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Abstract: Strawberries (Fragaria × ananassa Duch.) are highly perishable fruit. Timely prediction of
yield is crucial for labor management and marketing decision-making. This study demonstrates the
use of high-resolution ground-based imagery, in addition to previous yield and weather information,
for yield prediction throughout the season at different intervals (3–4 days, 1 week, and 3 weeks pre-
harvest). Flower and fruit counts, yield, and high-resolution imagery data were collected 31 times for
two cultivars (‘Florida Radiance’ and ‘Florida Beauty’) throughout the growing season. Orthorectified
mosaics and digital surface models were created to extract canopy size variables (canopy area, average
canopy height, canopy height standard deviation, and canopy volume) and visually count flower
and fruit number. Data collected at the plot level (6 plots per cultivar, 24 plants per plot) were used to
develop prediction models. Using image-based counts and canopy variables, flower and fruit counts
were predicted with percentage prediction errors of 26.3% and 25.7%, respectively. Furthermore, by
adding image-derived variables to the models, the accuracy of predicting out-of-sample yields at
different time intervals was increased by 10–29% compared to those models without image-derived
variables. These results suggest that close-range high-resolution images can contribute to yield
prediction and could assist the industry with decision making by changing growers’ prediction
practices.

Keywords: canopy size metrics; Fragaria × ananassa; high-resolution; image analysis; regression model

1. Introduction

Due to their highly perishable nature, strawberry crops are prone to many factors
that impact quantity and quality throughout the season [1]. Strawberry production cycles
are influenced by many variables such as weather, pollination, planting date, cultivar,
pests, and disease impact [2–5]. Crop management practices and logistical choices can
also impact crop performance and market variability. Furthermore, the competition for
market share and harvest labor affects profitability of this already fluctuating, complicated
commodity [6]. High natural variability in strawberry production makes it difficult for
growers to anticipate accurate yield distribution and make marketing decisions. A yield
model that can predict yield a few days to a few weeks in advance would be a powerful
tool for growers, allowing profit maximization by planning more efficiently for marketing
costs, labor distribution, and minimization of intra-market competition among regional
growers.

Previous studies found that strawberry yield can be predicted using field observations
coupled with weather data to some extent. MacKenzie and Chandler [2] used weather
information and flower count data collected over two consecutive seasons to predict
strawberry yield. Their results found that the number of fruits was more accurately
predicted than was fruit weight. A different study successfully predicted weekly strawberry
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yield using artificial neural networks and soil inputs [7]. The number of crowns, fresh
weight, and dry weight were used by Bartczak, Lisiecka, and Knaflewski [8], who found
fresh weight to be the most important input in the model. Yield predictions at three to four
days before harvest were accomplished using previous yield and fruit counts at specific
physiological maturity stages [9]. Previous yield is likely a significant variable given the
phenological ripening pattern of berries over time through the growing season [10]. The
implications of physical parameters extracted from plant-canopy geometry correlating
with yield highlight the value of extracting multiple canopy geometry metrics for use in
yield modeling.

While direct field measurements are reliable and have been used to obtain accurate
yield model results, there are significant drawbacks to models built entirely on labor-
intensive, time-consuming, expensive, and often destructive measurements [11]. These
methods are often neither practical nor sustainable when targeting large-scale farm opera-
tions or research applications. Remote sensing technology allows for large amounts of data
to be collected quickly, and the information facilitated by this technology provides a huge
potential for extracting many variables quickly and non-destructively [12,13]. The remote
sensing imagery is important to build strawberry yield prediction models that can be
practically implemented for farm operations. The rapid development of high-throughput
imaging technologies and image analysis algorithms has made the derivation of canopy
specific information feasible.

Biophysical parameters, such as leaf area and dry weight biomass of strawberry
canopies, have been modeled using ground-based remote sensing imagery [13,14]. Lidar
is often used for canopy modeling, but this technology is still very costly for extensive
data acquisition throughout the growing season. Due to the need not only to model the
canopy but also to identify fruit and flower locations, a moving platform with necessary
navigation sensors and control points was used in this study to capture true-color and
infrared imagery to provide canopy variables. These images have enough overlap and can
be used to create orthorectified mosaics (orthomoisaics) and Digital Surface Models (DSM)
to extract canopy characteristics. By using a low-altitude sensor as opposed to a piloted
aircraft or a satellite sensor, the geometrical characteristics of individual canopies, as well
as flower and fruit counts, can be extracted due to the high spatial resolution of the images.
Other issues, such as cloud existence and the need for frequent data acquisition sessions,
can also be overcome using this type of imaging system.

