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Abstract: This study explores the impact of rainfall on the followed-up landslides after a severe
typhoon and the relationship between various rainfall events and the occurrence, scale, and regional
characteristics of the landslides, including second landslides. Moreover, the influence of land
disturbance was evaluated. The genetic adaptive neural network was used in combination with
the texture analysis of the geographic information system for satellite image classification and
interpretation to analyze land-use change and retrieve disaster records and surface information after
five rainfall events from Typhoon Morakot (2009) to Typhoon Nanmadol (2011). The results revealed
that except for extreme Morakot rains, the greater the degree of slope disturbance after rain, the
larger the exposed slope. Extreme rainfall similar to Morakot strikes may have a greater impact
on the bare land area than on slope disturbance. Moreover, the relationship between the bare land
area and the index of land disturbance condition (ILDC) is positive, and the ratio of the bare land
area to the quantity of bare land after each rainfall increases with the ILDC. With higher effective
accumulative rainfall on the slope in the study area or greater slope disturbance, the landslide area at
the second landslide point tended to increase.

Keywords: rainfall-induced landslide; second landslide; genetic adaptive neural network; geographic
information system

1. Introduction

Taiwan is prone to typhoons and heavy rainfall. Because of steep terrain and unfavor-
able geological conditions in mountainous areas of Taiwan, concentrated rainfall during
typhoons or rainstorm attacks leads to landslide and debris flow [1]. In the last few decades,
large-scale landslides, river siltation, and bank dike collapse caused by extreme rainfall
have led to drastic changes in the natural environmental conditions of the watershed. For
example, the Morakot Typhoon in August 2009 hit Taiwan with heavy rain, causing severe
landslides, debris flow, and flooding in the southern, central, and eastern regions [2,3].
Such heavy rainfall that accompanies typhoons has caused frequent disasters in various
hillside areas and affected people in those regions. Such disasters greatly affect the safety
of people’s lives, property, and the living environment in the region, also presenting a
threat to the construction of major public projects. The Taiwan government has invested
large amounts of reconstruction funds in disaster-stricken areas. However, even after the
reconstruction, these regions face the risk of repeated sediment disasters on the slopes.
As a result, the overall economic development and transportation are threatened under
the influence of disasters. Many settlements have been repeatedly affected by sediment
disasters. Therefore, identifying strategies for the prevention and treatment of landslide
disasters and repeated sediment disasters is necessary.
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Commonly used satellite image classification methods can be categorized as super-
vised and unsupervised [4]. Unsupervised classification is based on the number of clas-
sifications (i.e., the predetermined number of clusters) set by the image analyst by using
cluster analysis to achieve the predetermined number of classifications. By contrast, in
supervised classification, the user must first specify the training sample area and then use
the spectral grayscale value distribution of the training sample area as the basis for classifi-
cation. Satellite imagery presents advantages, such as short surface-change–acquisition
time, wide coverage, and low cost and is thus feasible for use in mountainous or remote
areas. In addition, the acquired data can be analyzed on a computer and through the
geographic information system (GIS), which can help quickly analyze the ground cover
situation. Therefore, satellite imagery is a suitable tool for monitoring large-scale and
time-series land-use changes [5,6].

Satellite images have recently been used for interpreting large-scale landslide dam-
age [7–14]. In addition, some scholars have published relevant research on the applica-
tion of artificial intelligence (AI) in the classification and interpretation of satellite im-
ages [10,14–18]. Texture, an aspect of an image, refers to changes in gray levels of the
adjacent pixels in the image, correlation of the color space, or visual performance of the
gray and color changes of the image in terms of spatial positions, such as edges, shapes,
stripes, and color blocks. Therefore, texture analysis can help distinguish images in differ-
ent groups [19]. Some scholars have used texture information as auxiliary information for
satellite image interpretation to improve interpretation accuracy [14,20–22].

In general, landslides in each area are influenced by several factors, including latent
factors (such as geology, soil, topography, hydrology, and land use) and incentives (such as
rain and earthquake) [10,14,23]. Many relevant studies have investigated and discussed the
hazards of landslides [10,14,24–27]. Human activities have affected slope stability through
civil construction and slope reclamation. In some specific areas, human activities are the
main influencing factor in landslides [28]. The sensitivity of different types of land-use has
been evaluated by simulation analysis of spatial and temporal changes and suggested that
land-use should be carefully planned to reduce the likelihood of disasters [29]. In addition,
some scholars have studied the spatial distribution of landslides caused by rainfall and the
impact of various influencing factors on the location of landslides [14,30–32]. The spatial
distribution of landslides can reflect the occurrence of landslides [33–35]. According to the
spatial distribution of landslides in different periods, Samia et al. (2017) [36] quantified the
effects of earlier landslides on subsequent landslides.

The aim of this research is to investigate the effect of rainfall on the landslide after a
catastrophic typhoon, the relationship between different rainfall scales and spatial distri-
bution of the landslide and second landslide, as well as the influence of land disturbance.
The artificial neural network (ANN) was used in combination with image texture analysis
in the satellite image-based classification and interpretation of sediment disasters and
land-use changes. Genetic algorithms, which automatically evolve, and train optimized
neural network architectures to obtain disaster records and surface data, were used. In the
past few years, the artificial neural networks (ANN) of artificial intelligence (AI) have been
proven the advantages in satellite image interpretation [37,38]. The ANN extracts more
parametric information through learning and interaction capabilities and has the ability
to deal with linear and nonlinear relationships simultaneously [39]. In addition, ANN
learning has considerable tolerance for error yet requires relatively low computation and
memory demands [40]. The ANN method performs better than some traditional classifiers,
such as maximum-likelihood classification [41,42].

