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Abstract: This study aims to integrate multisource data to model the relative soil moisture (RSM)
over the Chinese Loess Plateau in 2017 by stepwise multilinear regression (SMLR) in order to improve
the spatial coverage of our previously published RSM. First, 34 candidate variables (12 quantitative
and 22 dummy variables) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and
topographic, soil properties, and meteorological data were preprocessed. Then, SMLR was applied
to variables without multicollinearity to select statistically significant (p-value < 0.05) variables. After
the accuracy assessment, monthly, seasonal, and annual spatial patterns of RSM were mapped at
500 m resolution and evaluated. The results indicate that there was a high potential of SMLR to
model RSM with the desired accuracy (best fit of the model with Pearson’s r = 0.969, root mean square
error = 0.761%, and mean absolute error = 0.576%) over the Chinese Loess Plateau. The variables of
elevation (0–500 m and 2000–2500 m), precipitation, soil texture of loam, and nighttime land surface
temperature can continuously be used in the regression models for all seasons. Including dummy
variables improved the model fit both in calibration and validation. Moreover, the SMLR-modeled
RSM achieved better spatial coverage than that of the reference RSM for almost all periods. This is a
significant finding as the SMLR method supports the use of multisource data to complement and/or
replace coarse resolution satellite imagery in the estimation of RSM.

Keywords: relative soil moisture; Chinese Loess Plateau; stepwise multilinear regression; dummy
variables

1. Introduction

Soil moisture (SM) is widely recognized as a vital land surface variable that asso-
ciates with land–atmosphere interaction [1,2], rainfall–runoff processes [3], water–energy
balance [4], and climate change [5]. Accurate characterization of SM is beneficial for
applications such as weather and climate modeling, agricultural and water resources man-
agement over larger spatial extents [6]. Accurate and timely SM estimation at a relevant
spatiotemporal scale is a sound strategy to forecast droughts/floods [7,8] and schedule
irrigation [9,10] for the sustainability and productivity of agriculture, particularly in arid
and semi-arid regions like the Chinese Loess Plateau (CLP).

Various remote sensing data, spanning almost all regions of the electromagnetic
spectrum from bands of microwave to visible, have been utilized for SM retrieval since
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the 1970s [11–14]. In order to periodically obtain spatiotemporal maps of the SM, a variety
of methods and techniques of SM estimation have been proposed as well [6]. However,
microwave sensors (active and passive) cannot monitor SM well at local and regional
scales due to their coarse spatial resolutions (a few tens of kilometers) [12,15,16]. Synthetic
aperture radar (SAR) systems offer a better spatial resolution for SM retrievals but with
a long revisit time. In addition, SM retrievals from SAR and microwave sensors are
greatly affected by soil surface roughness, vegetation cover, and other relevant factors [17].
Numerical simulations, involving the use of land surface features retrieved by visible/near-
infrared/thermal-infrared bands (e.g., vegetation, land surface temperature (LST), and
surface albedo), have long been the primary methods for obtaining large-scale SM. These
methods are based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and
land surface models [2,18,19]. However, the main problem associated with this method is
that optical sensors cannot penetrate clouds and vegetation, which highly influences the
quality of the SM estimation results [18,20].

One approach for obtaining accurate estimates of high-resolution SM is the disaggre-
gation of microwave-derived SM using high-resolution disaggregated data like thermal-
infrared and visible/near-infrared data [15,21–23]. The issue of this kind of downscaling
method is the evaluation and validation procedure because of the impact of the uncer-
tainties in input data and the scarcity of ground data [24]. Apart from the synergy of
different data [25–28], another approach is to combine different estimation methods for
SM retrieval [11,29–31]. Although Yuan et al. improved SM estimation concerning the
spatiotemporal coverage for the CLP using MODIS-derived apparent thermal inertia (ATI)
and Temperature Vegetation Dryness Index (TVDI), certain pixels did not have SM values.
This led to the display of incomplete SM maps at the monthly scale [32].

In addition, SM variability is affected by a variety of environmental factors: soil proper-
ties (e.g., soil texture and organic matter) [33,34] at the plot scale, topography [35] and land
cover [36,37] at the local scale, and precipitation, evapotranspiration [38,39], relative hu-
midity, and temperature [40] obtained from meteorological data at the regional scale [41,42].
An effective approach to SM modeling with high accuracy and spatial resolution should
integrate remotely sensed surface information, regional meteorological data, topographic
data, and data of soil properties [18]. Data-driven methods for the estimation of SM include
multivariate analyses, data assimilation, and machine learning techniques [43–45]. An
SM data assimilation scheme is to simulate dynamic SM at spatiotemporal scales using
estimated soil parameters and weather forcing based on a hydrological model [46,47]. The
machine learning technique is computationally intensive (e.g., random forest (RF) [48,49],
artificial neural network (ANN) [50–53], support vector regression (SVR) [54–56], and
regression trees (RT) [57,58]) and used to build mathematical models based on training sets
and covariates to extract SM information from the available data [59,60].

Multivariate analyses, especially regression analysis (multilinear regression (MLR) [61],
stepwise multilinear regression (SMLR) [53,62], Gaussian process regression [63,64], partial
linear squares regression [65], and sparse multiple linear regression [66]) are widely used to
model SM. Among these methods, MLR, the most basic form of linear regression, predicts a
single dependent variable from multiple independent variables. Yang et al. [67] performed
an MLR model to estimate SM based on observed environmental variables (i.e., land use, to-
pography, and meteorology) in the Danangou catchment (3.5 km2) of the CLP. The authors
used the variable of land use and terrain indexes as dummy variables (i.e., a numeric vari-
able that represents categorical data) to build the model [68], and concluded that the SMLR
model was the most effective and economical among models [69]. SMLR, which basically
repeats MLR many times, is a method of regressing multiple variables while removing
those that are not significant [70]. Variables including the day of the year, canopy height,
and NDVI were calibrated with SMLR and ANN to estimate fuel moisture content in
tallgrass prairie [53]. Moreover, categorical variables like land cover [36], elevation [18,35],
slope gradient, slope aspect, and soil texture [18,34,37,40] also be applied for modeling
SM. The SMLR method was also used to predict soil water infiltration in a dry flood plain
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of eastern Iran [71], to estimate the plant available water content of unsaturated soil [70].
When the variable of micro-porosity was included to estimate the availability of water in
the soil, the SMLR (which features computation efficiency and ease of interpretation) was
simpler to use compared with both ANN and RT [58].

However, from the perspective of statistical analysis, the problem is more challenging
if the sample size is not sufficient to apply the SMLR model [72,73]. Thus, the sparse in
situ SM observations (e.g., only 49 available annual SM observations) are not suitable to
be regarded as the reference SM for the entire CLP (640,000 km2) [32]. The incomplete
reference SM maps from our previously published, to some extent, were still not available
for certain applications. Thus, using the SMLR method over the CLP to estimate SM makes
the best possible use of all ancillary data (translating the available data into the required
data), particularly data that are relatively inexpensive and easily accessible [58].