In this study, our main objective was to demonstrate the feasibility of developing
strawberry yield prediction statistical models using image-derived variables such as canopy
size variables and flower and fruit counts, weather information, and previous yield data.
The study emphasizes the roles of high spatial- and temporal-resolution images in deriving
model variables. To achieve our objective, strawberry yield, manual fruit and flower counts,
and close-range imagery were collected and analyzed. Field fruit and flower counts were
compared to visually interpreted counts from the images. Statistical modeling of field
counts as dependent variables and image-based counts as independent variables were
developed and validated. Other statistical models were developed to predict strawberry
yield at different time intervals ahead of harvest. We compared the results of modeling
strawberry yield at 3–4 days ahead, one week ahead, and 3 weeks ahead of harvest using
the models’ goodness-of-fit and out-of-sample validation.

2. Materials and Methods
2.1. Study Site

The field experiments of this study were conducted at the University of Florida’s
Gulf Coast Research and Education Center (GCREC) in Balm, FL (latitude: 27.76030◦ N;
longitude: 82.22798◦ W), during the 2017–2018 winter strawberry growing season. Two
strawberry cultivars (‘Florida Radiance’ and ‘Florida Beauty’) were used in the trials. Each
cultivar had 6 plots with 24 plants per plot. The plots were arranged in a completely
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randomized block design. Figure 1 shows the general location of the study site and
experiment layout. Commercial standard management practices were followed.

Figure 1. Strawberry yield study site at the Gulf Coast Research and Education Center in Balm,
Florida (latitude: 27.760296◦ N; longitude: 82.227977◦ W).

2.2. Control Point Establishment and Image Acquisition

The season-long image acquisition process was preceded by Ground Control Point
(GCP) establishment. Fixed markings that were visible in the images were set in the field
early in the season and used throughout the season to georeference the acquired images.
Three Global Navigation Satellite System (GNSS) receivers collected static data for at least
four hours on eight control points located throughout the study site. Two points were used
as base and backsight points to survey additional control points at the end of each bed and
along the plastic covers of the strawberry beds using a surveying total station instrument.
The points at the end of each bed were established in the ground using iron rods in the
middle of painted circular plastic targets, and points established on the plastic beds were
painted on areas of the beds not covered by the canopies, similar to the method adopted by
Guan et al. [14] Figure 2 shows the control points established at the end of the strawberry
beds and on the plastic beds. The GCP coordinates were determined using GNSS post-
processing in the North American Datum (NAD83) and Universal Transverse Mercator
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(UTM) Zone 17N map projection. This fixed set of control points was used throughout
the season to create image mosaics and DSM, allowing not only accurate extraction of the
canopies’ geometric properties but also the comparison of sequential datasets captured
during the season.

Figure 2. Targets at ends of beds and on beds for 3D modeling.

Images were acquired using a custom-built platform towed by a tractor driven through
the strawberry beds (Figure 3). Two consumer-grade Nikon D-300 digital cameras were
used. The first camera captured Red-Green-Blue (RGB) imagery, and the other was a
camera modified by removing the near-infrared (NIR) filter to capture NIR imagery. The
cameras were mounted 3.5 m above ground and driven at 0.5 m per second to allow for
about 70% forward overlap between images. Factoring in the distance between adjacent
beds created 60% sidelap between the acquired images, which was needed to construct 3D
models. The cameras were automatically triggered by a software program and hardware
interface developed in-house that synchronized the RGB and NIR camera triggers and
acquired a GNSS time stamp for each camera trigger instance [15,16]. Imaging trajectory
was collected during the image acquisition mission using a geodetic-grade GNSS receiver
mounted on the cameras’ carrying platform. The GNSS trajectory data were analyzed using
kinematic post-processing analysis techniques. Camera trigger time stamps were matched
with the GNSS trajectory to produce camera trigger locations. The images captured by the
RGB and NIR cameras had about 0.5 mm spatial resolution in their raw form. Based on
the time of day for image collection, which was the same across the season, the images
were captured only while the tractor was moving in the south to north direction to avoid
shadows from the platform and to keep shadows in the canopy consistent.
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Figure 3. Imaging of strawberry plots using an imaging platform built in this study. The platform is equipped with
(A) timing GPS, (B) Survey-quality GNSS receiver, (C) Nikon D300 RGB, (D) Nikon D300 IR, (E) synchronization hardware
and acquisition software (laptop), and (F) camera trigger box hardware.