The study also explored the potential hazards of exposure of the studied watershed
area to sediment hazards by conducting a correlation analysis of the landslide history,
land disturbance, and regional environmental characteristics. The mechanism of the
second landslide in the site of the original landslide, the scale of the landslide, and mutual
characteristics of the location was explored to obtain a reference for the prevention of future
landslides and establishment of countermeasures.
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2. Study Areas

In August 2009, Typhoon Morakot struck Taiwan, resulting in 704 deaths and 22 dis-
appearances. The mountains in Southern Taiwan experienced the largest accumulative rain
of more than 2900 mm, which caused the highest damage in Southern Taiwan. Landslide
disasters caused by typhoons or heavy rain have been increasing. Therefore, after referring
to the historical data on road disasters from the National Science and Technology Center
for Disaster Reduction [43], Baolai Village and Jianshan Village in Liouguei District and
Taoyuan District, respectively, in Lao-nong River Basin, Southern Taiwan, were selected as
the research areas (Figure 1). By using satellite image records in the typhoon or rainstorm-
affected areas in the study region, information regarding the 2009 Morakot typhoon attack
up to 2011, five typhoon events during the 3-year period (2009 Morakot, 2010 Meranti, 2010
Fanapi, 2011 Meari, and 2011 Nanmadol), and a 24-h rainfall event with an accumulative
rainfall of more than 130 mm (27 July 2010) were retrieved.

Figure 1. Research area.

3. Methodology
3.1. Genetic Adaptive Neural Network

An ANN, an AI technology, presents a high-speed computing ability, high memory,
and high learning ability. The ANN presents the following advantages: no requirement
of any assumption of the type of equation in advance, simple training method, ability to
process large amounts of data, high-precision, and high-speed. These advantages make the
ANN suitable for processing highly complex nonlinear function problems. In this study,
the backpropagation network (BPN) with gradient descent was used for training the neural
network. BPN is one of the most representative and commonly used models in the current
neural network learning model. The details of this algorithm were reported by Hagan
et al. [44]. Based on the studies of Chen et al. [18,45], this study adopted tansig as the
activation function, whereby the normalized output value was set between −1 and 1.

The application of ANN often presents challenges such as yielding the local minima
rather than global minima, insufficient training or overtraining, and inability to converge.
To improve the BPN performance, based on Adeli and Hung’s study [46], this study
used genetic algorithms (GAs) to obtain optimal values of the parameters used in the
BPN framework. The basic principle is to set the weighting matrix and other network
parameters as the chromosomes in GAs, which is also the target solution to be searched.
This study employed the genetic adaptive neural network (GANN) proposed by Chen
et al. [45] and Chen et al. [18] and adopted the difference between the network predicted
value and the actual value as the adaptive function of the algorithm; that is, the mean
squared error was used as the evaluation guideline for chromosome adaptability. The
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actual value represents the classification of the factor to be interpreted, and the network
prediction value is the spectral value of each sample area input. After simulation with
GANN, the obtained classification prediction value is considered the output. In this study,
GAs were employed to search for the optimal solution through a set of network parameters
that minimize the error between the predicted and actual values.

For the GANN, various types of coding, crossover, and mutation have been proposed
for different application areas. In this study, binary coding was adopted as the coding
method for GAs, and elitism selection and uniform mating were the algorithms used.
Based on the study of D’Ambrosio et al. [47], this study also selected 200 as the number of
generations (number of chromosome groups) in the calculation process. The commonly
used selection rate is approximately 0.10, and the general mating probability is mostly
set between 0.5 and 0.8. Heng et al. [48] also proposed that the mutation rate should be
between 0.1 and 0.001. Based on the study of Chen et al. [10], this study set the mating rate
and mutation rate as 0.6 and 0.1, respectively. This study also referred to the studies of
Chen et al. [18,45] and accordingly set the upper limit of hidden layers to 2, the upper limit
of the number of neurons to 32, the upper limit of the learning rate to 3.2, and the upper
limit of the number of learning times to 15,000. The evolution process is described in detail
in Chen et al. [10,18,45].

3.2. Texture Analysis

This study used image texture analysis to establish and quantify the gray-level co-
occurrence matrix (GLCM) of satellite images obtained from the study area [49]. GLCM is
a second-order statistical method and was used to determine the frequency of each pair of
grayscale values appearing at specific relevant locations and for the calculation of texture
feature values. The calculation method is shown in Equation (1):

Cij(d, θ) =
Pij(d, θ)

∑N
i=0 ∑N

j=0 Pij(d, θ)
(1)

where Pij represents the joint probability that grayscale values i and j appear in relative
positions (d, θ) in the image, d is the distance, and θ denotes the direction.

Haralick et al. [49] suggested the use of a variety of texture statistics to quantify GLCM.
Based on the studies of Chen et al. [50] and Chue et al. [14], this study used the following
texture quantization formulas and used the resultant value as the input for the GANN
during image interpretation training and classification:

Homogeneity =
N

∑
i=0

N

∑
j=0

1

1 + (i− j)2 · Cij(d, θ) (2)

Contrast =
N

∑
i=0

N

∑
j=0

(i− j)2 · Cij(d, θ) (3)

Dissimilarity =
N

∑
i=0

N

∑
j=0
|i− j| · Cij(d, θ) (4)

Entropy =
N

∑
i=0

N

∑
j=0

Cij(d, θ) · log Cij(d, θ) (5)

Angular second moment =
N

∑
i=0

N

∑
j=0

C2
ij(d, θ) (6)
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3.3. Accuracy Assessment

After satellite image interpretation, the image classification is considered suitable
for monitoring if the classification results fulfill the requirements. After referring to the
method of Chen et al. [10], this study used the error matrix [51] to evaluate the accuracy
of the image interpretation classification. Take the error matrix in Table 1 as an example.
Table presents four categories. The column represents the reference data category, and the
row represents the classification category. All results can be derived from the matrix. The
error matrix compares the reference category of the sampling area and the satellite image
in the same sampling space to explain the difference between the classification results.

