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Abstract: A large-scale agent-based microsimulation scenario including the transport modes car,
bus, bicycle, scooter, and pedestrian, is built and validated for the city of Bologna (Italy) during
the morning peak hour. Large-scale microsimulations enable the evaluation of city-wide effects of
novel and complex transport technologies and services, such as intelligent traffic lights or shared
autonomous vehicles. Large-scale microsimulations can be seen as an interdisciplinary project where
transport planners and technology developers can work together on the same scenario; big data
from OpenStreetMap, traffic surveys, GPS traces, traffic counts and transit details are merged into
a unique transport scenario. The employed activity-based demand model is able to simulate and
evaluate door-to-door trip times while testing different mobility strategies. Indeed, a utility-based
mode choice model is calibrated that matches the official modal split. The scenario is implemented
and analyzed with the software SUMOPy/SUMO which is an open source software, available on
GitHub. The simulated traffic flows are compared with flows from traffic counters using different
indicators. The determination coefficient has been 0.7 for larger roads (width greater than seven
meters). The present work shows that it is possible to build realistic microsimulation scenarios for
larger urban areas. A higher precision of the results could be achieved by using more coherent data
and by merging different data sources.

Keywords: large scale; agent-based; micro-simulation; mode choice model; big data; GPS traces;
OpenStreetMap; GTFS; SUMO

1. Introduction

Tracing the exact movements of individuals and vehicles from door to door is fea-
sible with today’s computers—even with a population of larger urban areas. The micro-
simulation of a virtual copy of the real population, buildings, and infrastructure, called
synthetic population or digital twin, is becoming a reality thanks to the availability of big
data, larger random-access memories, and faster CPUs. Modeling the interactions between
neighboring vehicles or between vehicles and pedestrians results in precise trip times and
speed profiles, enabling accurate performance evaluations and transport impact analysis.
Microsimulations are sensitive to the individual’s trip experience as details of infrastruc-
ture and transport-services can significantly change travel times. Furthermore, emerging
transport technologies such as intelligent traffic light systems, platooning, and driver
assistance, as well as alternative means of transportation such as bike sharing or shared
autonomous vehicles (SAVs), can be integrated in and evaluated by micro-simulations in a
realistic environment.

The “transport technology development” and “transport planning” can be seen as the
main drivers behind the creation of ever more realistic transport models, even though they
approach the problem from completely different angles: while transport technology devel-
opment is primarily interested in realistically evaluating the performance of the deployed
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technology, the transport planner is primarily interested in predicting the behavior of the
transport system as a whole in order to identify the best possible future transport scenario.
This approach includes all alternative transport modes and the transport choices made by
the users, meaning the planner pays more attention to the demand models, such as trip
generation, activity location choice and mode choice, while the technology developer is
interested in accurate transport supply models, such as vehicle controls or communications
between vehicles (V2V) and between vehicle and infrastructure (V2I).

The “problem” is that there are apparent difficulties to create large-scale, city-wide
simulation models that include all the details of the technologies and devices, as mentioned
before. In theory, a microsimulation can provide both accurate demand and precise supply
models. However, in practice, it is challenging to create such a complex microsimulation
scenario as this would require a myriad of real-world details such as a refined road network
with speed limits, lane access rights, pedestrian crossings, restricted turns at intersections,
traffic light-phases, and parking facilities; the traffic generation would require public
transport lines with timetables, vehicle types and frequencies, population data, mobility
plans of individuals, and much more.

The increasing availability of “big data” does certainly facilitate the creation of mi-
crosimulation scenarios. In the present context, big data stands for large, disaggregate,
area-covering databases, which are often (but not always) publicly available. Examples are
the OpenStreetMap (OSM) database [1], GPS traces recorded by citizens, geo referenced
cell phone data, social network activities, or vehicle flow measurements from road-side de-
tectors. Big data, together with more aggregate data such as origin-to-destination matrices
(OD matrices), may play different roles in the scenario building process: OSM does often
contain most of the required information on the transport networks. It appears more diffi-
cult to use big data for modelling the transport demand, as GPS traces or social networks
are usually not linked to reliable user profiles; cell phone operators are in possession of
attribute-rich georeferenced data but cannot release user information for privacy reasons.
This means that user behavior cannot be directly calibrated from this “poor” data as it
is the case for properly designed traditional surveys. However, big data from different
sources may be merged prior to a model calibration in order to increase the information
content; or big data can be used to enrich high-quality travel surveys.

The brief literature review below captures the historic development towards microsim-
ulation while tracing two approaches: the planner, starting traditionally with macroscopic
models and moving on to activity-based, mesoscopic, and finally to microscopic models;
and the technology developer, starting with microscopic models from the beginning.

“Macroscopic models” are still in use by transport planners and have also relevance
for microscopic models, as explained below. A main characteristic of macroscopic models
is the aggregated traffic flow between a zone of origin and a zone of destination. These
zone-to-zone flows, which are typically represented by an OD-matrix, are used for the
traffic assignment. Different traffic assignment methods have been developed, see [2] for
a comprehensive overview. The simplest assumption is that all users follow the shortest
route. A more realistic traffic assignment, formulated by Wardrop [3], is called the user
equilibrium (UE), where the link flows are determined in such a way that no user can
reduce its travel time by changing his/her route. Thanks to efficient algorithms (for ex-
ample Dijkstra’s shortest path assignment or the Frank and Wolfe algorithm for the UE
assignment [4]), traffic assignment problems can be solved almost instantly with today’s
computers, even for large urban areas. Moreover, the traffic assignments are used in a
loop to iteratively calibrate or relax trip generation, trip distribution and mode choice
models—these are the models which allow the transport planner to predict user behavior
and traffic flows due to changes in transport infrastructure or transport services. For a
comprehensive collection of conventional demand and supply models see [5]. However,
the above mentioned emerging “intelligent” transport technologies are generally difficult
to cast in conventional framework of macroscopic models. Nevertheless, there are valid
attempts to integrate microscopic effects of new services in aggregate, macroscopic model
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using certain idealizing or extreme assumptions: for example, in [6] a multi-modal traffic
assignment is modeled; in [7] the link flows of autonomous vehicles (AVs) are modeled by
increasing the link capacities; in [8] the empty and occupied vehicle flows of SAVs are deter-
mined under system optimum flow constraints by solving a linear programming problem
and in [9] the stability of the UE with AVs is examined by means of Lijapunov functions.

The introduction of “activity-based models” has been a major step towards modeling
the decision-making of individuals: each individual pursues a specific sequence of activities
throughout the day and makes mobility plans to travel from one activity to the next in
the best possible way [10]. The mobility plans of an entire population can be executed by
simulating each individual on a transport network. The “mesoscopic simulation” is the
preferred simulation method for activity-based demand models. Mesoscopic simulation
means that the traffic flow is implemented as a dynamic queue simulation, where each
road-link is represented as a FIFO (first-in first-out) queue with three restrictions [11,12]:
(1) each agent (vehicle or person) has to remain for a certain time on the link, corresponding
to the free flow speed travel time; (2) the outflow rate of a link is constrained by its flow
capacity; and (3) a link storage capacity is defined, which limits the number of agents on
the link; if it is filled up, no more agents can enter the link and spillback may occur.

Such a simulation-model produces time varying link flows and permits to track a
person from one activity location to the next. The mesoscopic method allows modelling
more details with respect to the macroscopic model, by enabling the determination of
individual trip times and waiting times. Mesoscopic simulations are slower compared
with macroscopic assignments but still fast enough to simulate large urban areas [13–16].
Mesoscopic models are also used to determine a dynamic user equilibrium (DUE) by
running simulations iteratively while updating link travel times [10].