Two beds to the east and west of the experiment bed were also imaged to strengthen
the image acquisition geometry, provide multi-view images, and facilitate three-dimensional
data extraction. The beds were imaged twice per week throughout the strawberry season
(early November to late February). Approximately 1300 (RGB and NIR) images were
collected in each of the 31 acquisition sessions conducted throughout the season. These im-
ages, along with location information for each image, were processed to produce different
products such as orthomosaics, and dense 3D point clouds.

2.3. Image Pre-Processing

Both the RGB and NIR images acquired in each collection session were processed using
the Agisoft Photoscan software (version 1.4) [17] to produce orthomosaic images as well as
DSM. Combining the RGB and NIR images in the structure from motion (SfM) analysis
increased the density of the point cloud and enabled the creation of spatially co-registered
RGB-NIR orthomosaics, as shown in the example view of a 3D, dense point cloud in
Figure 4. The Agisoft software, which utilizes SfM analysis, was used to recreate the image
acquisition geometry using features matched in the overlapped images [18]. The surveyed
ground control points were identified in the captured images, and their coordinates were
input to the Agisoft software. This information was processed mathematically by the
Agisoft software to produce accurate image location and orientation at the time each image
was triggered. Further processing of this information combined with extensive matching
of the corresponding features in the overlapped images produced dense 3D point-clouds
of image content, which is used to create orthorectified mosaics and DSM.
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Figure 4. Dense point cloud of the surface created from overlapping RGB and IR images.

A 2 mm DSM representing the relief of the objects (canopies, plants, and soils) [19]
was created for each image acquisition date. Similarly, a 1 mm orthorectified mosaic
(orthomosaics) free from the geometric distortion caused by topographic relief and camera
tilt [20] was created for each of the RGB and IR bands. The DSM and orthomosaics
were then used to derive strawberry vegetation masks and to extract canopy structural
properties, such as canopy area and volume using the ESRI ArcMap (v 10.3) [21] software.

Visual interpretation was used to identify and count strawberry fruits and flowers
visible in the images. Although seven different fruit development stages were used as
described in Figure 5, they were grouped into just two categories (flowers and fruits) for
this study (Figure 5). The fruits and flowers were identified in the individual images and
their locations on the orthomosaic were marked using ESRI ArcMap software. These point
locations were aggregated to compute the flower and fruit counts at the plot level.

Figure 5. Strawberry fruit and flower categorization. Classes 0–2 are combined as flowers, while 3–6 are combined as fruits.

2.4. Strawberry Yield, and Flower and Fruit Count Data Collection

Harvesting was performed on the entire plot (24 plants per plot). Only fully ripened
fruits were harvested and graded following the United States Department of Agriculture
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(USDA) grading standards [22] which produced yield in weight. All data were collected
following the same schedule as image acquisition (Monday and Thursday of each week).
Flowers and fruits were manually counted in the field and categorized as flowers (categories
0–2) and fruits (categories 3–6) following the classification categories shown in Figure 5.
The data were collected from six plants per plot, which were randomly selected and tagged
prior to the first counting incidence, with many fruits being counted on multiple data
collection days due to the phenological development through categories.

The georeferenced orthorectified images (orthomosaics), produced by mosaicking
individual overlapped images taken by the platform in the field, have a resolution that is
half of the native resolution of the individual images. The orthomosaic images also often
have artifacts resulting from the mosaicking process that can be seen when zooming closer
in to the canopy. These factors made flower and fruit identification on the orthorectified
images difficult and necessitated the use of the original (before mosaicking) individual
images that show the canopy from different directions (multi-view). In this context, the
image analysis operator looked at each canopy in the orthorectified image and identified
the fruit or flower in at least 4 individual images. The operator then identified the fruits and
flowers on the individual images and marked their locations on the orthomosaic image.