Table 1. Example of error matrix.

Actual Surface
Total

Category A Category B

Classification results
Category A E11 E12 E1+
Category B E21 E22 E2+

Total E+1 E+2 E++

E12 in the table indicates the amount of data that actually belongs to category B but
is misclassified under category A in the interpretation result; E21 indicates the amount
of data that actually belongs to category A, but is misclassified under category B in the
interpretation result; E11 represents the number of correctly classified data of type A, and
E22 represents the number of correctly classified data of type B.

From the values in the error matrix, several primary and commonly used classification
accuracy indicators [51] can be calculated; of them, overall accuracy (OA), the simplest
indicator of the accuracy of a method, is calculated as follows:

OA =

(
1
N

r

∑
i=1

Eii

)
× 100% (7)

where N and r represent the total number of classifications and the number of rows in the
matrix, respectively.

In addition, the classification accuracy for a single category can be expressed by user
accuracy (UA) and producer accuracy (PA). UA indicates the probability that the ground
cover is classified correctly and is calculated as follows:

UA =
Eii
Ei+
× 100% (8)

where Eii is the number of pixels actually present in a given class and Ei+ is the number of
pixels classified to that class.

PA refers to the accuracy with which the ground reference materials can be correctly
classified using a certain classification method and is calculated as follows:

PA =
Eii
E+i
× 100% (9)

In addition, C [52] proposed a kappa (
ˆ
K) index (Equation (10)), which indicates

the extent to which the classification results are more accurate than those obtained from
random classification. The kappa statistical index considers the difference between two
consistency types: the consistency between automatic classification and reference data and
the probability of consistency between sampling and reference classification. In general, the
consistency coefficient (kappa index) is between 0 and 1. The larger the kappa value, the
higher the classification accuracy is. According to Landis and Koch [53], the classification
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accuracy is high if the kappa value is greater than 0.8, moderate if the kappa value is
between 0.4 and 0.8, and low if the kappa value is less than 0.4.

ˆ
K =

(
N ∑r

i=1 Eii −∑r
i=1(Ei+ × E+i)

N2 −∑r
i=1(Ei+ × E+i)

)
× 100% (10)

3.4. Accumulative Rainfall Analysis

The rainfall was calculated by the effective accumulative rainfall (EAR), which is
defined as the sum of the direct rainfall from continuous rainfall and the rainfall received
in the previous period [54]. Seo and Funasaki [54] proposed that concentrated rainfall is
considered continuous (main rain field) when there is no rainfall 24 h before and after it.
Direct rainfall is the accumulative rainfall from the first rainfall for the main rain field from
the time of the landslide disaster (a time point when the first rainfall reaches ≥4 mm) to
the time of the landslide disaster (the point of maximum rainfall in the main rain field).
Previous indirect rainfall (Pb) was calculated as the amount of rainfall for the main rain
field for 7 days as

Pb =
7

∑
n=1

knPn (11)

where Pn is the rainfall (mm) n days before the main rain field; k is the decreasing coefficient.
Based on the studies of Chen et al. [10] and Chue et al. [14], this study set k as 0.9. Because
direct rainfall (Pr) directly affects the occurrence of landslides, no reduction is allowed.
Therefore, the EAR can be calculated as follows:

EAR = Pr + Pb (12)

3.5. GIS

In the last decade, the GIS emerged as an essential tool for land-use planning and
management and many other applications. GIS is a set of integrated systems that combine
geographical information and computer technology. A GIS is composed of two parts:
database and functional systems. The data are divided into two types, attribute and spa-
tial data, mainly by analyzing information and establishing decision-making. Original
geographical data can be transformed into spatial decision-making information by using
forecasting models. In this study, thematic maps relevant to land-use and landslide occur-
rence were used to construct a vector-type spatial database using the ESRI ArcGIS [55].
The Data Management Tools and Conversion Tools in ArcToolbox of ArcGIS were used for
the establishment of the basic grid, satellite image preprocessing, and interpretation, re-
spectively. Moreover, the 3D Analyst Tools of ArcGIS were used to extract the topographic
location of the bare ground.

4. Results
4.1. Construction of Original Cartographic Information

Some of the original cartographic information in this study was based on data from
Chue et al. [14], including the satellite image maps, digital elevation maps (DEMs), and
geological maps of Formosat-2 (FM2) before and after the six storms (typhoons) during
2009–2011. The cartographic information was combined with GIS to establish relevant
attributes and spatial databases. The satellite images were first screened based on the
date of the typhoon (rainstorm) event recorded by the Central Weather Bureau. From the
screened images, those most suitable for use (low cloud cover rate) were selected, and
finally, 10 satellite images were selected for interpretation. The data are obtained from [14]
and shown in Table 2.
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Table 2. Basic data of satellite imagery

Event Number Before/after Event (Date) Image Shooting Date Image Resolution

I
Before Typhoon Morakot (2009-08-05) 2009-05-09

2 m

After Typhoon Morakot (2009-08-05) 2009-08-24

II
Before rainfall (2010-07-27) 2010-05-25
After rainfall (2010-07-27) 2010-08-10