In activity-based demand modeling frameworks, mesoscopic simulations are em-
ployed to iteratively optimize the activity sequencing, plan generation, and to deter-
mine the DUE [12]. Flötteröd et al. (2011) applies such algorithms to the city of Zurich,
Switzerland [17], and Meister (2010) performs a mesoscopic simulation on whole Switzer-
land [18], where some link-flows are validated with real counts. Numerous publications
use mesoscopic simulations for assessing the impact of AVs on a city scale. For example,
Zhao (2012) [13] simulated Buffalo and Niagara Region, while Hsueh et al. (2021) simu-
lated the whole San Francisco Bay Area, California (about 18.000 km2), Childress (2015)
examined AVs in the Seattle region using the SoundCast software [19]; the user preferences
with respect to AVs have been studied by simulating the entire Paris region [20], for a
recent review see [21].

A “microsimulation” reproduces the acceleration, speed and position of each vehicle
and person at a fixed sampling rate by solving the difference equations of underlying phys-
ical processes. Dynamic vehicle models do typically include human driver behavior. It is
also possible to implement vehicle control algorithms of any kind, for example, to correctly
model the headways of AVs [22]. Moreover, communication channels can be integrated as
well in order to simulate V2V and connected autonomous vehicles (CAVs) [23–26]. It is
worth noting that link capacity limits are not explicitly imposed but are a consequence of
the vehicle-headways resulting from the difference equations. In addition, infrastructure
characteristics like the number of lanes or traffic light cycles are details that directly impact
achievable vehicle flows. This closeness to the physical world has made microsimulations
the natural choice for technology developers. Line capacities of AVs and CAVs are esti-
mated in [27], while safety aspects of CAVs are investigated in [28], see [29] for an overview
of different microsimulation approaches. Such analyses are typically made with small
networks and an artificially generated demand.

Execution times of microsimulations are considerably longer compared with meso-
scopic or macroscopic models, in particular when using sub-second time steps. Another
criticality of microsimulation models is that they require a huge amount of data, while
small modeling errors can lead to significant errors of the simulated traffic. This is why
microsimulation networks need to be checked carefully, which is a time-consuming task.
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These are probably the main reasons why microsimulations are less used as traffic assign-
ment method for activity-based models. Indeed, there are very few validated large-scale
microsimulations reported in literature (see Table 1).

The transport demand for microsimulations is usually defined by routes and departure
times of all agents participating in a scenario. Most large-scale studies either determine
the dynamic user equilibrium iteratively or enable real time routing/re-routing option
for a certain share of vehicles. The bulk of large scale microsimulation scenarios is not
validated in any way: a simple random trip generation has been used in a simulation
of a 1.5 km2 area of Budapest [30] using the open source simulator SUMO [31]; random
trips have also been generated for simulating a 9 km2 area of Manhattan, Paris, Berlin,
Rome, and London [32] with SUMO, but results show unrealistically low average speeds;
a more realistic demand generation method is the disaggregation of OD matrices from
official surveys; examples are the simulations of North Leeds [33] using the DRACULA
software [34] and the simulation with AVs of Halifax [35] using the commercial software
VISSIM [36]; a synthetic population with mobility plans have been generated by SUMO’s
activity generator, based on demographics and land use data, for the city of Monaco [37].
The latter simulation is the only large-scale simulation including “soft modes” such as
bicycles and pedestrians, while all other studies are focused on cars and AVs only. An
alternative approach attempts to reconstruct the traffic flows of Modena, Italy, by calibrating
a flow model based on traffic counter data at specific links [38]; even though this approach
does not provide realistic vehicle routes, it is well suited to estimate pollutant emissions.

There are also numerous studies on “wide scale” scenarios, analyzing specific sub-
networks of an entire city, for example the main roads of Riga city [39] or the New Jersey
Turnpike scenario with tolled highways [40].

Two publications on validated large-scale micro-simulation could be found by the
authors, see Table 1. Surprisingly, only few realistic large scale micro-simulations exist to
date, despite the importance of emerging technologies such as AVs. Note that the validation
methods of those scenarios are not standard methods applied in transport planning.

The present work tries to enrich the literature with a properly validated microsim-
ulation scenario. In order to identify the “scientific contribution”, the characteristics of
the present scenario is compared with those found in literature, see Table 1: the demand
is generated by a suitable fusion of reliable data such as OD matrices and GPS traces, it
includes all major transport modes of the city and the traffic flows are validated against
traffic counts on a link-by-link basis. A simple mode choice model is also provided. To the
knowledge of the authors, no validated large-scale simulation with active modes has ever
been published.

Table 1. Comparison of published validated large-scale micro-simulation and present work.

Pub/Year Simulator/Demand
Model Network Demand Generation Modes Validation

Method

[41]
2011 SUMO/DUE

Cologne, Germany
from OSM

400 km2

Activity generator
based on 7000 surveys,

700,000 trips in 24 h
Car

Qualitative
comparison of

flows with
observed data

[37]
2017

SUMO + activity-
gen/stochastic

assignment

Luxembourg,
OSM, 156 km2, 931

km roads

Activity generator
based on public data
demographics, POIs,

etc., 24 h

Car, bus

Comparison of
average link
speeds from

floating car data

This article
2021

SUMO +
SUMOPy/DUE,

Mode choice

Bologna, Italy,
OSM, 12 × 7 km

Activity base,
disaggregation of OD

matrix, GPS traces,
GTFS, peak hours

Car, Bus,
motorcycle, bike,

pedestrian

Car/motorcycle
link flows

compared to link
traffic counts
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Given the difficulties to create large-scale microsimulation models, why would it not be
reasonable if planners built realistic demand models using simplified, macro/mesoscopic
networks, while technology developers estimated critical parameters, such as the lane
capacity, using smaller, microscopic models? Such critical parameters would then be used
as constants or cost functions in macro/mesoscopic models, as it is practice to date [7].

For some important cases, there is a strong inter-dependency between microscopic
events and macroscopic quantities (flows or densities), suggesting that a separation be-
tween local microscopic simulations and large-scale macroscopic models would give
unrealistic results.

One example, is the lane capacity increase of AVs with respect to manually driven
cars. It turns out that capacity increases are significant only if there is a high share of
CAVs circulating [42]. In this case, vehicle platoons can be organized, average headways
decrease and capacity increases. Shladover, (2012) [27] who has micro-simulated CAVs on a
one-lane, intersection-free highway at steady-state traffic flows, has shown an 80% increase
in capacity, assuming all vehicles are CAVs. However, micro-simulating CAVs in an urban
environment with random trips results in much lower capacity gains of approximately
16%, due to the network-level effect [30]. Clearly, the dynamics in intersections and the
durations of platoons (the time vehicles stay together while traveling on a common route)
have a dramatic effect on the capacity [9]. This means route-choice, capacity gains and
travel times are interdependent.

Another example concerns the interaction between vehicles and pedestrians on mixed
access roads or at pedestrian crossings, where the average travel speed reduces for both
pedestrians and vehicles, dependent on the vehicle flows and pedestrian flows. Changes
in travel time will in turn alternate demand and consequently flows of vehicles and
pedestrians. See [43–45] for pedestrians-bicycles interactions and [46] for gap acceptance
of pedestrians crossing a road with platooned CAVs.

These examples suggest that, in general, small, microscopic and large-scale macro-
scopic models cannot be simulated separately, which means only a large-scale microscopic
model will ensure that microscopic dynamics will correctly alternate traffic flows and vice
versa, thus network-level effects are taken into account.

However, as realistic large-scale microsimulations are rare (see Table 1), there appears
to be a real research gap and a need for such scenarios—the only publicly available scenario
of this kind is the LuST scenario [37] on Github [47] which has already been used in many
research projects (61 citations in 3 years).

The main challenge for creating microsimulations is the demand modeling. There
are recent articles suggesting a new, data driven approach to transport modeling [48–50]
or the use of “big data” to improve traditional surveys [51]. It is also worth noting that
for evaluating the impact of many future scenarios, there is no need to calibrate complex
demand models; there are use-cases where the transport services remain almost unaltered,
for example, when electric vehicles substitute gasoline vehicles or when AVs replace
manually driven cars or when floating bike sharing schemes replace private bikes.