2.5. Weather Variables

Prior studies have reported that a great number of weather variables influence the
rate of physiological progress in all parts of the strawberry plant [4,23,24]. For example,
MacKenzie and Chandler found that strawberry flower bud initiation is greatly affected by
day length and temperature [2], while Chandler et al. [25] observed that the time from flow-
ering to fruiting would lengthen by 2.2 days in response to a 1 ◦C decrease in temperature.
Kadir et al. [26] also observed the effect of crown temperature on fruit yield. In addition,
Crespo et al. [27] reported a close correlation between yield and photosynthetically active
radiation. These correlations are prominent at the early-season and late-season growth
stages [4]. By contrast, Li et al. [28] indicated negative impacts of solar radiation and air
temperature associated with water loss on the responses of cool-weather strawberry plants
and, consequently, on fruit formation. Both Li et al. [28] and Pires et al. [29]. observed a
yield change in response to soil moisture, implying the effect of rainfall. Relationships
between weather conditions and strawberry growth, development, and yield are complex.
To maximize the predictive strength of the model, all available weather variables collected
from the Florida Automated Weather Network (FAWN) [30] were tested for prediction
purposes. Among them, three air temperature variables were calculated from daily mea-
surements from probes 60 cm, 2 m and 10 m above ground (Balm FAWN station, FL). Other
variables include soil temperature, relative humidity, rainfall, barometric pressure, solar
radiation, wind speed, wind direction, dew point temperature, and evapotranspiration
(Table 1).

2.6. Canopy Size Variables Extraction

In this section, the methods and assumptions used to extract the geometrical proper-
ties of the canopies are introduced. These methods have also been assessed and discussed
in Abd-Elrahman et al. [31]. The ESRI’s ArcMap software v10.3 [21] was used to analyze the
RGB-IR orthomosaics and DSM resulting from the SfM analysis. The RGB-IR orthomosaic
bands were further used to create normalized difference vegetation index (NDVI) [32],
shadow ratio [33] and Hue-Intensity saturation bands [34], which were used to create a
binary vegetation mask. This mask was created by marking pixels with NDVI, saturation,
and shadow ratio values greater than zero, 0.4, and zero, respectively, as vegetation. All
other pixels were considered non-vegetation (i.e., soils, plastic bed, paint, etc.). These
thresholds were experimented with by manually changing the thresholds and visually
inspecting the results to determine the most accepted output. Once the thresholds were
identified, they were held constant for all the image acquisition sessions acquired through-
out the season. Only pixels marked as vegetation were used to extract canopy size variables.
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Figure 6 shows the orthomosaic and overlaid vegetation mask created for the data captured
on 8 January 2018.

Table 1. Weather Variables.

Weather Variables Variable Description

Temperature—Air (60 cm) Average daily temperature from a probe 60 cm above ground (◦C)

Temperature—Air (2 m) Average daily temperature from a probe 2 m above ground (◦C)

Temperature—Air (10 m) Average daily temperature from a probe 10 m above ground (◦C)

Soil temperature Average daily temperature from a probe 4 inches below ground (◦C)

Relative humidity Average percentage of saturation of a specific volume of air (%)

Rainfall Total rainfall (inches)

Barometric pressure Pressure within the atmosphere of Earth (millibars)

Solar radiation Radiant energy emitted by the sun (watts per square meter)

Wind speed Average wind speed (miles per hour)

Wind direction Direction from which the wind blows (degrees)

Dew point temperature Temperature at which dew starts to form on solid surfaces (◦C)

Evapotranspiration Sum of evaporation and transpiration (inches per day)