III
Before Typhoon Meranti (2010-09-09) 2010-08-10
After Typhoon Meranti (2010-09-09) 2010-09-11

IV
Before Typhoon Fanapi (2010-09-17) 2010-09-11

8 m

After Typhoon Fanapi (2010-09-17) 2010-11-21

V
Before Typhoon Meari (2011-06-23) 2011-05-08
After Typhoon Meari (2011-06-23) 2011-08-17

VI
Before Typhoon Nanmadol (2011-08-27) 2011-08-17
After Typhoon Nanmadol (2011-08-27) 2011-10-24

4.2. Establishment of Basic Grid

The DEM used in this research has a resolution of 40 × 40 m2. Therefore, regardless of
the FM2 image or DEM, the GIS software program ArcGIS was used to uniformly create a
basic 40 × 40 m2 grid, and the ArcGIS Spatial Analyst function was used to calculate the
average slope, average elevation of each grid, and geological type of the grid.

4.3. Interpretation and Classification of Satellite Images
4.3.1. Satellite Image Preprocessing

In this study, the original FM2 satellite image data for each spectral band were ob-
tained. We first used the ERDAS Imagine [56] function to merge the various spectral band
images and then entered the coordinate position, pixel resolution size, and measurement
units of the satellite images to correct the satellite image coordinates. In addition, in the
interpretation of satellite images, to avoid the influence of cloud coverage on the interpreta-
tion results, this study used ArcGIS [55] in conjunction with the manual selection drawing
method and used ERDAS Imagine removing the cloud part.

In this study, the aforementioned GANN was used to interpret and classify satellite
images of the study area. The original spectral values of the satellite image in the study
area and their spectral texture information was used as the input for network training. In
this study, ArcGIS was used to capture the original spectral values of red light R (red),
green light G (green), blue light B (blue), and near-infrared (NIR) light in satellite images.
ENVI [57] was used to calculate the homogeneity, contrast, dissimilarity, entropy, and
angular second moment of the texture information.

Furthermore, before drawing the training plots, this study first standardized the input
values of network training. The normalization formula is as follows:

S =
x−mean(X)

std(X)
(13)

where S is the normalized value of x, mean(X) is the average, and std(X) is the standard
deviation of factor X.

4.3.2. Satellite Image Interpretation and Classification

Based on the studies of Chen et al. [10,13], this study used nine factors, namely
waters, fruit trees, buildings, forests, grasslands, bare land, farmland, roads, and rivers, as
interpretive classification factors. Before satellite image interpretation, the training sample
area for the features required in this study should be selected. For selecting the training
sample area, the study used aerial photographs as the base map together with the current
data to select the various interpretation classification factors used in this research. For each
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factor, a training plot with approximately 5% of image grids (approximately 1000 image
grids) in the study area must be selected, and the selected plots were required to be evenly
distributed within the study area.

In this study, the relevant GANN parameter settings were modified after referring
to the recommendations of Chen et al. [10,45]. The upper limits of the number of hidden
layers, number of neurons, learning rate, and number of learning times were set as 2, 32,
3.2, and 15,000, respectively. After GANN training of the sample area, the optimal structure
of the neural network was obtained through testing. This optimal structure was used to
classify the full-scale satellite images. The optimal framework parameters of the 10 satellite
images obtained after training are shown in Table 3. Table 3 indicates that the average
precision of the interpretation training of each satellite image is approximately 93%.

Table 3. Summary of genetic adaptive neural network (GANN) framework parameters and training results of satellite
images.

Date Hidden Layers Neurons for 1st
Hidden Layer

Neurons for 2nd
Hidden Layer Learning Rate Learning Times Training

Accuracy (%)

2009-05-09 2 30 30 2.1 15,000 98.9
2009-08-24 2 30 32 2.3 5000 98.1
2010-05-25 2 31 28 2.7 8000 90.7
2010-08-10 2 30 15 3.1 10,000 92.8

2010-09-11 (2 m) 2 31 28 2.1 9000 98.1
2010-09-11 (8 m) 2 30 30 2.6 14,000 87.8

2010-11-21 2 30 29 2.3 14,000 86.1
2011-05-08 2 28 17 1.8 15,000 99.8
2011-08-17 2 30 29 2.3 15,000 89.3
2011-10-24 2 30 32 2.9 15,000 89.6

To confirm the accuracy of the interpretation results, based on the studies of Chen
et al. [10,13], the study randomly selected 25 points on the satellite image for the verification
of each interpretation factor, supplemented by aerial photographs or on-site survey data
and used the aforementioned accuracy evaluation method to evaluate the accuracy of
image interpretation and classification. For satellite images of the study area after the
Morakot invasion in 2009 (24 August 2009), the image interpretation accuracy is shown
in Table 4, and the results of the satellite image interpretation before and after Typhoon
Morakot are shown in Figure 2. Table 4 shows that the consistency coefficient (kappa index
value) of the interpretation results of the satellite images was 0.82, and the OA was 83.6%.
In addition, this study interpreted a total of 10 satellite images before and after six typhoons
or rainfall events in the study area from 2009 to 2011. As shown in Table 5, the average
kappa index value was approximately 0.8, and the OA of interpretation was approximately
80.1%, indicating that the image interpretation and classification results have a high degree
of accuracy.

Table 4. Error matrix of satellite imagery interpretation (24 August 2009).