The aim of this study is to integrate multisource data (MODIS and topographic,
soil properties, and meteorological data) to model the relative soil moisture (RSM) at a
spatial resolution of 500 m over the Chinese Loess Plateau in 2017 by stepwise multilinear
regression (SMLR) in order to improve the spatial coverage of our previously published
RSM. The previously published RSM was produced using MODIS-derived ATI and TVDI
and is regarded as the reference RSM data in the present study. Detailed explanations
for generating reference RSM are provided in Section 3. First, 34 candidate variables
(12 quantitative and 22 dummy variables) were preprocessed. Then, SMLR was applied
to variables without multicollinearity to select statistically significant (p-value < 0.05)
variables. The regression models and the accuracy of the modeled RSM were evaluated at
monthly, seasonal, and annual scales. Finally, the modeled RSM was analyzed to better
understand the spatiotemporal characteristics of the RSM.

2. Study Area

This study area is the CLP—Chinese Loess Plateau (100◦54′–114◦33′ E and 33◦43′–
41◦16′ N), northwestern China, which covers an area of approximately 640,000 km2, span-
ning seven provinces (Figure 1a). The landscape is strongly shaped by wind–water erosion
and has a highly fractured landform of gullies [74]. Both the mean annual temperature and
precipitation gradually decrease from the southeast (14 ◦C and 750 mm) to the northwest
(4 ◦C and 200 mm) [75]. The CLP has been categorized as the most seriously eroded
landscape in the world because of its loose and erodible soil [76,77]. The already low and
concentrated precipitation (the mean annual precipitation is 420 mm and 55–78% fall in the
wet season from July to September) makes the CLP particularly vulnerable to drought [78].
In addition, SM over the CLP shows significant spatial variation due to climatic character-
istics and fragmented topography [36,79]. Therefore, quantitative estimations of the SM
over the CLP are more important than for other regions.

In the present study, to ensure uniform distribution of calibration and validation
samples (without overlapping), both the 7814 calibration samples (small red points in
Figure 1b) and the 7824 validation samples (small blue points in Figure 1b) were selected at
10 km intervals while the distance between the adjacent calibration and validation samples
was 5 km. A total of 298 Chinese automatic meteorological stations (large red points in
Figure 1b) provided hourly precipitation and relative air humidity observation data over
the CLP.
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Figure 1. Study area: (a) Location of the Chinese Loess Plateau (CLP) in China; (b) spatial distribution of samples for both
calibration and validation (both sampled at 10 km intervals) and 298 automatic meteorological stations used in the study.
The distance between adjacent calibration and validation samples was 5 km.

3. Materials and Methods
3.1. Soil Moisture Data

The relative soil moisture (RSM) represents the percentage of SM that accounts for the
moisture storage capacity and was used to describe the SM levels in the present study. The
monthly, seasonal, and annual RSM maps of the CLP in 2017 (previously published [32])
were used and regarded as the reference RSM for modeling in this study. The previously
published RSM was generated via 8-day RSM maps. The overall 8-day RSM was combined
at a 500 m resolution by corresponding subregional RSM, which was produced with three
groups of selected optimal NDVI thresholds using MODIS-derived ATI (apparent thermal
inertia) and TVDI (temperature vegetation dryness index), and the average of ATI and
TVDI against 20 cm depth in situ RSM observations [32]. Here, many studies pointed out
TVDI and ATI could adequately reflect the changes of RSM at a 20 cm depth [11,80–82]. In
terms of RSM estimation using the ATI-based model, soil thermal inertia (TI) is described
as a thermal property of soil that characterizes its resistance to temperature change and
has been used for near-surface SM retrieval [11,83]. ATI, to simplify the TI, is calculated by
spectral surface albedo and the diurnal land surface temperature (LST) range [31,84]. The
ATI method has been used for monitoring RSM for bare soil or sparsely vegetated regions.
In addition, as an effective method based on the NDVI-LST feature space, the TVDI-based
model considers vegetation coverage in RSM estimation and has been widely applied to
vegetated areas. To estimate 8-day subregional RSM, the overall CLP was divided into
three subregions (the ATI subregion, the TVDI subregion, and the ATI/TVDI subregion)
according to the NDVI of individual pixels. The ATI-based model, the TVDI-based model,
and the ATI/TVDI joint model were used in the ATI subregion, the TVDI subregion, and



ISPRS Int. J. Geo-Inf. 2021, 10, 233 5 of 29

the ATI/TVDI subregion, respectively, and corresponding subregional RSM data were
obtained. Therefore, the equations were used as follows:

RSMoverall =


RSMATI = aATI × ATI + bATI NDVI ∈ [0, NDVIATI ]

RSMATI/TVDI = aATI/TVDI × ATI+TVDI
2 + bATI/TVDI NDVI ∈ (NDVIATI , NDVITVDI ]

RSMTVDI = aTVDI × TVDI + bTVDI NDVI ∈ (NDVITVDI , 1]

(1)

where RSMoverall represents the overall RSM and it is combined by three subregional RSM
(RSMATI , RSMATI/TVDI , and RSMTVDI). RSMATI and RSMTVDI are the RSM estimated
by the ATI-based and TVDI-based models, respectively, and RSMATI/TVDI is the RSM
estimated by the ATI/TVDI joint model. aATI and bATI are coefficients from fitting the
ATI values and in situ RSM observations in the ATI subregion. aTVDI and bTVDI are coeffi-
cients from fitting the TVDI values and in situ RSM observations in the TVDI subregion.
aATI/TVDI and bATI/TVDI are coefficients from fitting the average value of ATI and TVDI
and in situ RSM observations in the ATI/TVDI subregion. NDVIATI and NDVITVDI are
the selected optimal thresholds for generating subregions.

Three optimal NDVI thresholds (NDVI0 was used for computing TVDI, and both
NDVIATI and NDVITVDI for dividing the entire CLP) were identified with the best vali-
dation results of subregions for 8-day periods. To assess the performance of the models
over the CLP, the Pearson’s r and the mean absolute error (MAE) of the reference RSM
against in situ RSM observations were calculated (at the monthly, seasonal, and annual
scales). The r and MAE varied from 0.47 in October to 0.68 in January and from 3.02% in
March to 4.97% in October, respectively, on the monthly scale (Table A1) [32]. Since the
r of reference RSM and in situ RSM observations had a moderate correlation coefficient
(r = 0.73 for the annual scale) [85], the reference RSM was assumed to be the actual RSM
with larger spatial coverage than those in situ RSM observations and the reference RSM
kept a better trend with the in situ observed RSM at the station scale. The area of the
reference RSM within five months (April, May, July, August, and October) was less than
half of the entire study area (~32 × 104 km2) (Table A1). Thus, the SMLR method was
applied to improve the spatial coverage of our previously published RSM based on the
reference RSM and multisource data.

3.2. Candidate Variables

A total of 17 features (12 quantitative and five categorical variables), including MODIS-
derived features, topographical features, soil properties, and meteorological features,
were selected as candidate variables for RSM modeling using SMLR. These candidate
variables in our study were applied to estimate RSM in previous studies [18,34,39,40].
To be more specific, the 12 quantitative variables included daytime LST (DL) [18,40],
nighttime LST (NL), diurnal differences in LST (DIL), evapotranspiration (ET) [18,38,39],
enhanced vegetation index (EVI), difference vegetation index (DVI), ratio vegetation index
(RVI), normalized difference vegetation index (NDVI) [34], enhanced vegetation index
2 (EVI2), modified soil-adjusted vegetation index (MSAVI), precipitation (PRE) [38,39],
and relative humidity (RH) [86]. Moreover, the categorical variables were land cover
(LC) [36], elevation (DEM) [18,35], slope gradient (SG), slope aspect (SA), and soil texture
(ST) [18,34,37,40], which were declared as dummy variables in the regression equations.
The variables used in this study are described in Table 1 (see Table A2 for the calculation of
the vegetation indexes).



