permanent. The modeling results show
that all land-use/land cover types cannot be changed to have a suitable location for the
deficit LULC, which is 8,191,106.50 ha. The rest is in the form of forest land and inland
fishing grounds with 530,590.57 ha. The total area is still smaller than the difference be-
tween land supply and land demand, namely, forest 487,807.35 ha < 2,151,490.77 ha and
inland fishing grounds 42,783.22 ha < 90,685.64 ha (Figure 11 and Table 11). This condition
must be ensured to avoid increasing the deficit status in other types of LULC. Therefore,
the grids are available for conversion to wetland agriculture, dryland agriculture, planta-
tions, and pastureland. Forestland contributes the most to the changeable grid because of
its dominant areas on Java Island. Forestland classification in this research does not include
conservation/protected areas. The forest land classification consists of secondary dryland
forests, plantation forests, and shrubs.

The candidate grid can be used to calculate the area of possible land-use/land cover
(LULC) allocation fulfillment (Table 12). The land suitability in Java Island is dominated by
agricultural land consisting of wetland agriculture, dryland agriculture, and plantations.
Possible fulfillment is obtained with the land supply formula minus changeable LULC,
then added with the candidate grid area. Change-able LULC is a grid(s) of the surplus
LULC type, which is available to be converted into the deficit LULC type. Dryland agri-
culture has the most extensive candidate grids covering 438,045.11 ha or equivalent to
5111 grids. Meanwhile, pasturelands have candidate grids of at least 1015.94 ha or equiva-
lent to 23 grids. The modeling results show that all deficit LULC types have new candidate
locations, but have not been able to change the deficit status. LULC change based on the
possible allocation fulfillment calculation will also reduce the ecosystem’s negative impact.
This benefit is because LULC change will be based on land suitability.

The difference between land supply with land demand and the possible fulfillment
based on its suitability shows a reduction in the deficit areas (Table 13). The number of
LULC types experiencing deficit is still the same after adding the candidate grids. The area
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of forest is reduced by 22.62%, which is spread over four deficit LULC types. Candi-
dates from forest land are dominated by dryland agriculture, covering 436,862.14 ha
(89.56% of changeable forest land areas). In comparison, the inland fishing grounds were
reduced by 42,783.22 ha or 26.26%, which was distributed to fulfill the allocation of wetland
agriculture and dryland agriculture. The total area of the initial deficit based on available
land (supply) was 5,263,905.19 ha, which was dominated by cropland areas. The deficit
reduction reached 4,733,314.62 ha with the same pattern. Meeting the needs with this
scenario is acceptable because it had succeeded in reducing the deficit area and not adding
to the LULC types with a deficit status.
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Table 12. The possible allocation fulfillment of land-use/land cover in Java Island based on the land suitability.

LULC Type Supply * Changeable * Candidate * Possible Fulfillment *

Forest 2,157,003.69 487,807.35 0.00 1,669,196.35

Wetland agriculture 3,867,820.97 0.00 72,543.38 3,940,364.35

Dryland agriculture 4,296,050.04 0.00 438,045.11 4,734,095.15

Plantations 377,052.80 0.00 18,986.14 396,038.94

Built-up land 1,112,210.77 0.00 0.00 1,112,210.77

Pastureland 50,635.94 0.00 1015.94 51,651.88

Inland fishing grounds 162,895.49 42,783.22 0.00 120,112.27

Conservation/Protected Area 1,198,021.13 0.00 0.00 1,198,021.13

Water body 43,259.79 0.00 0.00 43,259.79

Total 13,221,690.83 530,590.57 530,590.57 13,221,690.83

* Unit area in hectares (ha).

There are several solutions to overcome the deficit of land-use/land cover (LULC).
The first solution, namely all commodities from land-use/land cover that are experiencing
deficit are filled with imports from other islands or abroad. However, this will only cause
new problems, especially for the country’s economic condition. Indonesia’s dependence on
imports is one reason for weakening the rupiah exchange rate against the United States (US)
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dollar [84]. Therefore, high import figures can lead to inflation. Meanwhile, Indonesia’s
import figures are currently high, although they have decreased compared with 2018 [85].
The second solution is the population transmigration program from Java Island to other
islands in Indonesia. However, the transmigration program in the current development
era creates new problems. Newcomers or transmigrants are growing faster than local
communities. This problem has resulted in social gaps in local communities. The third
solution, namely, optimization of the existing land-use/land cover, will be imported from
other islands or abroad. This last solution is the best compared with the other solution
options. Optimization of land-use/land cover location-allocation can be done by fulfilling
the LULC allocations that are still in a deficit using the surplus LULC. For example,
deficit PL needs such as wetland agriculture, dryland agriculture, and plantations can
be partially met by allocating forest land that is still in a surplus. The requirements that
must be met for finding the location of LULC that are in a deficit are the land suitability.
Each location is theoretically compatible with multiple LULC types, but with different
compatibility levels. The PL suitability level can be represented in the posterior probability
value. Therefore, it is necessary to model the suitability of PL with the posterior probability
value at the next stage.