Building Bare
Land Watershed Road Forest River

Course Grassland Orchard Paddy
Field Total UA (%)

Building 23 0 0 2 0 0 0 0 2 27 85.1
Bare land 1 25 1 4 0 2 0 3 4 40 62.5
Watershed 0 0 24 0 0 0 0 0 0 24 100.0

Road 1 0 0 14 0 3 0 0 3 21 66.6
Forest 0 0 0 0 25 0 2 3 0 30 83.3

River course 0 0 0 1 0 20 0 0 0 21 95.2
Grassland 0 0 0 0 0 0 22 0 0 22 100.0
Orchard 0 0 0 0 0 0 1 19 0 20 95.0

Paddy field 0 0 0 4 0 0 0 0 16 20 80.0
Total 25 25 25 25 25 25 25 25 25 225

PA (%) 92.0 100.0 96.0 56.0 100.0 80.0 88.0 76.0 64.0
Kappa index = 0.82
Overall accuracy =

83.6%
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Figure 2. Satellite image interpretation and classification results before (a) and after (b) Typhoon Morakot in the study area.

Table 5. Summary of interpretation results of satellite images before and after rain.

Rainfall Event Date (before/after) Overall
Accuracy (%) Kappa Index

I
2009-05-09 (before typhoon) 81.0 0.8
2009-08-24 (after typhoon) 83.6 0.82

II
2010-05-25 (before rainfall) 76.4 0.75

2010-08-10 (after rainfall, before typhoon) 75.2 0.73
III 2010-09-11—2 m (after typhoon) 80.4 0.79

IV
2010-09-11—8 m (before typhoon) 81.0 0.8

2010-11-21 (after typhoon) 82.0 0.81
V 2011-05-08 (before typhoon) 76.9 0.75

VI
2011-08-17 (after typhoon Meari, before

typhoon Nanmadol) 82.8 0.82

2011-10-24 (after typhoon) 81.8 0.81

5. Discussion

To explore the relationship between the location, scale, and spatial distribution char-
acteristics of the disaster caused by the landslide, this study explored the relationship
between landslide and the slope area characteristics by using the relevant quantitative
data on landslide and location data of the natural environment. The relationship between
landslide and slope factor characteristics is described in the subsequent sections.

5.1. Relationship between the Change in Bare Land and Topographic Location

This study adopted the methods of Meunier et al. [30], Chue et al. [14], and Tseng
et al. [31], which were based on the interpretation results of satellite images before and
after six typhoons or rainstorms in different years. We extracted the location of the bare
ground and calculated the distance between the highest point of the exposure range and
the nearest ridge top (dr), between the lowest part of the exposure range and the nearest
stream distance (ds), and between the ridge top and the stream distance (dt). This study
evaluated the relationship of (dr/dt) and (ds/dt) before and after six rainfalls with the
change in the size of the landslide area [14], and the results are shown in Figure 3a–f. The
size of the circles in the figure represents the size of the exposed area.
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Figure 3 presents the distribution of landslide points caused by six rainfall events
from 2009 to 2011. A comparison of the number and area of bare sites before and after each
rainfall event (Table 6) revealed that after each rainfall event, irrespective of the number or
area of the exposed area, the landslide points were significantly increased in those areas
compared with before the rainfall event. The difference in the distribution of bare land
before (Figure 3a—left) and after (Figure 3a—right) the rainfall event of Typhoon Morakot
in 2009 was the largest, with a large area of bare land after the event. Chue et al. [14]
proposed that before each rainfall event, the landslide points can be predicted using the
differences in the spatial distribution of the bare land before and after the rainfall events in
different years. During the interval between the end of the rainy season in a year (Figure 3a,
right, Figure 3d, right) and the beginning of the next year’s rainy season (Figure 3b, left,
Figure 3e, left), the exposed areas of the slopes in the study area were decreased, and
obvious vegetation restoration was observed.

The changes in each exposed point are illustrated in Figure 3. As shown in Figure 3a–right,
after the rainfall before Typhoon Morakot, the exposed area in the study area is distributed
more toward the stream. After the rain, the overall distribution of the bare land is fairly
uniform, with a larger area of bare land near the stream. Figure 3b show that the small area
close to the top of the ridge was bare land; however, after the rain on 27 July 2010, many
places in the adjacent stream were exposed, and thus, the area of bare land increased. Figure
3c, right also shows that after Typhoon Meranti, although the bare land area increased, the
position of the bare land did not change considerably. As seen from the spatial distribution
of the exposed areas before and after Typhoon Fanapi (Figure 3d), after rainfall, the exposed
areas were distributed toward the ridge top. This phenomenon is similar to that observed
after Typhoon Meari (Figure 3e) and that observed after Typhoon Nanmadol (Figure 3f).
Increasing bare land areas developed near the stream after Typhoons Meari and Nanmadol.

Figure 3. Cont.
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Figure 3. Cont.
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Figure 3. dr/dt, ds/dt, and the change in landslide area before (left) and after (right) Typhoon Morakot (2009) (a), heavy
rain on July 27, 2010 (b), Typhoon Meranti (2010) (c), Typhoon Fanapi (2010) (d), Typhoon Meari (2011) (e), and Typhoon
Nanmadol (2011) (f) in the study area, The data is obtained from [14].

Table 6. Number and area of landslides before and after different rainfall events in the study area.