Given this research gap, the “research question” is whether it is possible to build a
traffic scenario that covers an entire urban area while modelling at the same time details
on the device level. Therefore, this article has the aim to, at least partially, fill the above-
mentioned research gap by providing a validated microsimulation model for the medium
size city of Bologna, Italy, including all modes except trains. A further research question is
how to calibrate a useful mobility plan choice model, as part of a microsimulation model,
while using a limited amount of computational resources or computing time. For this
reason, a computationally efficient mobility plan choice is calibrated with the aim (1) to
predict user behavior beyond the route choice and (2) to match official modal split data,
while improve the consistency between the individual’s transport environment and the
individual’s mode choice.

The purpose of the elaborated traffic scenario is the development of a test platform
where town planners and transport system developers can meet to evaluate and optimize
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new technologies and services—the scenario is freely available on-line [52]. Even though
the scenario building process is specific to the data available for Bologna, it should also
serve as a blueprint for creating scenarios for other cities.

In Section 2 the scenario and the modeling processes of transport supply and demand
are explained and in Section 3 a simple plan choice model is calibrated. In Section 4 the
calibration and simulation results are presented, validated, and discussed and in Section 5
final conclusions are drawn and future research directions are suggested.

2. The Scenario Building Process

Various big data sources led to the construction of a large-scale microsimulation
scenario for the metropolitan area of Bologna, Italy, with a population of approximately
1.02 million inhabitants, whereas Bologna city itself counts 308 thousand inhabitants [53].
This section explains how the data has been processed to represent the supply and demand
of the transport systems using the SUMOPy/SUMO simulation suite [52,54]. While it is
good practice to describe agent based models with the ODD protocol (Overview, Design
concept, and Description) defined by the Grimm et al. protocol [55], this protocol is hardly
applicable to the present case as the number of parameters and the dimensions of the
state space is relatively high. Nevertheless, transparency is guaranteed as the scenario and
software are published online.

In particular, Sections 2.1 and 2.2 describe the transport supply of road and public
transport, Sections 2.3 and 2.4 explain the data preparation of ODMs and GPS traces, while
Sections 2.5 and 2.6 explain the external and internal demand created from ODM and
GPS data.

2.1. The Road Network Model

The road network of Bologna city has been converted from OSM in a SUMO XML
format by SUMO’s “netconvert” [56] program and edited manually with SUMO’s “nete-
dit” [57] software, using both satellite images in the background and street-level graphical
information from Google maps, as well as some on-site inspections. In addition, connectiv-
ity problems have been identified by matching GPS traces to the network: matching errors
occurred often at locations where network links are not properly connected, see [58] for
details. The road network data contains the directed road network graph made of links
and nodes; each link consists of one or several lanes. The most important lane attributes
are maximum speed, width, and access rights; all the values are determined by analyzing
the OSM attributes of the respective way. Moreover, SUMO assigns a priority level to each
link which depends on the link attributes and range from 1 (footpath) up to 13 (national
motorway). The connectivity of lanes at intersections is also derived from OSM or guessed
from heuristics; all connections have been manually checked, together with road attributes
and geometry. Traffic lights are an OSM node attribute, but the signals have been gener-
ated by heuristics. Large traffic light systems in and around the center have been edited
manually based on traffic light plans provided by the city of Bologna.

The road-network of the city of Bologna with surrounding towns is the core simulation
area, covering approximately 50 km2. The core area has a detailed street network, including
bikeways and footpath, see Figure 1a. The metropolitan area of Bologna covers a wider
area of 3703 km2, see Figure 1b. Figure 1 also shows the traffic assignment zones (TAZs)
of the core area and the metropolitan area. The TAZs are derived from the 2001 national
population census [59]. There is a substantial traffic between the core simulation area and
the extra-urban TAZs. For this reason, the city’s road network has been manually expanded
in order to capture the external demand: using again SUMO’s network editor and satellite
images, a simplified road network has been created linking all major towns and villages
with the core network of Bologna; this network consists predominantly of motorways,
major federal roads, and provincial roads.
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The total number of road links is 32,409 with a total length of 3316.20 km. The share
of major road (with priority level greater than 7) is 20.11% of the total length or 667.05 km.
Moreover, there are 59,218 link connections within 14,724 intersections, 530 of which are
controlled by a traffic light. The geometric shapes, heights, and type of 58,421 buildings in
the core simulation area have also been imported from OSM. Buildings will be associated
with activity locations of persons in the synthetic population model, see Section 2.6. In
addition, on-street parking lots have been created with some heuristics along roads with at
least two lanes and road priority below eight.

2.2. Public Transport Services

The entire public transport (PT) provided by the local operator (Tper) has been real-
istically modelled within the core simulation area by generating bus lines based on data
from GTFS (General Transit Feed Specification). The used GTFS represents the timetable
valid for spring 2018 and contains geographic information of bus stops and bus routes as
well as precise times for bus runs. Bus stops with ID and name have been positioned on
the network links. Bus routes have been identified as a sequence of network links using the
mapmatching procedure from SUMOPy, as described in [58]. Bus stops play an important
role in the microsimulation as they represent the point where people of the synthetic popu-
lation access public transport services. Successively, bus runs of all urban bus lines have
been imported from the GTFS for a workday in May 2018 during the time from 6:00 to 9:00
a.m. for the purpose of realizing a steady state bus service for the analyzed simulation time
(from 7:00 to 8:00 a.m.). For all PT lines, a constant service frequency has been determined
by averaging the time delays between all runs in the considered time interval. One-off or
infrequent bus lines with service times below 30 min have been excluded. The constant
service time is needed to generate the service in the microsimulation but also to estimate
the waiting time during the plan generation, see Section 2.6. After this import procedure
the ID, name, stop sequence, route, and service frequency of 234 bus lines are present in
the scenario.

2.3. Transport Demand from OD Matrices

The disaggregation of OD matrices presents a major method to generate trips and
routes for different modes of transport, see Sections 2.5 and 2.6. The raw OD matrix has
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been available for the time interval 7:00–8:00 a.m. and for the following transport modes:
car drivers, car passengers, public transport, and scooters. The corresponding TAZs are
more refined in the core simulation area (116 TAZs) and larger in the extra-urban areas
(61 TAZs), see Figure 1.

The raw OD matrices for the different modes have been obtained from the 14th
population census, conducted by the Italian institute for statistics (ISTAT) during the
year 2001 [59]. The OD matrices have been updated to the year 2018 by considering the
population increase in the various zones: the OD flows within the core simulation area have
been increased by 5.5%, while the flows from or to extra-urban areas have been increased
by 8.5%.

Applying the above procedure, the following five matrices have been created for the
scenario: one OD matrix for each of the modes car, scooter, bus, and walking, with demand
flows only between TAZs inside the core simulation area: these OD matrices have been
successively disaggregated to create the synthetic population, see Section 2.6; one OD
matrix for cars with origins or destinations in the extra urban TAZs were used to create the
external traffic of the scenario, see Section 2.5.

2.4. Transport Demand from GPS Traces

Bicycle demand has been estimated from GPS traces recorded by citizens on a volun-
teer bases using Smartphone. Each GPS trace describes the movements of each participating
cyclist through a sequence of time-stamped and georeferenced Lat/Lon locations. For the
present study, the GPS traces recorded during the European Cycling Challenge campaign
in Bologna in May 2016 have been used. Only traces during morning rush hours have been
relevant, more precisely between 8:30 and 10:30 a.m. The GPS traces underwent a filtering
process where inconsistent traces have been eliminated, such as traces with over speed, too
long waiting times or too big spatial gaps. Further, the typical point clouds at the beginning
and at the end of cyclist traces have been cut off. Successively, a mapmatching process has
been applied to identify for each GPS trace the sequence of road network links, resulting in
one or several routes per participant.

The estimation of transport demand from GPS traces recorded by volunteers has the
obvious problem that the share of the recording population is generally unknown. For this
reason, the number of GPS trips need to be scaled to the effective number of trips. In a
previous publication [60] the scaling has been performed by means of bicycle flow counts
at dedicated links of the road network. In particular, the scale factor has been estimated
as the ratio between the observed bicycle flows and the bicycle flows generated by the
mapmatched GPS traces. In order to match the scaled number of trips, the mapmatched
routes needed to be replicated by a certain number. For replicating a matched GPS trip, the
first and last link of the replicated trip has been located randomly around the mapmatched
trip extremities, while the mapmatched route has been entirely kept. The departure times
of the trips are defined by the first timestamp of the GPS traces.