Figure 6. Vegetation mask shown overlaid on orthomosaic.
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Since the images were georeferenced based on centimeter-level GNSS GCPs, manual
delineation of the plant and plot boundaries was used to exclude soil area, which was a
relatively simple task that did not require intensive labor between one acquisition date
and the next. The DSM produced by the SfM analysis provided the height of the surface of
the objects shown in the scene above a specific height datum (NAD83 in our analysis). In
order to produce canopy heights, a Digital Terrain Model (DTM) layer, representing the
ground (plastic bed surface) under the canopies, was created using spatial interpolation.
The elevation of the pixels on the soil and beds (excluding canopy pixels) was used to
interpolate soil and bed elevation under the canopies. In other words, interpolation was
used to fill in the gaps in the DTM under the canopies in order to produce a continuous
DTM for the entire bed surface. This process was performed using the ArcMap v10.3
spatial analyst extension. Canopy height model was then computed as the difference
between the DSM and DTM. Figure 7 shows 3D point cloud visualization and a canopy
height calculation schematic as the difference between DSM and DTM for one of the plots
captured on 11 January 2018.

Figure 7. (a) Nadir visualization of a point cloud, (b) oblique 3D visualization of a point cloud, and (c) profile showing
canopy height as the difference between DSM (top solid line) and DTM (bottom dashed line).

Canopy height above the bed for each pixel of the canopies was then used to extract
canopy size variables used in this analysis. Several canopy size variables were computed
from the canopy height raster layer for each of the 12 plots established in this experiment.
These variables were aggregated per plot and computed for each of the 31 image acquisition
dates. Table 2 lists the canopy size variables used in this study and their definitions.
Several models developed using the ArcMap v10.3 software model builder were used to
automatically compute and export the canopy size variables for all 31 data acquisition
sessions.
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Table 2. Canopy Size Variables.

Canopy Size Variables Variable Description

Canopy Average Height Average canopy height within each plot

Canopy Height Standard Deviation (std) Standard deviation of canopy height within
each plot

Canopy Area Canopy planimetric area within each plot

Canopy Volume Canopy volume computed from canopy heights and
summarized at the plot level

2.7. Statistical Analysis Methods

Although many possible predictor variables (e.g., weather and imagery metrics) were
available to predict dependent variables of interest in the study, only a few of them are
likely to contribute to improved prediction accuracy. Two processes were implemented
to select optimal predictor variables. First, a statistical test was conducted to test whether
variables had significant effects on counts or yield. Only those that had significant effects
were selected as basic variables in prediction models. Second, a variety of prediction
models built on these basic variables were compared in terms of prediction accuracy to
determine the optimal model with corresponding predictor variables. Linear regression
models were used to test variables and develop prediction models. The models were
estimated by the least square method.

Linear models were first developed to predict field-observed flower and fruit counts.
The comparison between image-derived and field-observed flower and fruit counts shows
that fruits and flowers were identified from the imagery very accurately at the early-season
growth stage. Due to canopy growth and the increased density throughout the season,
however, fewer fruits and flowers became visible from the imagery compared to the
established field counts as the season progressed. Therefore, identification of the actual
flower and fruit counts is affected by time (e.g., days after planting) and canopy size. As
expected, the results of the statistical tests showed that the effects of these variables were
significant. In particular, each canopy size variable had a significant effect on one-by-one
testing because they were highly correlated. Therefore, time, image-derived counts and
four canopy size variables were used as basic variables to predict the observed counts. The
general prediction model is expressed as

o_countt = f (timet, icountt , heightt, stdt, areat, volt), (1)

where o_count and i_count are the observed and image-derived counts, respectively, time
is the days after planting, and height, std, area, and vol are canopy average height, canopy
height standard deviation, canopy area, and canopy volume, respectively, as explained
earlier.