Rainfall Event (Number)
Number of Landslides Total Landslide Area (m2)

Before Rain After Rain Before Rain After Rain

2009 Typhoon Morakot (I) 114 195 406,890 2,053,415
2010-07-27 rainfall (II) 115 121 1,309,168 1,365,362

2010 Typhoon Meranti (III) 121 134 1,365,362 1,697,533
2010 Typhoon Fanapi (IV) 154 168 1,831,335 1887852
2011 Typhoon Meari (V) 91 143 1,278,568 1,770,650

2011 Typhoon Nanmadol (VI) 143 175 1,770,650 2,188,420

Figures 4 and 5 show the relationship between the average EAR of each field from
2009 to 2011 and the increase in the numbers and areas of landslide. After six rainfalls in
the study area, the number of landslides and the landslide area increased with an increase
in the average EAR. The study used polynomial trend lines to fit the data. The results
revealed that the coefficient of determination between the average EAR and the increase
in the number of landslides and that between the average EAR and the increase in the
landslide area was 0.8329 and 0.9171, respectively.
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Figure 4. Regression line of the increase in the number of landslides against the average effective
accumulative rainfall (EAR).

Figure 5. Regression line of the increase in the landslide area against the average EAR.

5.2. Relationship between Bare Area, Quantity, and Rainfall

The average EAR, bare land area, and the number of bare lands after each rainfall
are shown in Table 7. In addition to the extreme rainfall during Typhoon Morakot in
2009, this study divided the average EAR of the study area after the other five rainfalls in
the numerical range 0–100, 101–200, and 201–300 mm and plotted the values against the
corresponding total exposed area, as shown in Figure 6. The trend line of the exponential
relationship was used to fit the data. The results revealed that the area of the exposed area
in the study area increased with an increase in the average EAR after various rains, with
R2 = 0.98:

Total exposed area
(

m2
)
= 10 + 0.6 · EXP(0.3534 average EAR level) (14)

Table 7. Number of bare lands and bare land area after each rainfall in the study area.

EAR
(mm)

Bare Land
Area (km2)

Number of Bare Ground after Each Rainfall Total Exposed
Area (m2)I II III IV V VI Total

0–100
0–0.001 0 0 18 0 0 0 18 12,741

0.001–0.01 0 0 75 0 0 0 75 292,755
0.01–0.05 0 0 36 0 0 0 36 887,110
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Table 7. Cont.

EAR
(mm)

Bare Land
Area (km2)

Number of Bare Ground after Each Rainfall Total Exposed
Area (m2)I II III IV V VI Total

0.05–0.1 0 0 4 0 0 0 4 281,727
0.1 or more 0 0 1 0 0 0 1 223,200

101–200

0–0.001 0 17 0 12 0 0 29 16,216
0.001–0.01 0 56 0 26 0 0 82 9630
0.01–0.05 0 30 0 19 0 0 49 1,239,202
0.05–0.1 0 2 0 6 0 0 8 580,477

0.1 or more 0 1 0 1 0 0 2 381,757

201–300

0–0.001 0 3 0 21 15 26 65 35,261
0.001–0.01 0 10 0 31 34 101 176 660,141
0.01–0.05 0 2 0 10 13 39 64 1,390,260
0.05–0.1 0 0 0 0 2 7 9 652,919

0.1 or more 0 0 0 0 1 2 3 703,239

301–400

0–0.001 0 0 0 13 6 0 19 10,792
0.001–0.01 0 0 0 20 51 0 71 273,516
0.01–0.05 0 0 0 7 17 0 24 466,976
0.05–0.1 0 0 0 1 3 0 4 271,256

0.1 or more 0 0 0 0 1 0 1 217,214

1001–1100

0–0.001 19 0 0 0 0 0 19 8132
0.001–0.01 69 0 0 0 0 0 69 278,045
0.01–0.05 30 0 0 0 0 0 30 720,793
0.05–0.1 4 0 0 0 0 0 4 270,807

0.1 or more 2 0 0 0 0 0 2 402,888

1101–1200

0–0.001 21 0 0 0 0 0 21 10,242
0.001–0.01 43 0 0 0 0 0 43 156,679
0.01–0.05 5 0 0 0 0 0 5 67,786
0.05–0.1 2 0 0 0 0 0 2 138,043

0.1 or more 0 0 0 0 0 0 0 0

Figure 6. Regression line of total exposed area against the average EAR.

5.3. Relationship between the Number and Area of Bare Lands after Each Rainfall and the Degree of
Slope Disturbance

To explore the relationship between the number and area of bare lands after each
rainfall and the degree of slope disturbance, this study obtained surface information
through the aforementioned satellite image interpretation and classification and referenced
the results of Chen et al. [10,13] to establish an index for land disturbance condition (ILDC).
First, six factors, namely vegetation cover (including grasslands and forests) rate, farmland
(paddy fields and dry fields), planting rate, fruit tree planting rate, bare land density,
building density, and road density, were selected as the slope disturbance factors affecting
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landslide occurrence. In this study, ArcGIS Spatial Analyst was used to input the results of
the interpretation and classification of satellite images in the study area into the basic grid
and calculate the proportion of the area occupied by each slope disturbance factor in each
grid to be used as quantitative indicators of each slope disturbance factor.

Based on the studies of Chen et al. [10,13], this study defines ILDC as follows:

ILDC = ∑ WLDC × RLDC, (15)

where WLDC is the evaluation index value of the slope disturbance factor in each basic grid
and RLDC is the proportion of the area of each slope disturbance factor in the basic grid
area. The value of WLDC is based on the results obtained and modified from Chen et al. [10]
and is provided in Table 8.