The above procedure has led to a model of all cyclist trips during morning rush hour,
including routes and departure times.

2.5. Construction of External Demand

The external demand comprises all car trips between the core simulation area and
the extra-urban areas as well as car trips between extra-urban areas which probably pass
through the core simulation area. All other modes were neglected, as car has been the
dominant mode for these typically long-distance trips. Further, low-frequency extra-urban
bus services have been judged to have only a minor impact on the overall traffic flows.

The external trips for cars have been generated by disaggregating the relative OD
matrix with origins or destinations in the extra urban TAZs: the demand flow fod from
a zone of origin o to a zone of destination d has been used to generate fod trips, between
those zones; the first and last link of the fod trips have been distributed proportionally to
their link length, in zone o and d, respectively. This procedure assumes that the number of
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residences or workplaces along a link is proportional to the road length. Inaccessible links
for cars or links with maximum speeds above 50 km/h have been excluded. Road links
in traffic limited zones (TLZ), mainly located in the historic center, are not accessible for
ordinary passenger cars, but are allowed for taxis, buses, scooters, and bicycles. In order
to allow cars with origin or destination on a TLZ link, the passenger type “car” has been
converted into a “taxi” for specific vehicles. In this way ordinary cars without origin or
destination in the TLZ cannot drive through the historic center, while it remains accessible
for workers and residents with origin or destination in the TLZ, just as in reality.

The disaggregation of the car ODM has produced a total of 71,680 external trips. For
each trip, an initial route is generated by connecting the first and last link of each trip with
the shortest time route, where the estimated link travel times assume free flow conditions.
The departure times of the vehicles have been uniformly distributed within the interval
7:00 to 8:00 a.m.

Furthermore, mapmatched and scaled bicycle GPS trips (see Section 2.4) which goes
through the near suburb have been kept, even if partially out of the core area. A total of 616
bike trips have been identified, where either the first or the last link lays within an external
zone. Note that vehicles performing external trips do not carry people of the synthetic
population. They are merely used to generate a background traffic in the core simulation
area which adds up with the traffic from the synthetic population.

2.6. Construction of the Activity Based Synthetic Population

A synthetic population has been built for people living in the core simulation area,
based on the previously described demand elements. A basic assumption is that the
external demand is independent from the travel behavior of the synthetic population,
except for the route choice.

Essentially the synthetic population consists of a database of people, each person
with its own attributes (e.g., home/work location, activity pattern, vehicle ownerships,
preferred mode, and socioeconomic attributes) and a set of feasible mobility plans. A
plan describes a door-to-door trip between successive activities and consists of a series
of stages, where each stage represents a movement with a single mode of transport [61].
The estimated or effective execution time of plans allows people to choose their optimal
mobility solution for their specific activities, including travel modes and routes.

This section describes the generation of the synthetic population with a primary plan,
which is the plan that uses their preferred mode. The preferred mode of each person
depends on the data source. The generation of alternative plans for each person together
with a plan choice model are treated in Section 3. Due to the available data, the presented
construction focuses on the activity pair home-work during the morning peak hour.

The share of the population who uses the modes car, scooter, bus and walking is
generated by disaggregating the respective ODMs in the following way: the number of
people living in a certain zone corresponds to the sum of trips leaving the zone with all
the aforementioned transport modes. The home activity location of individual persons
has been associated with buildings, such that the probability to depart from a building
in the zone of origin is proportional to its surface. The same reasoning has been applied
to identify the building associated with work location inside the destination zone. The
building surfaces have been determined from the imported shapes. The generation of
pedestrians has received a special treatment: their generation between a particular OD pair
took only place if the distance between the center of the respective pair of TAZ was less than
1.5 km. This somehow arbitrary threshold is insensitive as it simply avoids unrealistically
long walks. The departure times of all persons created with ODMs have been uniformly
distributed within the interval 7:00 to 8:00 a.m. The preferred mode of each person is set by
the mode of the ODM that has been used to generate the person. Each person received the
vehicle required to travel with his/her preferred mode, e.g., all car drivers received a car,
and all scooter drivers received a scooter.
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The cyclist population has been generated from the processed GPS traces (see Section 2.4)
where the first and last links are within the core simulation area. For each of these trips the
home activity building and the work activity building have been picked randomly within a
radius of 50 m around the first and last trip links, respectively. Obviously, all cyclists do own
a bicycle.

At this point, the entire population has been created for the core simulation area,
which performs trips during rush hour. The synthetic population statistics with absolute
numbers and shares of the preferred mode are shown in Table 2. Note that despite the
different data sources, the mode share of the population is similar to the official statistics
obtained from the Sustainable Mobility Plan (PUMS) of Bologna [62].

Table 2. Statistics of the synthetic population with share of preferred modes (Ms) and observed mode share Os provided by
the Sustainable Mobility Plan (PUMS) of Bologna [62]. The last two columns refer to the added number of plans and the
total number of plans generated per mode for the mode choice model, see Section 3.

Transport
Strategy

N◦ of People per
Strategy Assigned

with Preferred
Mode

Share of People
Assigned with

Preferred Mode
Ms

Observed Mode
Share Os

Additional
Feasible Plans

Total Feasible
Plans

Car 17,337 30.50% 30.70% 13,923 31,260
Bicycle 2424 4.26% 7.20% 20,310 22,734

Bus 17,557 30.89% 27.70% 39,280 56,837
Scooter 6199 10.91% 11.40% 5168 11,367
Walking 13,320 23.44% 23.00% 12,467 25,787

Total 56,837 100.00% 100.00% 91,148 147,985

Successively, a primary plan for the home-work activity pair has been created for
each person, based on the previously acquired person attributes and the preferred mode.
A plan with the mode “car” consists of the following stages: home activity-walk to car
parking-drive to car parking-walk to work location-work activity. A general network
location is defined in terms of link and position on link. The two parking lots have been
chosen to minimize the distance to the home and work location, respectively. A plan
with the modes “scooter” or “bicycle” does not require a parking, hence the stages have
the shape: home activity-drive to work location-work activity. The initial vehicle routing
between two network links equals the shortest time route. There is one exception: the
routes of bicycles are already determined by the mapmatched GPS traces.

Similarly, the plan for walking includes a simple walk stage between activity locations.
The plan for “bus” mode includes a walk to and from the bus stop, a bus ride, and
intermediate walks, depending on the number of transfers. In general, SUMOPy allows
creating plans for any mobility strategy, which can also include several modes, such as
“bike + bus”.

As the initial shortest time routing is not realistic in a congested city, the deterministic
dynamic user equilibrium (DUE) has been determined for all modes except bikes and
buses, which have their fixed routes. The determination of the DUE involves the simulation
of the entire scenario, including all persons and vehicles from the synthetic population,
all trips from the external demand as well as the urban bus lines. It has been found that
the latter have a significant influence on the traffic flows of other modes. The DUE has
been calculated using SUMO’s “duaiterate” assignment tool [63] with default parameters
and choosing the c-logit stochastic traffic assignment as assignment method during each
iteration. After 20 simulation iterations, link travel times have converged and traffic
congestion, which occurred with the initial shortest time routing, have been significantly
reduced. After the DUE assignment, link travel times and plan execution times have
become more realistic. Finally, the entire synthetic population has been created, including
plans for the preferred mode with realistic plan execution times.
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3. Calibration of a Simple Plan Choice Model

The proposed plan choice model attempts to predict the used transport mode of
individuals, such that the modal split of the simulation corresponds to the observed modal
split. The developed calibration method is specifically suited for microsimulations, as it
avoids simulation runs in every iteration step. For this purpose, for each person of the
population, all feasible plans (or likewise all feasible modes) are generated. In the present
context, a mode is feasible if the person possesses the required vehicle—walking and bus is
feasible for all. For this reason, it is of fundamental importance that vehicle ownerships
correctly reflect statistical data reported in [64], as stated by Grimm et al. [65]: in Bologna
53% are car owners, 20% are scooter owners, and 40% are bicycle owners. In order to fit
this statistic, the appropriate vehicles have been randomly assigned to people, in addition
to the vehicle corresponding to their preferred mode.