ISPRS Int. J. Geo-Inf. 2021, 10, 233 6 of 29

Table 1. Variables used in this study (green color rows represent dummy variables used in the study).

Sources (Types) Products Parameters Variables Abbr. Units Spatial/Temporal
Resolution

MODIS

MOD11A2 in
2017

Daytime/nighttime
LST

Day LST DL
K 1 km, 8-dayNight LST NL

Diurnal differences in LST DIL

MOD16A2 in
2017 Evapotranspiration Evapotranspiration ET kg/m2/8 d 500 m, 8-day

MOD09A1 in
2017

Surface reflectance

Enhanced vegetation index EVI

No unit 500 m, 8-day

Difference vegetation index DVI
Ratio vegetation index RVI
Normalized difference

vegetation index NDVI

Enhanced vegetation index 2 EVI2
Modified soil-adjusted

vegetation index MSAVI

MCD12Q1.
Type2 in 2017 Land cover Land cover LC No unit 500 m, 1 year

SRTM DEM DEM Elevation DEM m

SRTM SLOPE Slope Slope gradient SG ◦
Topographic data

SRTM ASPECT Aspect Slope aspect SA ◦
90 m, N/A

Soil properties Sand/silt/clay Soil texture Soil texture ST No unit 1:1,000,000, N/A

Meteorological
data

Hourly
observation
data in 2017

Precipitation Precipitation PRE mm
N/A, hourly

Relative humidity Relative humidity RH %

A dummy variable is an artificial variable that is created to represent an attribute
with two or more distinct levels/categories [87,88]. To avoid the dummy variable trap
(a scenario in which independent variables are collinear), one less dummy variable (n-1)
than the categorical values (n) was used [89]. Thus, dummy variables, including elevation
(seven categories and six dummy variables), land cover (three categories and two dummy
variables), slope aspect (four categories and three dummy variables), slope gradient (six
categories and five dummy variables), and soil texture (seven categories and six dummy
variables) were used in this study. The spatial pattern of the annual reference RSM and
17 features are shown in Figure 2. Detailed pre-processing from features to candidate
variables is given in the later section.
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Figure 2. Distribution of annual reference relative soil moisture (RSM) (a) and 17 features (12 quantitative and five categorical
variables) (b–r).

3.2.1. MODIS Data

The LST and vegetation indexes are two important parameters closely related to RSM
and are often used on RSM estimations [90]. The 8-day 1 km composite LST product
(MOD11A2), the 8-day 500 m evapotranspiration (ET) product (MOD16A2), the 8-day
500 m surface reflectance product (MOD09A1), and the annual 500 m land cover product
(MCD12Q1. Type2) of 2017 were used to develop the variables of DL, NL, ET, LC, and six
vegetation indexes. The utilized MODIS data were downloaded from the website of the
level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed Archive
Center (DAAC) [91]. In order to facilitate the utilization of MODIS products, all pixels were
processed for quality assurance based on the valid range before further computing. The



ISPRS Int. J. Geo-Inf. 2021, 10, 233 8 of 29

LST products, including DL and NL, were resampled to a resolution of 500 m (reference
RSM resolution) and were chosen to calculate the diurnal differences in LST (DIL = DL
− NL) [18,40]. Pixels were masked when the DL was less than 0 ◦C, suggesting snow
coverage or frozen soil at that time and location. Strong positive relationships between
RSM and the vegetation index (e.g., NDVI) were found for Australia [92], tallgrass prairies
in the USA [93,94], croplands in North China [95], and East Africa [96]. Surface reflectance
products (including seven bands) were chosen to calculate the five vegetation indices: EVI,
DVI, RVI, NDVI, EVI2, and MSAVI [34]. Monthly, seasonal, and annual data applied for
modeling were combined by these 8-day composite products.

The influences of land covers on RSM are complex [36,37]. According to the MCD12Q1.
Type2 from the University of Maryland (UMD) land cover classification scheme (with
16 different cover types) [97], the land cover data were reclassified here into three categories,
namely croplands, forest, and shrublands, as well as other land covers in the study area
(Table 2). With regard to the variable of land cover (a categorical variable), with other land
covers as reference (row in the orange color background in Table 2), the remaining two land
cover types (LC1 and LC2, rows in the green color background in Table 2) were integrated
as dummy variables in the modeling procedure (with only two values; 0 and 1) [98,99].

Table 2. Land cover reclassification of the University of Maryland (UMD) classification system (green
color rows represent dummy variables of LC1 and LC2 and reference land covers are the rows with
the orange color background).

Class UMD Classification Proportion (%) Regroup Variables

0 Water 0.163 - -
1 Evergreen needle leaf forest
2 Evergreen broad leaf forest
3 Deciduous needle leaf forest
4 Deciduous broad leaf forest
5 Mixed forest
6 Closed shrublands
7 Open shrublands

6.388 Forest and
shrublands

LC2

8 Woody savannas
9 Savannas
10 Grasslands
13 Urban and built-up
15 Barren or sparsely vegetated

69.180 Other land
covers

12 Croplands

14 Cropland/natural vegetation
mosaic

24.180 Croplands LC1

11 Permanent wetlands 0.087 - -
255 Unclassified 0.002 - -

3.2.2. Topographic Data

Digital elevation model (DEM) data were used because the distribution of the RSM and
other features are directly related to elevations [18,100]. The 90 m spatial resolution Shuttle
Radar Topography Mission (SRTM) DEM, SG, and SA datasets for the study area were
downloaded from the Geospatial Data Cloud (GDC) Platform (http://www.gscloud.cn/,
accessed on 11 October 2020) and were then resampled to a 500 m spatial resolution. These
three chosen features were used as dummy variables in this study. DEM was classified into
seven categories at 500 m intervals. With elevations exceeding 3000 m as the reference, the
remaining six elevation categories were integrated as dummy variables (DEM1, DEM2,
DEM3, DEM4, DEM5, and DEM6) in the modeling procedure (Table 3). A total of 52% of
the CLP was in the elevation categories from 1000 to 1500 m. Slope gradients, ranging from
0◦ to 64.85◦ over the CLP (Figure 2n), were classified into six categories at 5◦ intervals. With
SG exceeding 25◦ as the reference, the remaining five SG categories were also integrated as
dummy variables (SG1, SG2, SG3, SG4, and SG5) in the modeling procedure (Table 3).

http://www.gscloud.cn/
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Table 3. Elevation and slope gradient classification for the utilized dummy variables (green color
rows represent dummy variables of DEM1, DEM2, DEM3, DEM4, DEM5, DEM6, SG1, SG2, SG3,
SG4, and SG5, and reference elevation (3000 m and above) and reference slope gradient (25◦ and
above) are the rows with the orange color background).