Table 8. Evaluation index values of the slope disturbance factors that affect landslide occurrence

Slope
Disturbance

Factor

Bare
Density

Road
Density

Building
Density

Fruit Tree
Planting

Rate

Farmland
Planting

Rate

Vegetation
Cover Rate

Score 6 5 4 3 2 1

After the rainfall in each field, the relationship between ILDC and the exposed area
of the overall landslide point is, as shown in Figure 7. The results revealed a positive
relationship between the bare land area and ILDC, except after the extreme Typhoon Morakot
rain. The higher the value of ILDC, the higher the exposed area is. This result indicated that
the impact of extreme rainfall similar to that during Typhoon Morakot on the exposed area
might be greater than the impact of slope disturbance.

Figure 7. Plot of the bare land area against the ILDC of the overall landslide point after each rainfall.

The aggregate statistics of the slope disturbance in the study area and the area and
number of bare lands after each rainfall are shown in Table 9. Figure 8 presents a plot of
the ILDC and the ratio of the area and number of bare lands after the six rainfalls. The trend
line of the exponential relationship was used to fit the data. The results revealed that the
ratio of the area of bare lands to the number of bare lands in the study area after various
rainfall events increases with an increase in ILDC, with R2 = 0.72:

Bare area
(

km2
)

Number of bare ground
= 1681.2 · EXP(0.4343 · ILDC) (16)
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Table 9. Slope disturbance in the study area and the area and number of bare lands after each rainfall.

ILDC
Bare Area

(km2)
Number of Bare Ground after Each Rain Total Exposed

Area (m2)I II III IV V VI Total

0–1

0–0.001 0 0 0 14 0 0 14 6010
0.001–0.01 0 0 2 4 0 0 6 19,389
0.01–0.05 0 0 0 0 0 0 0 0
0.05–0.1 0 0 0 0 0 0 0 0

0.1 or more 0 0 0 0 0 0 0 0

1.01–2

0–0.001 20 0 10 12 5 16 63 34,918
0.001–0.01 45 0 24 18 9 25 121 356,405
0.01–0.05 10 0 3 1 0 4 18 344,875
0.05–0.1 1 0 0 0 0 0 1 67,160

0.1 or more 0 0 0 0 0 0 0 0

2.01–3

0–0.001 14 4 8 9 15 9 59 33,895
0.001–0.01 49 12 43 27 59 57 247 980,149
0.01–0.05 16 5 19 11 13 11 75 1,602,908
0.05–0.1 4 0 1 0 1 0 6 399,804

0.1 or more 2 0 0 0 0 0 2 402,888

3.01–4

0–0.001 6 6 0 4 1 0 17 8811
0.001–0.01 15 31 6 14 15 16 97 464,618
0.01–0.05 7 16 11 12 17 16 79 1,891,087
0.05–0.1 1 1 2 2 4 2 12 826,064

0.1 or more 0 0 0 0 1 1 2 335,312

4.01–5

0–0.001 0 8 0 2 0 1 11 6356
0.001–0.01 3 21 0 5 2 3 34 116,412
0.01–0.05 2 10 2 5 0 8 27 709,678
0.05–0.1 0 1 1 2 0 4 8 607,174

0.1 or more 0 1 1 1 1 1 5 1,190,097

5.01–6

0–0.001 0 2 0 1 0 0 3 981
0.001–0.01 0 2 0 8 0 0 10 25,280
0.01–0.05 0 1 1 6 0 0 8 192,468
0.05–0.1 0 0 0 2 0 1 3 196,710

0.1 or more 0 0 0 0 0 0 0 0

6.01–7

0–0.001 0 0 0 4 0 0 4 2414
0.001–0.01 0 0 0 2 0 0 2 11,939
0.01–0.05 0 0 0 1 0 0 1 31,111
0.05–0.1 0 0 0 1 0 0 1 98,318

0.1 or more 0 0 0 0 0 0 0 0
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Figure 8. Regression line of the ratio of the bare land area to the number of bare lands against ILDC.

5.4. Relationship between the Scale of New or Second Landslide, Rainfall, and ILDC

After the rainfall in each field, new landslide sites were observed, and the related
factors, such as the location of the landslide, scale of the landslide (including new landslide
or second landslide), rainfall, and ILDC were evaluated.

5.4.1. Relationship between the Landslide Location and the Corresponding Landslide Area

By using the interpretation of the satellite images and the extraction of the exposed
area, as described in Section 5.1, after the rainfall in the study area during 2009–2011, we
calculated the distance between the highest point of the exposed area and the nearest ridge
top (dr), the distance between the lowest point of the bare area and its nearest stream
(ds), and the distance between the ridge top to the creek (dt). The correlation between the
landslide location and scale after each typhoon rainfall was evaluated, and the landslides
(including new landslide and second landslide) induced by the rainfall event in the study
area were assessed, as shown in Figure 9a–e. With the landslide points induced by the
extreme rains of Typhoon Morakot in 2009 as the benchmark, we plotted the variation of
the new landslide point (left) against the second landslide point (right) of the other five
rainfall events (Figure 9). In Figure 9, the size of the circle indicates the size of the landslide
area, and the plots represent the 3-year period from 2009 to 2011.

Figure 9 shows that the number of second landslide points is considerably greater
than the number of new landslide points. This result indicates that the historical landslide
points in the study area will experience rainfall events in the future and thereby experience
landslides; moreover, the scale of the second landslide is greater than that of the new
landslide. In addition, Figure 9 shows that most of the new landslide points are biased
toward the ridge top (dr/dt ≈0), and the second landslide points of larger landslide scale
are biased toward the stream (ds/dt ≈0).
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Figure 9. Cont.
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Figure 9. Plot of ds/dt against dr/dt for the new landslide (left) and second landslide (right) after (a) heavy rainfall on July 27,
2010, (b) Typhoon Meranti (2010), (c) Typhoon Fanapi (2010), (d) Typhoon Meari (2011), and (e) Typhoon Nanmadol (2011).