The rolling prediction was adopted to continuously predict next-interval counts (per
plot) over the season. That is, data available at the ith interval were used to estimate
the model for the observed counts at the ith interval. Using the estimated equation and
available data at the (i + 1)th interval, we calculated the (i + 1)th-interval predictive counts
and compared them to the observed counts. The prediction performance is measured
by the root mean squared error (RMSE). For predicting the (i + 2)th interval counts, the
prediction model was re-estimated with data available at the (i + 1)th interval. The rolling
process continued through the last counts of the season. The prediction accuracy of the
model over the season was represented by the total value of RMSEs spanning from the first
to the last prediction. The general model (1) contained a rich set of models using different
combinations of basic predictor variables, e.g., using fewer canopy size variables or using
cross or squared terms of basic variables. Each model was examined in terms of the total
RMSE over the season. The model with the lowest RMSE was identified as the optimal
prediction model.
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Next, linear models were developed to predict out-of-sample yields (flat per acre,
one flat equals 8 lbs.) at different time intervals (3–4 days ahead of harvest, 1 week ahead
of harvest, and 3 weeks ahead of harvest). We considered three general yield prediction
models. The first one used time and previous yields as basic predictor variables since
strawberry fruit development is characterized by growth waves [35] and has an overall
upward trend over time. The test results showed that only the previous two interval
yields had significant effects on yields. Therefore, the following first general model was
considered

yieldt = f (yieldt−1, yieldt−2, timet). (2)

The second general model assumed that weather information is available. Air temper-
ature, relative humidity, rainfall, barometric pressure, solar radiation, wind speed, wind
direction, and evapotranspiration during intervals were found to have effects on yield at
the 5% significance level. Incorporating them into the model produced the second general
model

yieldt = f (yieldt−1, yieldt−2, timet, weathert), (3)

where weather is a vector of variables including all weather variables that have significant
effects on yields. The first two general models were taken as a benchmark to compare
with the third one, which included variables extracted from the images (e.g., canopy size
variables and flower and fruit counts)

yieldt = f (yieldt−1, yieldt−2, timet, weathert, image), (4)

where image is a vector of variables including not only flower counts, fruit counts, and
canopy sizes at time t, but also previous values of these variables. For each yield prediction
model, we repeated the procedure used for predicting the flower or fruit counts. That
is, the rolling prediction was adopted to predict next-step yield, and the average RMSE
from 12 plots was generated at each step until the final yield prediction of the season.
The optimal prediction model was identified by comparing the total RMSEs over the
season. The contribution of imagery metrics (image-derived counts and canopy size) in the
prediction accuracy was determined by the reduction of RMSEs from the optimal model of
(4) to that of (2) or (3).

3. Results
3.1. Image-Derived and Field-Observed Flower and Fruit Counts

We started by predicting the 6th interval count because enough data must be left out to
estimate the model. When imagery metrics were available, the optimal model of predicting
flower counts was an equation built on time and its squared term, the image-derived flower
count, and canopy volume (model 1.a in Table 3). The total value of RMSEs of prediction
over the season was 105, suggesting a percentage prediction error of 26.3% because the
actual total number of flower counts over the same period was averaged at 400. Also, the
goodness of fit of the model (1) when being estimated with over-the-season data reached
88.2%, which means that 88.2% of the variation of actual flower counts during the season
can be explained by the predictor variables.
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Table 3. Count Prediction Models and their Performance.

a. Flower Count Prediction

Optimal Prediction Model RMSE of Prediction
in Flower Count per Plot Goodness of Fit

Model 1.a o_ f lt =
α0 + α1·timet + α2·time2

t + α3·i_ f lt + α4·volt + ε
105 88.2%

b. Fruit Count Prediction

Optimal Prediction Model RMSE of Prediction in
Fruit Count per Plot Goodness of Fit

Model 1.b o_ f rt =
α0 + α1·timet + α2·time2

t + α3·i_ f rt + α4·volt + ε
268 92.6%

Note: o_fl and o_fr are the observed flower and fruit count while i_fl and i_fr are the image-derived flower and fruit count.

The optimal model identified for predicting fruit counts (Table 3, model 1.b) was
similar to that for flower count prediction. The actual total fruit counts during the forecast
period was 1042, whereas the model generated a RMSE of 268, suggesting a percentage
prediction error of 25.7%. The goodness of fit for fruit counts was as high as 92.6%. In
summary, these results show that prediction relationships could be built between the
image-derived fruit and flower counts and those observed in the field, which provides
justifications to use image-derived counts and canopy size variables for yield prediction.