Type Class Range Proportion (%) Variables
1 0–500m 4.566 DEM1
2 500–1000m 12.727 DEM2
3 1000–1500m 52.080 DEM3
4 1500–2000m 18.736 DEM4
5 2000–2500m 6.480 DEM5
6 2500–3000m 2.383 DEM6

Elevation

7 3000 m and above 3.028
1 0–5◦ 43.450 SG1
2 5–10◦ 18.171 SG2
3 10–15◦ 16.800 SG3
4 15–20◦ 11.514 SG4
5 20–25◦ 5.889 SG5

Slope gradient

6 25◦ and above 4.176

The slope aspect (SA) played an important role in the distribution of RSM at the hills-
lope domain and should be considered when attempting to characterize RSM variability in
gullied regions [101]. Here, SA was divided into four categories (semi-shady, semi-sunny,
shady, and sunny, as shown in Figure A1). Using the sunny category as the reference, the
remaining three categories were integrated as dummy variables (SA1, SA2, and SA3) in the
modeling procedure (Table 4).

Table 4. Slope aspect classification of dummy variables (green color rows represent dummy variables
of SA1, SA2, and SA3 and the reference slope aspect of sunny is the row with the orange color
background).

Class Range (◦) Directions Proportion (%) Variables
1 45–90, 270–315 Semi-shady 26.180 SA1
2 90–135, 225–270 Semi-sunny 25.109 SA2
3 0–45, 315–360 Shady 24.177 SA3
4 135–225 Sunny 24.534

3.2.3. Soil Properties Data

RSM was strongly influenced by soil texture (ST) [102,103]. Maps of the sand, clay,
and silt content for the study area were provided by the Data Center for Resource and
Environmental Sciences, Chinese Academy of Sciences (RESDC, http://www.resdc.cn/,
accessed on 20 August 2020) (Figure 3). High percentage sand content was clustered in the
northwestern region of the CLP, and low percentage sand content and high percentage silt
content covered the southern CLP.

Figure 3. Spatial distribution of sand (a), clay (b), and silt (c) over the CLP.

http://www.resdc.cn/
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Soil texture was classified into 12 types using the U.S. Department of Agriculture
(USDA) Soil Texture Classification System (Figure A2 and Table 5). A total of seven textural
classes were identified over the CLP and more than half of the CLP (51.493%) was covered
by sandy loam. The textural classes were integrated as dummy variables (ST1, ST2, ST3,
ST4, ST5, and ST6) using the class of sandy loam as the reference group in the modeling
procedure (Table 5).

Table 5. Soil texture classification for dummy variables (green color rows represent dummy variables
of ST1, ST2, ST3, ST4, ST5, and ST6, and reference soil texture of sandy loam is the row with the
orange color background).

Class Soil Texture Proportion (%) Variables

1 Silt - -
2 Silt loam - -
3 Loam 34.292 ST1
4 Silty clay loam - -
5 Clay loam 1.088 ST2
6 Silty clay - -
7 Clay 0.206 ST3
8 Sandy clay loam 2.531 ST4
9 Sandy clay - -
10 Loamy sand 10.017 ST5
11 Sand 0.373 ST6
12 Sandy loam 51.493

3.2.4. Meteorological Data

Precipitation (PRE), both the amount and intensity, has been shown to be a major
driver of SM dynamics [104–106]. PRE and relative humidity (RH) were also applied
to RSM estimation [86]. The network of in situ automatic meteorological stations of the
Chinese Meteorological Data Service Center (CMDC) provided the meteorological inputs
required by the model: RH and PRE (both acting as quantitative variables). Hourly RH
(%) and PRE (mm) were recorded at 298 automatic meteorological stations (Figure 1) over
the CLP in 2017 [107]. Concerning RH, for an accurate temporal match between in situ
observation data and monthly reference RSM (produced by averaging corresponding 8-day
RSM), the daily granule acquisition time of MOD09GA products was obtained to serve
as the reference for selecting corresponding in situ RH observations. The monthly in situ
RH value at each meteorological station was computed by averaging the daily RH. Then,
the spatially interpolated inverse distance weighted (IDW) method was applied to express
the RH spatial patterns at a resolution of 500 m [108]. The same procedure was performed
for seasonal and annual RH maps (Figure 2c). The mean annual RH over the CLP in 2017
ranged from 34.15% to 66.88%.

Regarding PRE, daily PRE with cumulative values were also rescaled to monthly, sea-
sonal, and annual temporal resolutions. After interpolation by inverse distance weighting,
monthly, seasonal, and annual PRE maps were generated [18,109]. The maximum and
minimum total annual PRE in 2017 was 1020.15 mm and 99.80 mm, respectively (Figure 2b).
Both PRE and RH appeared to be gradually decreasing from southeast to northwest and
the year 2017 was a typical year from a climate perspective [110,111].

3.3. Stepwise Multilinear Regression Modeling

The calibration samples for each period were used to constructing stepwise multilinear
regression (SMLR) models first. As we presented in Figure 1, 7814 calibration samples
and 7824 validation samples were selected at 10 km intervals while the distance between
the adjacent calibration and validation samples was 5 km. Table 6 displays the different
used samples for calibration and validation due to different RSM areas for each period.
The next step is to determine the actual set of variables used from 34 candidate variables
(12 quantitative variables and 22 dummy variables) in the final regression. SMLR is
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routinely used for finding important variables while multicollinearity among variables
often undermines its performance [98,112]. To select variables without multicollinearity,
the general MLR model was first applied using calibration samples with 34 independent
variables for each period (monthly, seasonal, and annual data) (Figure 4). The MLR
model involves a series of single factor correction coefficients and, in this study, does not
consider interactions (excluding transformed variables) among variables. An MLR can be
represented as:

γ = β0 +
N

∑
i=1

βiXi + ε (2)

where γ represents the dependent variable (reference RSM), and β0 and βi represent the
constant offset and regression coefficients of the corresponding explanatory variables Xi,
respectively. The deviation between model outputs and reference RSM represents the
model bias ε.

Table 6. The number of samples for calibration and validation at the seasonal and annual scales.

Period
In Calibration In Validation

No. of Samples Proportion 1 (%) No. of Samples Proportion 1 (%)

Annual 7484 0.241 7493 0.242
Winter 6771 0.255 6763 0.254
Spring 6891 0.222 6879 0.222

Summer 6419 0.214 6415 0.214
Autumn 7415 0.248 7418 0.248

1 The proportion is the percentage of sample size for calibration or validation in total valued pixels for each period.

Since collinearity likely exists among 34 candidate variables, the Variation Inflation
Factor (VIF) [98] was used to examine it:

VIF =
1

1− R2
i

(3)

where Ri represents the correlation coefficient between the ith predictive variable and the
remaining predictive variables. No multicollinearity exists if VIF is less than 3 [109,113].

If VIF exceeded 3 (which indicates multicollinearity), the variable with the highest VIF
was removed and the model was re-evaluated. Then, the candidate variables with a VIF of
less than 3 were prepared for SMLR modeling. In an SMLR analysis, the most significant
or least significant variable is iteratively added to or removed from the MLR model based
on its statistical significance [98]. Statistically significant variables were identified through
continual regression iterations in the linear regression equation (p < 0.05 was applied in this
study). This method can effectively select powerful features for the construction of a good
predictive model and has been widely used in different fields [89,98,99,114], including SM
estimation [34,62]. In addition, although there are many different strategies for selecting
variables for a regression model, all possible regression procedures should be used if there
are no more than fifteen candidate variables and the SMLR could be used for more than
fifteen candidate variables [115]. As such, the SMLR was considered more suitable for
constructing RSM models in this study.
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Figure 4. Flowchart of the processing chain implemented for RSM modeling using stepwise multilinear regression. Each
collection of boxes was labeled according to the corresponding sections in the main text.