5.4.2. Relationship between Landslide Area and Location, Rainfall, and Slope Disturbance

This study was based on the aforementioned calculation of the EAR and ILDC. The
relationship between the EAR, ILDC, and landslide area (including new landslide and
second landslide) after each rainfall in the study area is plotted in Figure 10a–f. The size of
the circle in the figure represents the varying size of the landslide area; the black and red
circles represent the newly added points and the second landslide points before and after
each rainfall, respectively. Irrespective of the rainfall, when the ILDC was large, the scale of
the second landslide was also large. In addition to the extreme rain of Typhoon Morakot,
the number and area of the second landslide after the rainfalls were greater than those of
the new landslide.
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Figure 10. Plot of EAR against ILDC for both the new landslide and second landslide after (a) Typhoon Morakot (2009),
(b) heavy rainfall on 27 July 2010, (c) Typhoon Meranti (2010), (d) Typhoon Fanapi (2010), (e) Typhoon Meari (2011), and
(f) Typhoon Nanmadol (2011).

5.4.3. Relationship between Variation in Second Landslide Scale, Rainfall, and
Slope Disturbance

The relationship between the EAR, ILDC, and variation in the area (the increased
landslide area) of the second landslide after each rainfall from 2009 to 2011 is plotted in
Figure 11a–f. In the figure, the increase in the landslide area at the second landslide point
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is represented by the size of the circle. The results revealed that irrespective of whether the
area of the second landslide at the second landslide point was related to EAR or ILDC, a
positive relationship was noted overall. In the landslide sites of the study area, at a large
EAR or ILDC, the area of the second landslide site also increased.

Figure 11. Plot of EAR against ILDC for the second landslide points, with the size of the circle indicating the increment in
landslide area, after (a) Typhoon Morakot (2009), (b) heavy rainfall on 27 July 2010, (c) Typhoon Meranti (2010), (d) Typhoon
Fanapi (2010), (e) Typhoon Meari (2011), and (f) Typhoon Nanmadol (2011).
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6. Conclusions

We targeted the Lao-nong River Watershed in Southern Taiwan as the study area,
and the study period was from 2009 to 2011, starting with the Typhoon Morakot invasion
in 2009. During the 3-year study period, the study area experienced six rains, including
five typhoons and one heavy rain. The study used the GANN and texture analysis on
the GIS platform for satellite image classification and interpretation to analyze land-use
change, characteristics of the landslide area, and location of second landslides to provide a
reference for devising preventive and response countermeasures. In addition, this study
explored the impact of rainfall on the second landslide and evaluated the relationship
between the various rainfall events and the occurrence, scale, and regional characteristics
of the landslide. The study conclusions are summarized as follows:

(1) For the interpretation and classification of high-resolution satellite images, this study
used the GANN combined with texture analysis. The OA and consistency coefficient
values of the interpretation results revealed that the satellite image interpretation
before and after each rainfall in the research area achieved medium to high accuracy;

(2) A comparison of the number and area of the exposed areas before and after the six
rainfalls revealed that the number or area of the bare land in the research area in each
field significantly increased after the rainfall than before the rainfall. The distribution
of bare land before and after Typhoon Morakot was the largest. In addition, after each
rainfall, the number of bare lands and bare land areas increased with an increase in the
average EAR. When the data were fitted with a polynomial trend line, the coefficient
of determination between the average EAR and the increases in the number of bare
lands and that between the average EAR and the increase in the landslide area was
approximately 0.83 and 0.92, respectively;

(3) In addition to the extreme rainfall during Typhoon Morakot in 2009, this study divided
the average EAR after each rain into three levels in sequence and used the trend line
of the exponential relationship to fit the bare land data. The results revealed that after
each rainfall in the study area, the bare land area increased with an increase in the
average EAR value, and the coefficient of determination of trend line reached 0.98;

(4) The relationship between ILDC and the bare land area after each rainfall indicated that
except for the extreme Morakot rains, the greater the degree of slope disturbance was
after rain, the greater the area of the exposed slope was. This result also indicated that
when extreme rainfall similar to Typhoon Morakot strikes, the impact of rainfall on
the bare land area may be greater than the impact of slope disturbance. In addition,
the results of the joint mapping study after the rainfall in each field revealed a positive
relationship between the bare land area and ILDC;

(5) The relationship between the ILDC in the study area and the ratio of the area of bare
land to the amount of bare land after each rainfall indicated that the ratio of the area
of bare land to the number of bare lands after each rainfall increased with ILDC;

(6) The results of the rainfall-induced new landslide and second landslide in each field
revealed that except for the number of new landslide points induced by the extreme
rainfall event during Typhoon Morakot, which was considerably higher than the
number of second landslide points, for the remaining landslides induced by rainfall,
the number of second landslide points was higher than the number of new landslide
points, and the area of the second landslide point was also greater than that of the
new landslide point. In addition, despite the rainfall, the larger the slope disturbance,
the larger the scale of the second landslide was. Consequently, more new landslide
points were biased toward the ridge crest, whereas the second landslide points with
larger landslide scales tended to develop toward the stream;

(7) After rainfall in each field, the relationship between the EAR at the point of the second
landslide, ILDC, and re-increased area of landslide indicated that overall, a positive
relationship was noted between the increased area of the landslide at the second
landslide point and the EAR or ILDC. With an increase in the EAR on the slope in the
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study area or the slope disturbance, the area of the landslide at the second landslide
point also tended to increase.
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