The model consists of utility functions, where each function is associated to a mobility
plan. The utility function is composed of a travel time proportional component, the value
of time (VoT), and a mode specific parameter. Indeed, the travel time is the most important
factor when choosing an urban transport mode. The model calibration phase uses an
evolutionary minimization algorithm and requires the generation of all feasible plans for
each person and the computation of the respective plan execution times.

The application of the model calibration succeeds in two steps: in a first step, the
travel times for all feasible mobility strategies for all persons are determined. An iterative
algorithm has been developed that selects one of the feasible plans of each person during
each iteration and runs the simulation with the selected plans, as depicted in the flow chart
of Figure 2a; the iterations of plan (re)-selection and simulating are continued until all plans
of all people have been simulated at least once.
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Concerning the plan (re)-selection, a fundamental constraint is that the initial modal
split of the simulation is preserved, meaning that the number of plans for each mode does
not change with the iterations. This is necessary since the different plan execution times
must be determined under the same traffic conditions, otherwise, some plan alternatives
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would have advantages/penalties due to different traffic situations in successive simu-
lations. For this reason, at each iteration, the algorithm swaps the selection of feasible
mobility plans between all those people having the same pairs of strategies, giving priority
to those plans not yet simulated—thus, allowing the modal split to remain unchanged in
each iteration.

In a second step, the model is actually calibrated, e.g., model parameters are deter-
mined as to maximize an objective function, see Figure 2b. Typical utility based mode
choice models consider, in addition to travel time, numerous other attributes such as trip
related costs (e.g., fuel, and ticket), fixed costs and also non-quantifiable attributes (e.g., con-
venience, privacy, etc.) [5]. However, in contrast with conventional mode choice models
based on surveys, it is the mode share produced by the model that is calibrated to match
the observed mode share. This means that there are only five values (corresponding to the
five strategies) available to compare with, which is limiting also the number of coefficients
that can be calibrated. For this reason, the utility function of plan s represents the monetary
value of a plan choice and has the form:

Us,i = αs − βTs,i (1)

where Us,i is the utility function of strategy s for person i, Ts,i is the plan execution time
of strategy s of person i and β represents a universal value of time (VoT), valid for all
people and strategies. The coefficient αs is a mode specific parameter that accounts for all
unobserved attributes. In the present model αs is expressed in monetary terms and can be
understood as a price to be paid (if negative) or a reward given (if positive) when choosing
the respective strategy s and assuming the travel time is the only decision criteria otherwise.
The car is the reference strategy (s = 1), where α1 is set to zero. Once all utilities of all plans
are known, each person i chooses the plan of strategy s if Us,i is the maximum utility of all
feasible strategies for this person. Let Ms be the mode share of people choosing strategy s
and let Os be the observed mode share of strategy s from official statistics (see third column
of Table 2), then the calibration algorithm needs to adjust all the parameters, α2 . . . α5 such
that the geometric differences between the model mode shares and the observed mode
shares are minimized.

z =
5

∑
s=1
|Ms −Os| (2)

This is not a simple minimization problem as the resulting objective function is not
smooth and gradient decent algorithms could fail. Instead, a stochastic minimization
algorithm (CMAES) has been applied. In brief, the iterative algorithm works as follows, for
details see [66]: in each iteration a set of j = 1, . . . , N parameter vectors are drawn from a
finite parameter space by the CMAES algorithm. For each parameter vector pj = [α2 . . . α5]
the objective function zj is determined by evaluating the utilities Us,i for each person i and
plan s, the plan choice for each person, and the mode choice Ms; the CMAES algorithm
selects a set of new parameter vectors for the successive iteration, dependent on which
parameter vectors pj have produced the lowest objective function zj. The algorithm stops
if the lowest of all objective functions zj during an iteration can no longer be decreased
significantly with respect to the previous iteration, see Figure 2b.

4. Results and Discussions
4.1. Mode Share Model Calibration Results

Once the execution times of all feasible plans of all people have been determined, the
actual calibration process can start, as described in the previous section. For the present
study, the value of time is assumed to be β = 0.07 €/min [5] and the parameter space
for all four parameters has been limited to the interval (−5, 5). Figure 3 shows that a
good convergence has been achieved after 4000 iterations, highlighting that the objective
function tends to zero, which means the observed modal split has been reproduced by the
simulation. As the plan execution times Ts,i have been predetermined, no microsimulation
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run is required during the calibration phase, which means that results can be obtained in a
reasonable time (approximately 120 min on a i7 processor computer).
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Table 3. Calibrated parameters of utility function (Equation (1)) of mode share model by minimizing
objective function z

α1 Car (ref.) α2 Bike in € α3 Busin € α4 Walking α5 in € Scooter β in €/min

0.0000 −0.5604 0.3727 −0.0556 −0.0161 0.0700

There is an observation regarding data consistency: after the calibration, there are
people for whom the plan utility corresponding to the preferred mode is no longer the
highest, which means that a plan different from the originally assigned mode is selected
for the final simulation. Of course, in order to preserve the predefined modal split, other
persons may choose these preferred modes, just because the respective plan shows the
highest utility of their feasible plans. This means that the mode choice of individuals
becomes more adapted to the person’s particular environment. For example, if the person’s
home and work activities were located near a bus line and a “car” has been assigned as
preferred mode, then the bus strategy may receive the highest utility and the person would
change mode from “car” to “bus”; for another person, the contrary may happen when the
“bus” is the preferred mode, and the home or work activity are far away from any bus
stop. Therefore, we can state that the calibration process does increase the consistency of
the mode choice behavior of the synthetic population, even if the modal split was already
similar to the reality.

Looking at the numerical values of the alphas, it appears that bicycle riders are
penalized, and bus users are incentivized, meaning that if only the door-to-door trip time
was important, more people would choose the bike and less people would use the bus.

It is interesting to note how, by replacing the car as reference strategy by another
strategy, the proportionality between the parameters related to the different modes of
transport remains completely unchanged, thus highlighting that the crucial aspect for the
calibrated mode choice model does not concern the absolute value of each parameter, but
primarily the relative difference between the various pairs of constants.

It is further worth mentioning that by changing the value of time β, the calibrated α

parameters will change too, but the changes are always proportional to the change of β.
This means a variation of β does only scale the utility function, which does not affect the
strategy choices made upon it.

4.2. Microsimulation Results and Model Validation

After each person has chosen the plan with the highest utility (with utility from
Equation (1) and the calibrated parameters from Table 3), a final microsimulation run has
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been launched for the morning rush hour between 7:00 and 8:00 a.m. and travel times and
link flows have been recorded on the entire network. For evaluation purposes, only the
traffic data of the second half hour has been recorded, in order to avoid unrealistic flows
due to transition effects while the network fills with vehicles and people. The link-flows in
the core simulation area are visualized on Figure 4.

1 

 

 

Figure 4. Measured simulated flows in the core simulation area as number of vehicles entered into a link in 30 min.

The maximum flows of 2500 vehicles/h per lane on Figure 4 can be observed on the
outer ring road, the “Tangenziale”, where also real traffic flows are indeed close to capacity
limits in the morning rush hour. Flows on the inner ring of 1000 to 1500 vehicles/h are also
realistic. In order to validate the simulation, the simulated flows shown in Figure 4 are
compared to the flows measured by induction loop based detectors, scattered around the
city, as shown in Figure 5. The 459 detectors counted average hourly flows on a work day
in February 2014 during 7:00 to 8:00 a.m.