3.4. Accuracy Assessment

The validation samples (presented in Figure 1b) for each period were used to assess the
accuracy of the constructed SMLR models. Statistical metrics, including root mean square
error (RMSE), Pearson’s r (r), Adjusted R2 (Adj. R2), MAE, and standard deviation (STD)
were calculated to evaluate the performance of the simulation [11,116]. The agreement
and degree of dispersion between the modeled RSM via SMLR and reference RSM were
analyzed here in terms of these five classical statistical criteria for each period. The
equations are presented in Table A3. The modeled RSM data, which used multisource data
via the SMLR method at the monthly, seasonal, and annual scales, were evaluated and
compared with the reference RSM.

4. Results
4.1. Stepwise Multilinear Regression Model

The SMLR models were established using selected variables to simulate RSM. The
results of performing SMLR for constructing the RSM models are presented in Table 7.
For the SMLR models, the model fit was generally assessed by its Adj. R2. In this case,
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the models that were developed to estimate RSM fitted best with the highest Adj. R2 of
0.912 (i.e., 91.2% of the variation of the dependent variable RSM can be explained by the
change in the independent variables) and the lowest RMSE of 0.798% in winter among all
four seasons in 2017. Moreover, the best model fitting results were obtained in December
(Adj. R2 = 0.938 and RMSE = 0.753%) among the months (Table A4). The linear regression
equation had the lowest Adj. R2 of 0.091 and highest RMSE of 4.182% in October. Focusing
on intercepts of the models, Table 7 shows that there are both negative (in winter and
autumn) and positive (in spring and summer) intercepts, and the annual regression model
is identified with positive intercepts (125.231).

Table 7. Stepwise multilinear regression analysis of annual and seasonal RSM.

Period Regression Model Adj. R2 RMSE Max VIF

Annual

RSM = 125.231 − 0.294*DL + 24.804*DVI − 0.114*NL + 0.004*PRE +
2.409*DEM1 + 0.884*DEM2 + 0.277*DEM4 + 0.552*DEM5 +
0.726*DEM6 + 0.632*LC1 + 0.398*LC2 + 0.144*SG3 + 0.163*SG4 +
0.237*ST1 + 1.826*ST3 − 1.607*ST4 − 0.721*ST5

0.572 1.698 2.993

Winter

RSM = −226.027 + 0.806*DL + 20.709*DVI + 0.032*ET + 0.030*NL −
0.014*PRE + 0.052*RH + 0.239*DEM2 − 0.263*DEM4 − 0.155*DEM5 +
0.185*DEM6 + 0.215*LC1 + 0.174*SG2 + 0.297*SG3 + 0.296*SG4 +
0.277*SG5 + 0.086*ST1 + 0.983*ST3 − 0.998*ST6

0.912 0.798 2.195

Spring
RSM = 195.013 − 0.564*DL − 0.059*NL + 0.019*PRE + 3.504*DEM1 +
1.750*DEM2 − 0.590*DEM5 − 0.760*DEM6 + 1.255*LC2 − 0.300*SG3
+ 0.201*ST1 − 0.779*ST2 − 1.122*ST4 − 0.710*ST5

0.540 2.978 2.428

Summer

RSM = 193.779 − 6.122*DVI + 0.340*ET − 0.650*NL + 0.012*PRE +
2.152*DEM1 + 0.895*DEM2 − 0.728*DEM5 + 2.484*LC2 + 0.429*SG4 +
0.891*SG5 + 0.518*ST1 + 1.063*ST2 + 2.591*ST3 + 0.676*ST4 −
1.962*ST5

0.592 3.834 2.242

Autumn
RSM = −45.187 + 0.187*DL + 16.927*DVI + 0.285*ET + 0.006*PRE +
1.886*DEM1 + 1.095*DEM2 + 0.151*DEM4 + 0.375*DEM5−1.657*LC2
+ 0.457*SG2 + 0.520*SG3 + 0.338*SG4 − 0.828*ST4 − 0.301*ST5

0.283 2.202 2.366

Clearly, the selected variables and the number of selected variables for each regression
model varied with the assessed periods. The directions of regression coefficients for vari-
ables in the SMLR models (Table 7) indicate the positive or negative correlations between
RSM and the variables. The selected variables with directions of regression coefficients
in the models at monthly, seasonal, and annual scales are shown in Figures 5 and A3. In
total, 12 quantitative variables and five categorical variables (represented by 22 dummy
variables) were used in this study. Among these 34 candidate variables, 27 variables were
selected for monthly models.

Interestingly, the directions of the regression coefficients for an individual variable
were not fixed; for example, the variable of PRE (labeled with blue stars in Figure A3).
A positive correlation was found with the RSM in March, June, August, and November,
but negative directions of regression coefficients were found in July, September, October,
and December. Moreover, the selected variables of ST1, ST3, and DIL also kept the same
direction in the regression models for the periods.

The number of selected variables for modeling at seasonal and annual scales (23
selected variables) was slightly lower than that at the monthly scale (27 selected variables).
The variables of PRE with positive regression coefficients (except in winter), DEM1 (el-
evation of 0–500 m with positive regression coefficients) were used to simulate RSM in
the seasonal and annual regression models. Focusing on the annual regression model, 17
selected variables of DVI, PRE, DEM1, DEM2, DEM4, DEM5, DEM6, LC1, LC2, SG3, SG4,
ST1, and ST3 were positively correlated and DL, NL, ST4, ST5, were negatively correlated
and were applied to simulate RSM. Among the five categorical variables (elevation, slope
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gradient, slope aspect, land cover, and soil texture), four categorical variables were used
(except for slope aspect) in the annual and seasonal linear equations.
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Figure 5. Selected variables for modeling at seasonal and annual scales. Labels above and below 0 represent positive and
negative directions of regression coefficients for selected variables in the regression model, respectively.

To identify the contribution of dummy variables to the SMLR models, SMLR was
conducted without dummy variables at the seasonal and annual scales and Table 8 shows
the comparison results. As expected, including dummy variables improved the model fit in
the calibration as well as in the validation because almost all periods (except for summer)
of the Adj. R2 with dummy variables were higher than those without dummy variables.
This might be contributed to the low accuracy of reference RSM at that time. It is also
possible that other selected numerical variables, such as precipitation, have significant
effects on RSM changes, while dummy variables appear to have relatively weak influence
as a whole.

Table 8. Comparison of the accuracy of the stepwise multilinear regression (SMLR) models with and
without dummy variables in calibration and validation at the seasonal and annual scales (the results
of models with dummy variables that performed better are formatted in bold).