3.2. Yield Prediction Based on Imagery, Weather, and Canopy Characteristics

Plot-level yield prediction models were developed using linear regression models
relating yield to all available predictor variables, including time, within-season previous
yields, weather, image-derived flower and fruit counts, and canopy size variables. Simi-
larly, the RMSE was used to assess prediction accuracy and select predictor variables. A
prediction model was first started with easily accessible, basic predictor variables, such
as time and previous yields, and then added weather variables, until all imagery metrics
were included in the model (Models 2, 3, and 4 in Table 4). Linear regression analysis
was implemented to predict yield at different time intervals, including 3–4 days ahead of
harvest, 1 week ahead of harvest, and 3 weeks ahead of harvest, and the results are shown
in Table 4.

We started by predicting the 13th interval yield at 3–4 days ahead of harvest. The
RMSE generated from the optimal prediction model based on previous yields and time was
1222 flats and the goodness of fit reached only 75.1% (Model 2.a in Table 4). Growers often
take into account future weather conditions, given that the weather plays an important
role in fruit growth. Although many weather variables have statistically significant effects
on yield, only air temperature and rainfall contributed to the improvement of prediction
accuracy. However, the optimal prediction model, even with actual weather data, generated
a RMSE of 1172 flats per acre (Model 3.a in Table 4), only 4% up in prediction accuracy. The
prediction accuracy could be even worse since weather forecasts are not always accurate for
actual conditions. Nevertheless, the prediction error was large given the total yield over the
season was averaged at 2528 flats per acre. The poor yield prediction performance indicates
the need for industry or researchers to develop new tools or methods to improve prediction
accuracy. Our results show that imagery data, like image-derived fruit counts and canopy
volume, were particularly instrumental in improving the prediction performance. The
RMSE of prediction was reduced to 866 flats per acre when both image-derived fruit counts
and canopy volume were incorporated into the model (Model 4.a in Table 4), which is 29%
and 26% lower than that from Model 2.a and from Model 3.a, respectively. The goodness
of fit also increased to 83.4%.
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Table 4. Yield Prediction Models and their Performance.

a. Yield Prediction at 3–4 Days Ahead of Harvest

Optimal Prediction Model RMSE of Predictioin in
Flat (8lb) per Acre Goodness of Fit

Model 2.a yieldt =
β0 + β1·timet + β2·yieldt−1 + β3·yieldt−2 + ε

1222 75.1%

Model 3.a yieldt = β0 + β1·timet + β2·yieldt−1 +
β3·yieldt−2 + β4·temt + β5·raint + ε

1172 79.7%

Model 4.a
yieldt =

β0 + β1·yieldt−1 + β2·yieldt−2 + β3·temt +
β4·raint + β5·i_ f rt + β6·timet·i_ f rt + β7·volt + ε

866 83.4%

b. Yield Prediction at 1 Week Ahead of Harvest

Optimal Prediction Model RMSE of Prediction in
Flat (8lb) per Acre Goodness of Fit

Model 2.b yieldt = β0 + β1·timet + β2·yieldt−1 + ε 1362 88.3%

Model 3.b yieldt = β0 + β1·timet + β2·yieldt−1 + β3·temt +
β4·raint + ε

1307 89.9%

Model 4.b yieldt = β0 + β1·yieldt−1 + β2·temt + β3·raint +
β4·i_ f rt + β5·timet·i_ f rt + β6·volt + ε

1122 92.1%

c. Yield Prediction at 3 Weeks Ahead of Harvest

Optimal Prediction Model RMSE of Prediction in
Flat (8lb) per Acre Goodness of Fit

Model 2.c yieldt = β0 + β1·yieldt−1 + ε 1178 95.4%

Model 3.c yieldt = β0 + β1·yieldt−1 + β2·temt + ε 1193 95.6%

Model 4.c yieldt = β0 + β1·yieldt−1 + β2·i_ f lt +
β3·i_ f rt−1 + β4·i_ f rt−2 + β5·i_ f rt−3 + ε

1055 96.7%

Note: tem is the average daily temperature from a probe 60 cm above ground (◦C) during intervals, rain is the rainfall, i_fr is the
image-derived fruit count, and i_fl is the image-derived flower count.