Note that the flows measured by the detectors include cars, buses, and trucks, while
two-wheeled vehicles (bicycles and motorcycles) are not detected. On the other hand, the
link-flows determined during the simulation consider all vehicle categories, consistent
with the generated demand, including cars, scooters, bicycles, and public transport buses.
Another systematic error source is the fact that the counts have been recorded in year 2014
while the demand has been calibrated for year 2018. Other difficulties are related to the
association of detectors with road links and the malfunctioning of some of the detectors:
these detectors have been eliminated from the evaluation.
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The plot of link-flows from the microsimulation run over the link-flows from the
detectors is shown in Figure 6, where the simulated flows are doubled so that both, sim-
ulated and detected flows, are expressed in vehicles per hour. Ideally the flows should
be validated not only at different points on the network, but also at different time in-
stances [67]. However, the observed flows at disposal were only available as an hourly
average, which did not permit a more refined analysis during the simulated rush hour.
Three indicators, typically used in transport science, have been considered to validate the
simulated link flows:
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A first indicator verifies whether there is in average a good correspondence between
simulated and observed flows. For this purpose, a linear regression line is calibrated,
as shown in Figure 6. The regression line has a slope of m = 0.98 and an intercept of
123 vehicles per hour. Both parameters are significant as p-values are 1.47 × 10−91 for
the slope and 8.53 × 10−7 for the intercept. According to literature [5], this slope m is
acceptable because it is within the range of 0.9 < m < 1.1.

The second indicator is the determination coefficient R2 which verifies the correlation
between simulated and observed flows. The resulting coefficient of R2 = 0.6107 is below the



ISPRS Int. J. Geo-Inf. 2021, 10, 165 16 of 20

suggested acceptance level [5] of R2 > 0.8. The relatively low R2 can be partially explained
with the above mentioned error sources due to the available data.

A third measure is the GEH statistic, which is a modified chi squared statistic that
incorporates both, relative and absolute differences, in comparison of simulated and
observed flows. It is a well-established indicator that has been used to validate other
microsimulation scenarios [68]. In brief, the GEH of link i is determined by

GEHi =

√√√√ (
fi − f ∗i

)2

0.5
(

fi − f ∗i
) . (3)

Links with GEH values below 5 represent a good fit, links with values in the range
5 < GEH < 10 are considered questionable and links with GEH > 10 are not a good fit. The
evaluation of the present study reveals that 31% of all observed links are in the range GEH
< 5; 28% are in the range 5 < GEH < 10 and 41% are in the range GEH > 10. The relatively
high percentage of links which do not show a good fit does again reflect the low correlation
coefficient.

For further evaluations, the above indicators have been calculated for different road
types. As criteria to differentiate road types, the road width and number of lanes have
been used. The indicators shown in Table 4 clearly suggest that the flows on larger roads
are modelled with a higher precision with respect to smaller roads. Roads larger than
seven meters achieved the maximum R2 of 0.7. The share of well-fitting links with GEH < 5
does also increase with road size, except for roads with more than three lanes. Apparently,
larger roads are often fast and straight connections, without efficient alternatives; whereas
smaller roads are likely to have many alternatives in an urban network. For this reason,
the traffic assignment has a higher chance of picking the correct large road than choosing
the correct small road. Other classification with more subjective criteria (for example road
priority) did not show coherent evaluation results.

Table 4. Flow comparison data and indicators for different road widths and number of lanes.

Road Link Type # Links Slope m Intercept
(veh/h) R2 GEH < 5 5 < GEH <

10 10 < GEH

0 m < width < 5 m 128 0.87 157.22 0.34 29% 30% 41%
5 m < width < 7 m 203 0.83 150.94 0.51 33% 27% 40%

width > 7 m 116 1.06 146.27 0.7 32% 26% 42%

1 lane 8 0.53 97.36 0.33 25% 25% 50%
2 lanes 191 0.87 125.32 0.46 32% 31% 37%
3 lanes 154 0.77 228.4 0.43 34% 23% 43%

>3 lanes 86 1.02 203.97 0.62 26% 27% 48%

All links 439 0.98 122.61 0.61 31% 28% 41%

5. Conclusions

A large-scale, agent-based microsimulation scenario including the transport modes car,
bus, bicycle, scooter, and pedestrian, has been built and validated for the city of Bologna
during the morning peak hour. The activity-based model allows simulating and evaluating
door-to-door trip times with different mobility strategies.

Transport network, bus services and the transport demand have been extracted from
different “big data” sources. Many data processing steps were necessary to homogenize
the data and to make it coherent. Microsimulations are sensitive to small modeling errors,
particularly with congested networks; for this reason, much attention has been paid to
modeling details such as external traffic, parking spaces, traffic light programs, access of
roads for different vehicle types, and in particular vehicle access to traffic limited zones in
the city center.
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A simple mode choice model has been calibrated which successfully reproduces the
modal split from official statistics and increases the consistency between modal choice
and the transport environment of the individual. The scenario has been validated by
comparing simulated traffic flows with observed flows from road-side detectors. The
quality of the simulated flows is satisfactory even though different systematic error sources
have impeded a higher correlation coefficient: a main source of error is that the different
data sources (e.g., network, ODMs, GPS traces, and traffic counts) stem from different years
and the updating to the year 2018 contains many assumptions. Further improvements
are expected when more recent data become available. In addition, more sophisticated
data fusion methods [48–51] have also the potential to reconstruct the synthetic population
more precisely. It would be further interesting to make comparative studies with other
available microsimulators as there are differences in link capacities [69].

Finally, the built microsimulation scenario represents a test-platform for transport
technology developers as the used microsimulator SUMO has already been employed to
evaluate a wide range of transport technologies, such as battery electric vehicles, ride-
sharing schemes, V2X communication, platooning of automated vehicles, or intelligent
traffic light systems. Thanks to a high-level programming interface called TraCi, it is
possible to interact with a running simulation using custom-made code. However, even
transport planners can make use of the scenario to test how different technologies and
new means of transportation interact with transport demand, while taking advantage of
the growing availability of big data. The concept of mobility strategies allows adding
any kind of new technology or service. SUMO with SUMOPy enable an easily access to
microsimulations, edit scenarios and track all simulation events, step by step, through a
user-friendly interface, and a rich spectrum of analysis tools.

Even though the present scenario-building is a special case and leaves ample room
for improvements, it starts narrowing the gap between different research areas and allows
planners, data scientists and technology developers to work together more effectively on
the same transport scenario with the common goal to realistically evaluate and improve
future sustainable transport systems.

Author Contributions: Conceptualization, Joerg Schweizer, Cristian Poliziani and Federico Rupi;
Methodology, Joerg Schweizer, Cristian Poliziani, and Davide Morgano; Software, Joerg Schweizer,
Cristian Poliziani, Davide Morgano, and Mattia Magi; Validation, Davide Morgano and Mattia
Magi; Data Curation, Davide Morgano, Mattia Magi, and Cristian Poliziani; Writing—Original Draft
Preparation, Joerg Schweizer; Writing—Review and Editing, Joerg Schweizer, Cristian Poliziani,
Federico Rupi, Davide Morgano, and Mattia Magi; Supervision, Joerg Schweizer; All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The simulation software as well as the entire transport scenario de-
scribed in this article, hence all information needed to replicate the simulation, are published or
linked online at https://github.com/schwoz/sumopy. The source data of the GTFS is available
online at the TPER web-site https://solweb.tper.it/web/tools/open-data/open-data-detail.aspx?
source=&filename=gommagtfsbo. The publication of the source data of the OD matrices, the traffic
light plans, the GPS traces of cyclists and the traffic counts is prohibited by contract.