Table 13. The comparison of supply based fulfillment and land suitability based fulfillment in Java Island.

Code LULC Type Supply (ha) Demand (ha) Difference (ha) LSM * (ha) Difference (ha)

1 Forest 2,157,003.69 5512.92 2,151,490.77 1,669,196.35 1,663,683.43

2 Wetland agriculture 3,867,820.97 5,941,290.02 −2,073,469.05 3,940,364.35 −2,000,925.67

3 Dryland agriculture 4,296,050.04 4,902,791.44 -606,741.40 4,734,095.15 −168,696.29

4 Plantations 377,052.80 2,958,403.33 −2,581,350.53 396,038.94 −2,562,364.39

5 Built-up land 1,112,210.77 534,372.30 577,838.47 1,112,210.77 577,838.47

6 Pastureland 50,635.94 52,980.15 −2344.21 51,651.88 −1328.27

7 Inland fishing grounds 162,895.49 72,209.85 90,685.64 120,112.27 47,902.42

8 Conservation/Protected
Area 1,198,021.13 1,198,021.13 0.00 1,198,021.13 0.00

9 Water body 43,259.79 43,259.79 0.00 43,259.79 0.00

TOTAL 13,221,690.83 15,665,581.14 −2,443,890.31 13,221,690.83 −2,443,890.31

DEFICIT −5,263,905.19 −4,733,314.62

* Land Suitability Model.

Table 14 shows the comparisons of various land requirement calculations using the
ecological footprint approach. Land requirements were calculated based on physiological
needs in 2016, except for calculations by the Ministry of Public Works in 2010. It can be
seen that the calculation results of the three studies have significant differences. This condi-
tion is because GFN calculates land requirements with derivatives from global standards
(world-average productivity). Meanwhile, the calculations made by the Ministry of Public
Works and Safitri et al. use national standards. The Ministry of Public Works also takes
into account the number of imports and exports of goods. Therefore, the Ministry of Public
Works’ calculation of land requirements is smaller than that of Safitri et al. The land re-
quirement for cropland in the three studies has the highest value. The cropland consists of
agriculture wetland, agriculture wetland, and plantation.
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Table 14. The comparison of land requirements using the ecological footprint approach in this study
with other studies.

Global Footprint
Network (gha)

The Ministry of
Public Works (ha) Safitri et al. (ha)

Cropland 135,752,024.20 4,343,805.00 13,802,484.79

Pastureland 4,857,696.85 1715.00 52,980.15

Forest 69,742,317.43 12,616.00 5512.92

Fishing ground 68,405,182.80 2,047,015.00 72,209.85

Built-up land 17,612,614.72 130,933.00 534,372.30

5. Conclusions

Spatial allocation based on physiological needs is very challenging because of complex
variables, depending on the study area. Physiological needs are very dependent on the
social, economic, and environmental conditions of the study area. Therefore, it is necessary
to have clear boundaries in determining the groups of needs involved. This research uses
four sectors of needs with regional coverage of Java Island. The sector classification of
needs will be different and more detailed when used for smaller areas (i.e., districts/cities).
In this study, the land requirements to absorb emissions produced by each sector have not
been involved. The calculation of needs also uses national standards; in fact, each region
with various socio-economic conditions will have local standards. Hence, the ecological
footprint approach is proven to measure land needs based on consumption patterns and
environmental capacity to supply resources. As a tool, the ecological footprint’s accuracy
depends on the quality of the calculation’s data.

Furthermore, SVM can produce highly accurate land suitability models (86.46%)
with a very high level of agreement between the model and existing conditions (0.842).
The model’s accuracy in this study is better than the previous studies, which only reached
a maximum of 85%. However, this land suitability model only uses physical parameters
in the form of land characteristics. In principle, land use planning is successful only if it
can be implemented in any local conditions of social, cultural, political, and economical.
Therefore, it is necessary to include social, cultural, political, and economic parameters to
assess land suitability.

Fulfilling spatial allocation with a combination of ecological footprint and land suit-
ability models has succeeded in reducing the deficit area without changing land status
from surplus to deficit. This land suitability model is proven to be able to reduce the land
deficit by up to 530,590.57 ha or equivalent to 10.08% of the initial deficit. It should be noted
that the spatial allocation in this study only considers land suitability. Furthermore, it is
also necessary to develop a location-allocation analysis to overcome land-use/land cover
patterns’ inefficiency. This condition causes various social, economic, and environmental
problems. This development is in line with the theory of sustainable development.
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