The performance of yield prediction at 1 week ahead of harvest was also encouraging.
The RMSE of prediction reduced from 1362 flats in the prediction model using only previous
fruit yields and time (Model 2.b in Table 4) to 1307 flats using weather variables (Model 3.b
in Table 4) to 1122 flats using imagery variables (Model 4.b in Table 4). Imagery metrics
contributed to increasing prediction accuracy by 14–18%. Meanwhile, the goodness of
fit increased to 92.1%. In MacKenzie and Chandler’s [2] prediction equations with hand-
collected flower counts as inputs, the goodness of fit was only 89%. Finally, three-week-
ahead yield prediction models presented an even stronger fit when exploiting imagery
data. The goodness of fit was as high as 97%, and the RMSE was reduced by 10% in Model
4.c compared to Model 2.c (Table 4). Note that image-derived flower and fruit counts at
previous harvest times were used in Model 4 because the ripe strawberries were normally
ready for harvest several weeks after plants blossomed.

4. Discussion

This study demonstrated the feasibility of using high temporal resolution imagery to
extract canopy size information as well as fruit and flower counts to predict strawberry
yield along the strawberry season. The results show significant improvement in prediction
accuracy when compared to the models using only previous yield as adopted in current
practices.

Image capturing was implemented by mounting the cameras on farm equipment,
which could be easily integrated into standard farm operations. Although we used a
survey-quality GNSS to process the data used in this study, we experimented using a lower
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costs system that does not use the GNSS data from the mobile platform and achieved the
same results counting only on ground control points established in the beginning of the
season. This leaves the image acquisition and triggering system, which costs less than
$1500 as the main investment to acquire the data used in this study. Such cost is considered
a small overhead that can be afforded by all growers.

Canopy information extraction was performed automatically using geospatial analysis
models. Although these models can analyze thousands of plants in a few hours [31], we
believe that the models have the potential to be served as a server service for web clients
as a step towards commercial implementation. Flower and fruit counting was conducted
manually to allow visual identification of the flowers and fruits on images captured by the
platform from different directions (multi-view) and projecting them to the orthorectified
mosaic. This process allowed for detecting more of the flowers and fruits hidden under
the canopy compared to using the orthorectified mosaic image. A deep learning algorithm
utilizing Multiview flower and fruit detection and counting is being developed by the
authors. Integrating strawberry prediction models in large scale field operations can be
achieved by the individual growers if special geospatial analysis expertise are utilized.
However, small farms would probably benefit from strawberry yield prediction provided
as a subscription-service by specialized vendors.

The RMSEs of the prediction models were generally high. The smallest RMSE was
achieved for the 3–4-day prediction model. This model, however, was achieved after
incorporating the canopy image metrics. Incorporating the canopy image metrics variables
derived from imagery substantially improved the prediction accuracy for all models by
10–29%, which highlighted the importance of using the imaging technologies in strawberry
yield prediction.

Our results show that statistical model prediction with imagery data and other already
available weather and previous yield data matched the measured yields within a margin
that could be a first step towards strawberry prediction models that help growers plan
their harvest and marketing operations. Nevertheless, we believe that incorporating the
strawberry physiological parameters is essential in the next stage of strawberry model pre-
diction. Models that incorporate the strawberry yield waves that could be associated with
climate conditions and genotypes are essential to achieve improved prediction accuracy.
The effect of pest and disease stressors could also be incorporated in the prediction model
through spectral image information.

5. Conclusions

The data and results analyzed in this study provide strong evidence that close-range
high-resolution images captured in the field throughout the strawberry season could be
a valuable tool for strawberry yield prediction at different time scales, which could be a
valuable asset for strawberry farm management and marketing. Canopy size variables
extracted from the acquired images such as canopy area, volume, height standard deviation,
and fruit and flower counts visually interpreted from the images were used to predict
actual flower and fruit counts with percentage prediction errors of 26.3% and 25.7%,
respectively. Similarly, this study demonstrates the feasibility of developing statistical
strawberry yield prediction models at different time intervals (3–4 days ahead of harvest,
1 week ahead of harvest, and 3 weeks ahead of harvest) using canopy size variables as
well as flower and fruit counts, weather variables, and previous yield data. The rolling
out-of-sample prediction method shows that prediction accuracy from models with image-
derived variables could be increased by 10–29% compared to those without these variables,
implying the importance of imagery information to yield prediction.
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