Period

In Calibration 1 In Validation 1

Adj. R2 with
Dummy

Variables

Adj. R2 without
Dummy

Variables

Adj. R2 with
Dummy

Variables

Adj. R2 without
Dummy

Variables

Annual 0.572 0.505 0.565 0.497
Winter 0.912 0.908 0.912 0.908
Spring 0.540 0.515 0.531 0.501

Summer 0.592 0.647 0.566 0.625
Autumn 0.283 0.227 0.272 0.215

1 p-values < 0.05.
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4.2. Accuracy Assessment

Figure 6 illustrates the results of the assessment of RSM models at seasonal and annual
time scales. The highest r of 0.955 and Adj. R2 of 0.912 and the lowest STD of 0.770%, RMSE
of 0.809%, and MAE of 0.622% were found in winter (Figure 6a). The annual validation
result was characterized by a relatively high correlation coefficient (r > 0.75) and low error
(RMSE = 1.725%), on the considered subset of 7493 samples (Figure 6e).
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Figure 6. Model validation (modeled RSM by stepwise multilinear regression compared with reference RSM) on the subset
selected at the seasonal and annual time scale. (a–d) Scatter plots of the reference and modeled RSM in four seasons of 2017;
(e) scatter plot of the reference and modeled RSM in 2017. Scores (Pearson’s correlation coefficient (r), Adjusted R2 (Adj. R2),
standard deviation (STD), root mean square error (RMSE), and mean absolute error (MAE)) were computed using data
included in the corresponding subplot boundary. N represents the number of available RSM samples for each month. The
associated p-values (in the subplots) with the correlation coefficients are all < 0.001.

The model validation with the available sampled dataset at the monthly scale is pre-
sented in Figure A4. It should be noted that there were six months (December, January,
February, April, May, and November) with Adj. R2 exceeding 0.800 in 2017 and relatively
low errors (RMSE) of the models during the winter season (December, January, and Febru-
ary), ranging from 0.761% to 1.050%. Importantly, all intercepts and slopes of the linear fits
to the modeled RSM were between 0 and 1, which indicates an overestimation of the model
in the lower RSM region and underestimation of the model in the higher RSM region.

4.3. Modeled Soil Moisture

Figure 7 depicts the spatial patterns of the seasonal and annual RSM over the CLP.
Colors varying from red to blue indicate the change of RSM from lowest (i.e., driest soil) to
highest (i.e., wettest soil). Overall, the spatiotemporal distribution of the modeled RSM
via the SMLR model had the same pattern as the reference RSM. RSM decreased gradually
from southeast to northwest and indicated an overall spatial distribution pattern of “wet in
south and southeast, dry in northwest”. Such variation was also displayed in the annual
PRE, RH, NL, and ET maps (Figure 2). The areas with low RSM (i.e., below 10%) were
mainly clustered in the northwestern region of the CLP. These areas have a temperate
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continental climate, with little rainfall, low RH, strong daylight, a high proportion of sand
content, and low ET because of the low vegetation coverage. RSM was higher in the
western region of the CLP (with the highest elevation) in spring and summer. The mean
modeled RSM was highest (13.899%) in autumn and lowest (10.276%) in winter (Figure 7).
The annual mean modeled RSM (12.158%) (Figure 7e), modeled via the SMLR model, was
higher than that of the reference RSM (10.160%).

Figure 7. The spatial patterns of seasonal and annual RSM, modeled using SMLR over the CLP in 2017. (a–d) Spatial
pattern of RSM in four seasons of 2017; (e) spatial pattern of RSM in 2017. The modeled RSM area and the mean RSM
were computed for each season and the year 2017 in total. White color for each monthly RSM map means no value of RSM
estimated via the SMLR method (the number in parentheses indicates the RSM areas in percentage against the whole area
for each subfigure).

The monthly RSM maps from the multisource data modeled via the SMLR models are
shown in Figure A5. Compared with the monthly reference RSM, a significant improvement
was achieved in the spatial coverage of the modeled RSM via the SMLR model. The
modeled RSM area of 10 months (except for January and February) was larger than that of
the reference RSM in 2017. To be more specific, the area of modeled RSM increased more
than two-fold over five months (April: 142.082%, May: 113.209%, July: 149.955%, August:
115.120%, and October: 243.008%) and the increased area of the modeled RSM ranged from
1.020 × 104 km2 in December to 44.519 × 104 km2 in October.

5. Discussion

According to the results of the model fit, the highest Adj. R2 of 0.912, both in calibration
and in validation, was found in winter. Accordingly, regression models in December,
January, and February demonstrated much better performances (Adj. R2 ranged from
0.853 to 0.939 in validation) compared with other months. These results were better than
those that were obtained by Lee et al. [57] who used MLR for South Korea (where the
R2 ranged from 0.17 to 0.63). The linear regression equation had the lowest Adj. R2 of
0.091 in October (Adj. R2 of 0.073 in validation), which was mainly the result of the poor
quality of the reference RSM with the lowest r of 0.47 against in situ RSM observations
among months [32]. Similarly, the validation results for autumn (winter) were considerably
lower (higher) than the others. The modeled results using SMLR were highly related to
the quality of the input data, especially the reference RSM we previously published. The
reference RSM in autumn had the greatest error and had the highest Pearson’s r in winter
among the four seasons. This may be considered the reason for the similar validation
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results in the current study. To explore the reason or accurately estimate SM, a better model
can be developed through future works. Thus, the performance of the SMLR model was
found to be sensitive to the quality of the reference data.

For individual variables, the directions of regression coefficients in the regression
equations varied between periods. Theoretically, the variables of precipitation and RSM
should maintain a positive correlation when only precipitation is considered as an inde-
pendent variable. However, in an arid area, RSM often reaches its highest value after a
heavier rain; if several small rain events occur instead, RSM at a 20 cm depth does not
increase and even keeps decreasing, as it is affected by other variables (e.g., temperature) in
certain land covers [37]. In addition, many variables were selected in the regression models
that weakened the effects of the variation of precipitation on RSM (even having a negative
impact) compared with variables with strong positive influence. The interpretation of each
variable in the models is, however, complex, and specific relationships between variables
and RSM were not examined in this study but their influence would deserve further study.
From the modeling, it is worth noting that variables such as ST1, ST3, and DIL, retained
the same directions in the regression models throughout the period. This indicates that
these variables demonstrate a stable correlation with RSM and maintain their impact even
when other variables change [70].

Dummy variables like LC1 (11 months except for August) and ST5 (9 months) had
high frequencies of application in the regression models among months. This suggests that
after the effects of other variables were considered, these dummy variables could be higher
or lower (indicating a positive or negative effect, respectively, according to the directions
of the corresponding coefficient in the models) than the dependent variable of RSM. In
particular, the land cover of croplands scored 0.632 points higher, at the annual regression
model (Table 7) on the modeling RSM, than the reference groups (i.e., other land covers).
In general, quantitative or categorical variables in regression models often had interaction
effects with each other [89]. In the present study, the regression models did not allow for the
possibility that interaction might occur among variables (no interaction term exists in the
regression models). Thus, the regression coefficient for each variable could be individually
interpreted as a statistically significant (p-value < 0.05) dependent variable (RSM). Several
researchers reported that the number and position of the dummy variables affect the fitting
degree and estimation accuracy of the resulting models [68,117,118]. Chen et al. found that
the dummy variable model did not differ in regional biomass estimation ability [119].