Acknowledgments: We are grateful to SRM (Società Reti e Mobilità, Bologna) for providing the GPS
traces related to the European Cycling Challenge campaign and to the Traffic Department of the city
of Bologna for providing the detector flows. Special thanks go to the following graduated students
for their dedication on the construction of the scenario from both the demand and supply side: Sara
Castaldini, Francesco Filippi, Marco Sermasi, Caterina Ciabatti, Ginevra Antignano, Roberto Todisco,
Enrico Pio Troiano, Alessandro Nalin.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/schwoz/sumopy
https://solweb.tper.it/web/tools/open-data/open-data-detail.aspx?source=&filename=gommagtfsbo
https://solweb.tper.it/web/tools/open-data/open-data-detail.aspx?source=&filename=gommagtfsbo


ISPRS Int. J. Geo-Inf. 2021, 10, 165 18 of 20

References
1. Open Street Map (OSM). Available online: https://www.openstreetmap.org (accessed on 6 July 2020).
2. Patriksson, M. The Traffic Assignment Problem: Models and Methods. In Topics in Transportation; Grafton, J., Ed.; VSP, Linköping

Institute of Technology: Gothenburg, Sweden, 1994; ISBN 978-0486787909.
3. Wardrop, J.G. Road paper. Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 1952, 1, 325–362. [CrossRef]
4. Frank, M.; Wolfe, P. An algorithm for quadratic programming. Nav. Res. Logist. Q. 1956, 3, 95–110. [CrossRef]
5. Cascetta, E. Transportation Systems Engineering: Theory and Methods; Springer Science and Business Media LLC: Berlin/Heidelberg,

Germany, 2001; Volume 49.
6. Verbas, I.O.; Mahmassani, H.S.; Hyland, M.F.; Halat, H. Integrated Mode Choice and Dynamic Traveler Assignment in Multimodal

Transit Networks: Mathematical Formulation, Solution Procedure, and Large-Scale Application. Transp. Res. Rec. J. Transp. Res.
Board 2016, 2564, 78–88. [CrossRef]

7. Kloostra, B.; Roorda, M.J. Fully autonomous vehicles: Analyzing transportation network performance and operating scenarios in
the Greater Toronto Area, Canada. Transp. Plan. Technol. 2019, 42, 99–112. [CrossRef]

8. Schweizer, J.; Parriani, T.; Traversi, E.; Rupi, F. Optimum Vehicle Flows in a Fully Automated Vehicle Network. In Proceedings of
the International Conference on Vehicle Technology and Intelligent Transport Systems; SCITEPRESS—Science and Technology
Publication: Rome, Italy, 2016; pp. 195–202. Available online: https://www.scitepress.org/PublicationsDetail.aspx?ID=W0rOwi3
OENM=&t=1 (accessed on 5 March 2021).

9. Lee, S.; Heydecker, B.G.; Kim, J.; Park, S. Stability analysis on a dynamical model of route choice in a connected vehicle
environment. Transp. Res. Procedia 2017, 23, 720–737. [CrossRef]

10. Bowman, J.; Ben-Akiva, M. Activity-based disaggregate travel demand model system with activity schedules. Transp. Res. Part A
Policy Pract. 2001, 35, 1–28. [CrossRef]

11. Charypar, D.; Axhausen, K.W.; Nagel, K. Event-Driven Queue-Based Traffic Flow Microsimulation. Transp. Res. Rec. J. Transp. Res.
Board 2007, 2003, 35–40. [CrossRef]

12. Balmer, M.; Axhausen, K.; Nagel, K. Agent-Based Demand-Modeling Framework for Large-Scale Microsimulations. Transp. Res.
Rec. J. Transp. Res. Board 2006, 1985, 125–134. [CrossRef]

13. Zhao, Y.; Sadek, A.W. Large-scale Agent-based Traffic Micro-simulation: Experiences with Model Refinement, Calibration,
Validation and Application. Procedia Comput. Sci. 2012, 10, 815–820. [CrossRef]

14. Hsueh, G.; Czerwinski, D.; Poliziani, C.; Becker, T.; Hughes, A.; Chen, P.; Benn, M. Using BEAM Software to Simulate the Introduction
of On-Demand, Automated, and Electric Shuttles for Last Mile Connectivity in Santa Clara County; MTI Pub.: San Jose, CA, USA, 2021;
p. 343. [CrossRef]

15. Mtoi, E.T.; Moses, R.; Ozguven, E.E. An Alternative Approach to Network Demand Estimation: Implementation and Application
in Multi-Agent Transport Simulation (MATSim). Procedia Comput. Sci. 2014, 37, 382–389. [CrossRef]

16. Pi, X.; Ma, W.; Qian, Z.S. A general formulation for multi-modal dynamic traffic assignment considering multi-class vehicles,
public transit and parking. Transp. Res. Procedia 2019, 38, 914–934. [CrossRef]

17. Flötteröd, G.; Chen, Y.; Nagel, K. Behavioral Calibration and Analysis of a Large-Scale Travel Microsimulation. Networks Spat.
Econ. 2011, 12, 481–502. [CrossRef]

18. Meister, K.; Balmer, M.; Ciari, F.; Horni, A.; Rieser, M.; Waraich, R.A.; Axhausen, K. Large-scale Agent-based Travel Demand
Optimization Applied to Switzerland, Including Mode Choice. In Proceedings of the 12th World Conference on Transportation
Research, Lisboa, Portugal, 11–15 July 2010.

19. Childress, S.; Nichols, B.; Charlton, B.; Coe, S. Using an Activity-Based Model to Explore the Potential Impacts of Automated
Vehicles. Transp. Res. Rec. J. Transp. Res. Board 2015, 2493, 99–106. [CrossRef]

20. Kamel, J.; Vosooghi, R.; Puchinger, J.; Ksontini, F.; Sirin, G. Exploring the Impact of User Preferences on Shared Autonomous
Vehicle Modal Split: A Multi-Agent Simulation Approach. Transp. Res. Procedia 2019, 37, 115–122. [CrossRef]

21. Do, W.; Rouhani, O.M.; Miranda-Moreno, L. Simulation-Based Connected and Automated Vehicle Models on Highway Sections:
A Literature Review. J. Adv. Transp. 2019, 2019, 1–14. [CrossRef]

22. Ramezani, M.; Machado, J.A.; Skabardonis, A.; Geroliminis, N. Capacity and Delay Analysis of Arterials with Mixed Autonomous
and Human-driven Vehicles. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; IEEE: New York, NY, USA, 2017; pp. 280–284.

23. Milanes, V.; Shladover, S.E.; Spring, J.; Nowakowski, C.; Kawazoe, H.; Nakamura, M. Cooperative Adaptive Cruise Control in
Real Traffic Situations. IEEE Trans. Intell. Transp. Syst. 2013, 15, 296–305. [CrossRef]

24. Calvert, S.C.; Schakel, W.J.; Van Lint, J.W.C. Will Automated Vehicles Negatively Impact Traffic Flow? J. Adv. Transp. 2017, 2017,
1–17. [CrossRef]

25. Haas, I.; Friedrich, B. Developing a micro-simulation tool for autonomous connected vehicle platoons used in city logistics.
Transp. Res. Procedia 2017, 27, 1203–1210. [CrossRef]

26. Fernandes, P.; Nunes, U. Platooning of Autonomous Vehicles with Intervehicle Communications in SUMO Traffic Simulator. In
Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September
2010; IEEE: New York, NY, USA, 2010.