The overall spatial pattern of the modeled RSM (with high RSM in the southern
regions and low RSM in the northwestern areas of the CLP throughout the period) via
SMLR was in good agreement with previous studies [11,32,120]. As for the mean RSM, the
average of the mean modeled RSM of 12 months was 13.114%, which slightly exceeded
that of the reference RSM (12.155%) [32]. Regarding the overestimation of the dry area and
the underestimation of the wet area, this might be partly attributed to the overestimation
or underestimation of certain selected variables. The present study did not consider such
parameter uncertainty, which was considered as a limitation of this study. In addition,
the area of modeled RSM in January and February was smaller (larger for other periods)
than that of the reference RSM. Each of the selected variables in the regression models (i.e.,
the value and distribution) were analyzed, which showed that this was associated with
the selected variable of ET. The smaller areas of modeled RSM in January and February
were caused by the ET maps that were still incomplete at that time. Taking January as an
example, the areas of ET and modeled RSM were 43.236 × 104 km2 and 42.695 × 104 km2,
respectively (Figure 8). The region with modeled RSM, as shown in Figure 8c, also had
ET value, and the area of 0.541 × 104 km2 with ET but without an RSM value should be
associated with other unavailable variables (e.g., DL) at that time. Pixels with a DL below
0 ◦C were removed to avoid freezing temperatures in winter [104]. Therefore, a limitation
of the SMLR model, to some extent, might be the fact that the availability of independent
variables directly affects the coverage of the modeled RSM.
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Figure 8. Comparison between the area of the evapotranspiration and modeled RSM for January over the CLP. (a) The
spatial pattern of evapotranspiration with an area of 43.236 × 104 km2 in January; (b) spatial pattern of modeled RSM
with an area of 42.695 × 104 km2 in January; (c) different spatial distributions of evapotranspiration and modeled RSM.
The area in green color (42.695 × 104 km2) represents the area of modeled RSM and the pixels (0.541 × 104 km2) with the
evapotranspiration value but without modeled RSM are illustrated in the magenta color.

According to the outcomes of the validation, for six months (December, January,
February, April, May, and November), the Adj. R2 exceeded 0.800 in 2017. These results
proved the effectiveness of the SMLR method throughout the year in the study area [67,69].
This suggests that the SMLR method is a promising approach to estimate RSM. To retrieve
RSM in each area and period using the SMLR method, the selected variables and coefficients
of these variables only need to be updated. From a practical point of view, this is a
significant finding, as it supports the use of multisource data to complement and/or
replace coarse resolution satellite imagery in the simulation of RSM.

However, the methods used in the present study induce uncertainties. Only 17 fea-
tures were used because of data limitations and hydrological parameters (e.g., runoff and
irrigation activities), and other soil properties (e.g., soil porosity, bulk density, and soil
organic matter) were ignored since these were difficult to obtain. There is no guarantee that
the modeling outcomes will become better if more variables are collected. Certain variables
could be removed when a new variable is added because of the issue of multicollinearity
and the significance level. For regions where the availability of input variables is restricted,
the simplest model, which includes soil texture and organic carbon, might be an alternative
for estimating the water availability in the soil [58]. In addition, because the performance of
the SMLR model was sensitive to the quality of the reference data as well as input data, the
study was limited by the accuracy of the used reference RSM. Moreover, the good quality
of each pixel for the inputs would improve the accuracy of the modeled RSM. The MODIS
inputs (except for the land cover) were composite data over each 8-day period and could
be affected by clouds or atmospheric interference. Besides ensuring each pixel value within
the valid range, quality control procedures should be performed for each dataset using the
quality flags in future studies [121,122].

6. Conclusions

Based on reference RSM (relative soil moisture (obtained in the previous study)),
34 candidate variables (12 quantitative variables and 22 dummy variables) from multi-
source data, including Moderate Resolution Imaging Spectroradiometer (MODIS) and
topographic data, soil properties data, and meteorological data, were processed and mod-
eled via stepwise multilinear regression (SMLR). After the accuracy assessment, monthly,
seasonal, and annual spatial patterns of the modeled RSM were mapped and evaluated
over the Chinese Loess Plateau (CLP) in 2017. The key findings and main conclusions are
summarized in the following:

• SMLR could model RSM with the desired accuracy (r = 0.969, RMSE = 0.761%,
MAE = 0.576% in December) at a 500 m resolution over the CLP. Moreover, the use
of multisource data to complement and/or replace coarse-resolution satellite data in
RSM modeling could be considered.
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• The variables of elevation (0–500 m and 2000–2500 m), precipitation, soil texture of
the loam, and nighttime land surface temperature could continuously be used in the
regression models for all seasons in 2017.

• Including dummy variables improved the model fit, both in calibration and validation,
because the Adj. R2 was higher with dummy variables than without.

• The SMLR-modeled RSM for almost all periods except for January and February
(because of unavailable ET data at that time) achieved better spatial coverage than
that of the reference RSM. Thus, the availability of selected variables directly affects
the coverage of the modeled RSM.

The SMLR-modeled RSM successfully characterized the spatiotemporal variability of
RSM and agreed well with the reference RSM. The modeled RSM maps generated in this
study are feasible for further study and can be regarded as in situ SM data. Further studies
and validation of the presented SMLR models are advisable, which can be achieved by
extending the investigation to other datasets, test areas, and data periods.
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Appendix A

Figure A1. Schematic diagram of the four directions of the slope aspects (adapted from [123]).
According to the intensity of solar radiation, the slope aspects (0◦–360◦) in the Northern Hemisphere
were divided into shady (0◦–45◦ and 315◦–360◦), semi-shady (45◦–90◦ and 270◦–315◦), sunny (135◦–
225◦), and semi-sunny (90◦–135◦ and 225◦–270◦) directions.
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Figure A2. Soil texture triangular classification diagram used to classify soil properties (adapted
from a figure provided by the U.S. Department of Agriculture (USDA) at https://www.usda.gov/,
accessed on 21 September 2020). The soil properties are determined via the composition of the soil
(i.e., the percentages of sand, silt, and clay). The summation of the percentages of sand, silt, and clay
equals 100%. The corners of the triangle indicate 100% of each composition, and 12 textural classes of
soil are noted within the triangle using thick lines as separations between classes. Soil textures over
the CLP are formatted in bold black (seven textural classes), and soil textures shown in bold grey do
not appear in the study area.
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Figure A3. Selected variables for modeling at the monthly scale. Labels above and below 0 represent positive and negative
directions of regression coefficients for selected variables in the regression models, respectively.
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Figure A4. Model validation (modeled RSM by SMLR compared with reference RSM) on the subset selected at the monthly
time scale. Scores (Pearson’s correlation coefficient (r), Adjusted R2 (Adj. R2), standard deviation (STD), root mean square
error (RMSE), and mean absolute error (MAE)) were computed using data included in the corresponding subplot boundary.
N represents the number of available RSM samples for each month. The associated p-values (in the subplots) with the
correlation coefficients are all < 0.001. The colors of modeled RSM and linear fit are pink, light green, dark green, and orange
representing winter, spring, summer, and autumn, respectively.
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Figure A5. The spatial pattern of monthly RSM modeled using SMLR over the CLP in 2017. Modeled RSM area and mean
RSM were computed for each month. White color for each monthly RSM map means no value of RSM estimated via the
SMLR method (the number in parentheses indicates the RSM areas in percentage against the whole area for each subfigure).

Appendix B

Table A1. Information of the reference relative soil moisture (RSM) regarding the accuracy assessment
against in situ RSM observation (station-based) as well as the mean RSM and the area of the reference
RSM for each period.

Period
Validation Results Reference RSM

r Adj. R2 MAE (%) RMSE (%) Mean RSM (%) Area (104 km2)

Annual 0.73 0.52 3.00 3.75 10.16 63.24

Winter 0.67 0.44 3.22 3.74 9.08 60.90
Spring 0.53 0.27 3.14 3.98 11.68 58.00

Summer 0.58 0.34 3.25 3.86 13.82 54.57
Autumn 0.67 0.44 3.64 4.41 13.91 61.99

January 0.68 0.45 3.24 4.06 9.31 56.18
February 0.66 0.42 3.23 3.84 8.64 62.39

March 0.57 0.32 3.02 3.91 11.42 42.92
April 0.64 0.41 3.09 3.77 14.18 24.93
May 0.65 0.42 3.27 3.89 10.50 29.26
June 0.59 0.35 3.81 4.54 12.83 43.44
July 0.54 0.28 3.43 4.29 8.85 24.16

August 0.61 0.37 3.62 4.48 16.42 29.20
September 0.57 0.32 3.58 4.57 14.91 51.91
October 0.47 0.21 4.97 6.10 15.05 18.32

November 0.50 0.25 3.80 4.66 13.03 61.01
December 0.64 0.40 3.26 3.99 10.72 56.96
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Table A2. Formulas used to calculate vegetation indexes [98,124,125].

Vegetation Index Formula

Enhanced vegetation index (EVI) EVI = 2.5×(ρNIR−ρRed)
ρNIR+6ρRed−7.5ρBlue+1

Difference vegetation index (DVI) DVI = ρNIR − ρRed

Ratio vegetation index (RVI) RVI = ρNIR
ρRed

Normalized difference vegetation index (NDVI) NVDI = ρNIR−ρRed
ρNIR+ρRed

Enhanced vegetation index 2 (EVI2) EVI2 = ρNIR−ρRed
ρNIR+2.4ρRed+1

Modified soil-adjusted vegetation index (MSAVI) MSAVI =
2ρNIR+1−

√
(2ρNIR+1)2−8(ρNIR−ρRed)

2

Table A3. Mathematical expressions of the goodness of validation [11].

Abbreviation Formula 1

RMSE
√

∑n
i=1(Oi−Pi)

2

n

r ∑n
i=1(Oi−O)(Pi−P)√

∑n
i=1(Oi−O)

2
√

∑n
i=1(Pi−P)

2

MAE ∑n
i=1|Oi−Pi |

n

R2
(

∑n
i=1(Oi−O)(Pi−P)√

∑n
i=1(Oi−O)

2
√

∑n
i=1(Pi−P)

2

)2

STD
√

∑n
i=1(Pi−P)

2

n
1P and O represent the model- and reference-based RSM, respectively. N represents the total number of pairs for
assessment, and i represents the ith sample. P and O represent the mean value of model- and reference-based
RSM, respectively.

Table A4. Stepwise multilinear regression analysis of monthly RSM.

Period Regression Model Adj. R2 RMSE Max VIF

January
RSM = −243.006 + 0.900*DL + 15.761*DVI + 0.150*ET + 0.021*RH − 0.350*DEM4
− 0.153*DEM5 + 0.508*DEM6 + 0.285*LC1 − 0.630*LC2 + 0.275*SG2 + 0.448*SG3
+ 0.423*SG4 + 0.513*SG5 + 0.170*ST1 + 0.816*ST3 + 0.529*ST4 − 0.221*ST5

0.864 1.016 1.884

February RSM = −165.850 + 0.688*DL − 0.059*ET − 0.072*NL + 0.031*RH + 0.502*RVI +
0.341*DEM5 + 0.442*DEM6 + 0.214*LC1 − 0.104*SA2 + 0.338*ST4 0.849 1.034 1.733

March
RSM = −139.430 + 0.431*DL + 20.424*DVI − 0.144*ET + 0.096*NL + 0.033*PRE −
0.375*DEM1 + 0.426*DEM4 + 1.114*DEM6 − 0.433*LC1 + 3.674*LC2 + 0.266*ST1
+ 2.537*ST3 − 1.147*ST4 − 1.191*ST5

0.467 2.317 2.382

April RSM = 257.901 − 1.070*DIL + 0.183*ET − 0.803*NL − 0.152*DEM2 + 0.179*DEM5
+ 0.620*LC1 + 0.414*SG2 + 0.769*SG3 + 0.673*SG4 − 1.131*ST2 + 0.577*ST5 0.899 1.892 2.138

May RSM = 361.380 − 1.130*DIL − 1.132*NL − 0.078*RH + 1.072*DEM1 +
0.502*DEM2 + 0.420*DEM5 − 0.277*LC1 + 0.276*SG2 + 0.512*SG5 − 1.039*ST5 0.823 2.545 1.938

June
RSM = 222.274 + 19.787*MSAVI − 0.764*NL + 0.044*PRE + 0.813*DEM1 +
0.539*DEM4 + 0.863*DEM5 + 1.460*DEM6 − 0.437*LC1 + 4.148*LC2 + 0.387*SG4
+ 0.989*SG5 + 0.396*ST1 − 3.075*ST4 − 1.648*ST5

0.708 3.528 1.993

July
RSM = 160.019 − 0.648*DL + 0.141*ET + 0.154*NL − 0.016*PRE + 0.116*RH −
1.260*DEM1 − 0.585*DEM2 + 0.393*DEM5 − 0.622*LC1 + 2.584*LC2 + 0.233*ST1
+ 5.579*ST3 − 0.853*ST4 − 0.368*ST5

0.694 2.434 2.604

August
RSM = 167.362 + 19.965*MSAVI − 0.548*NL + 0.018*PRE − 1.666*DEM1 −
0.865*DEM2 + 1.372*DEM4 + 1.845*DEM5 + 1.297*DEM6 + 2.000*LC2 −
0.314*SG2 + 0.618*SG5 + 9.771*ST3 − 1.965*ST5

0.560 3.197 2.856
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Table A4. Cont.

Period Regression Model Adj. R2 RMSE Max VIF

September
RSM = 83.292 + 13.956*MSAVI − 0.278*NL − 0.006*PRE + 0.079*RH +
3.487*DEM1 + 1.625*DEM2 − 0.575*LC1 − 2.252*LC2 + 0.866*SG2 + 0.669*SG3 +
0.789*SG4 + 0.470*SG5 + 1.810*ST4 − 0.866*ST5

0.334 3.926 2.841

October RSM = −31.338 + 0.124*NL − 0.023*PRE + 0.191*RH + 3.825*DEM1 +
0.923*DEM2 − 0.817*LC1 + 0.505*ST1 − 0.913*ST4 + 9.032*ST6 0.091 4.182 1.592

November
RSM = −255.132 + 0.948*DL + 8.246*DVI + 0.021*PRE − 0.007*RH − 0.429*DEM1
+ 0.100*DEM2 − 0.342*DEM4 − 0.423*DEM5 − 0.203*DEM6 − 0.196*LC1 +
0.238*LC2 − 0.177*SG2 − 0.137*SG3 − 0.166*SG4 − 0.144*SG5 − 0.421*ST4

0.880 0.938 2.345

December

RSM = −274.446 + 0.999*DL + 21.603*DVI + 0.021*NL − 0.036*PRE + 0.020*RH +
0.125*DEM2 − 0.163*DEM4 + 0.137*DEM6 + 0.069*LC1 + 0.617*LC2 + 0.052*SA2
+ 0.122*SG2 + 0.152*SG3 + 0.203*SG4 + 0.121*SG5 + 0.065*ST1 + 0.875*ST3 +
0.219*ST5 − 0.846*ST6

0.938 0.753 2.293
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