27. Shladover, S.E.; Su, D.; Lu, X.-Y. Impacts of Cooperative Adaptive Cruise Control on Freeway Traffic Flow. Transp. Res. Rec. J.
Transp. Res. Board 2012, 2324, 63–70. [CrossRef]

https://www.openstreetmap.org
http://doi.org/10.1680/ipeds.1952.11259
http://doi.org/10.1002/nav.3800030109
http://doi.org/10.3141/2564-09
http://doi.org/10.1080/03081060.2019.1565159
https://www.scitepress.org/PublicationsDetail.aspx?ID=W0rOwi3OENM=&t=1
https://www.scitepress.org/PublicationsDetail.aspx?ID=W0rOwi3OENM=&t=1
http://doi.org/10.1016/j.trpro.2017.05.040
http://doi.org/10.1016/S0965-8564(99)00043-9
http://doi.org/10.3141/2003-05
http://doi.org/10.1177/0361198106198500114
http://doi.org/10.1016/j.procs.2012.06.105
http://doi.org/10.31979/mti.2021.1822
http://doi.org/10.1016/j.procs.2014.08.057
http://doi.org/10.1016/j.trpro.2019.05.047
http://doi.org/10.1007/s11067-011-9164-9
http://doi.org/10.3141/2493-11
http://doi.org/10.1016/j.trpro.2018.12.173
http://doi.org/10.1155/2019/9343705
http://doi.org/10.1109/TITS.2013.2278494
http://doi.org/10.1155/2017/3082781
http://doi.org/10.1016/j.trpro.2017.12.084
http://doi.org/10.3141/2324-08


ISPRS Int. J. Geo-Inf. 2021, 10, 165 19 of 20

28. Papadoulis, A.; Quddus, M.; Imprialou, M. Evaluating the safety impact of connected and autonomous vehicles on motorways.
Accid. Anal. Prev. 2019, 124, 12–22. [CrossRef] [PubMed]

29. Liu, C.-J.; Liu, Z.; Chai, Y.-J.; Liu, T.-T. Review of Virtual Traffic Simulation and Its Applications. J. Adv. Transp. 2020, 2020, 1–9.
[CrossRef]

30. Lu, Q.; Tettamanti, T.; Hörcher, D.; Varga, I. The impact of autonomous vehicles on urban traffic network capacity: An experimental
analysis by microscopic traffic simulation. Transp. Lett. 2019, 12, 540–549. [CrossRef]

31. Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Krajzewicz, D. SUMO—Simulation of Urban MObility: An Overview. In Proceedings
of the SIMUL 2011, Barcelona, Spain, 23–28 October 2011.

32. Mavromatis, I.; Tassi, A.; Piechocki, R.J.; Sooriyabandara, M. On Urban Traffic Flow Benefits of Connected and Automated
Vehicles. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28
May 2020; IEEE: New York, NY, USA, 2020; pp. 1–7.

33. Liu, R.; Van Vliet, D.; Watling, D. Microsimulation models incorporating both demand and supply dynamics. Transp. Res. Part A
Policy Pract. 2006, 40, 125–150. [CrossRef]

34. Liu, R. The DRACULA Dynamic Network Microsimulation Model. In Human Resource Development and Information Technology;
Springer International Publishing: Berlin/Heidelberg, Germany, 2006; pp. 23–56.

35. Alam, J.; Habib, M.A. Investigation of the Impacts of Shared Autonomous Vehicle Operation in Halifax, Canada Using a Dynamic
Traffic Microsimulation Model. Procedia Comput. Sci. 2018, 130, 496–503. [CrossRef]

36. Fellendorf, M.; Vortisch, P. Microscopic Traffic Flow Simulator VISSIM. Harvey J. Greenberg 2010, 145, 63–93.
37. Codeca, L.; Frank, R.; Faye, S.; Engel, T. Luxembourg SUMO Traffic (LuST) Scenario: Traffic Demand Evaluation. IEEE Intell.

Transp. Syst. Mag. 2017, 9, 52–63. [CrossRef]
38. Po, L.; Rollo, F.; Bachechi, C.; Corni, A. From Sensors Data to Urban Traffic Flow Analysis. In Proceedings of the 2019 IEEE

International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; IEEE: New York, NY, USA, 2019; pp.
478–485.

39. Savrasovs, M.; Pticina, I.; Zemlyanikin, V. Wide-Scale Transport Network Microscopic Simulation Using Dynamic Assignment
Approach. Comput. Devices Commun. 2018, 36, 241–251.

40. Bartin, B.; Özbay, K.; Gao, J.; Kurkcu, A. Calibration and validation of large-scale traffic simulation networks: A case study.
Procedia Comput. Sci. 2018, 130, 844–849. [CrossRef]

41. Uppoor, S.; Fiore, M. Large-scale Urban Vehicular Mobility for Networking Research. In Proceedings of the 2011 IEEE Vehicular
Networking Conference (VNC), Amsterdam, The Netherlands, 14–16 November 2011; IEEE: New York, NY, USA, 2011; pp. 62–69.

42. Martínez-Díaz, M.; Soriguera, F. Autonomous vehicles: Theoretical and practical challenges. Transp. Res. Procedia 2018, 33,
275–282. [CrossRef]

43. Wierbos, M.J.; Knoop, V.L.; Hänseler, F.S.; Hoogendoorn, S.P. A macroscopic flow model for mixed bicycle–car traffic. Transp. A
Transp. Sci. 2021, 17, 340–355. [CrossRef]

44. Luo, Z.; Liu, Y.; Guo, C. Operational characteristics of mixed traffic flow under bi-directional environment using cellular
automaton. J. Traffic Transp. Eng. 2014, 1, 383–392. [CrossRef]

45. Bernardi, S.; Krizek, K.J.; Rupi, F. Quantifying the role of disturbances and speeds on separated bicycle facilities. J. Transp. Land
Use 2015. [CrossRef]

46. Woodman, R.; Lu, K.; Higgins, M.D.; Brewerton, S.; Jennings, P.A.; Birrell, S. Gap acceptance study of pedestrians crossing
between platooning autonomous vehicles in a virtual environment. Transp. Res. Part F Traffic Psychol. Behav. 2019, 67, 1–14.
[CrossRef]

47. Github. LUST Scenario. 2019. Available online: https://github.com/lcodeca/LuSTScenario (accessed on 15 November 2020).
48. Roulland, F.; De Souza, C.; Ulloa, L.; Mondragón, A.; Niemaz, M.; Ciriza, V. Towards Data-Driven Simulations in Urban Mobility

Analytics. In Proceedings of the 14th ITS Asia Pacific Forum, Nanjing, China, 27–29 April 2015.
49. Wilson, A. The Future of Urban Modelling. Appl. Spat. Anal. Policy 2018, 11, 647–655. [CrossRef]
50. Anda, C.; Erath, A.; Fourie, P.J. Transport modelling in the age of big data. Int. J. Urban Sci. 2017, 21, 19–42. [CrossRef]
51. Croce, A.I.; Musolino, G.; Rindone, C.; Vitetta, A. Transport System Models and Big Data: Zoning and Graph Building with

Traditional Surveys, FCD and GIS. ISPRS Int. J. Geo-Inf. 2019, 8, 187. [CrossRef]
52. Github. SUMOPy. 2020. Available online: https://github.com/schwoz/sumopy/ (accessed on 15 November 2020).
53. Dati ISTAT. Available online: http://dati.istat.it/ (accessed on 15 November 2020).
54. Contributed/SUMOPy. Available online: https://sumo.dlr.de/docs/Contributed/SUMOPy.html (accessed on 15 Novem-

ber 2020).
55. Grimm, V.; Berger, U.; DeAngelis, D.L.; Polhill, J.G.; Giske, J.; Railsback, S.F. The ODD protocol: A review and first update. Ecol.

Model. 2010, 221, 2760–2768. [CrossRef]
56. SUMO Netconvert. Available online: https://sumo.dlr.de/docs/netconvert.html (accessed on 15 November 2020).
57. SUMO Netedit. Available online: https://sumo.dlr.de/docs/netedit.html (accessed on 15 November 2020).
58. Schweizer, J.; Bernardi, S.; Rupi, F. Map-matching algorithm applied to bicycle global positioning system traces in Bologna. IET

Intell. Transp. Syst. 2016, 10, 244–250. [CrossRef]
59. Censimento Popolazione e Abitazioni. 2001. Available online: https://www.istat.it/it/archivio/3847 (accessed on 29 Decem-

ber 2020).

http://doi.org/10.1016/j.aap.2018.12.019
http://www.ncbi.nlm.nih.gov/pubmed/30610995
http://doi.org/10.1155/2020/8237649
http://doi.org/10.1080/19427867.2019.1662561
http://doi.org/10.1016/j.tra.2005.05.003
http://doi.org/10.1016/j.procs.2018.04.066
http://doi.org/10.1109/MITS.2017.2666585
http://doi.org/10.1016/j.procs.2018.04.076
http://doi.org/10.1016/j.trpro.2018.10.103
http://doi.org/10.1080/23249935.2019.1708512
http://doi.org/10.1016/S2095-7564(15)30288-9
http://doi.org/10.5198/jtlu.2015.715
http://doi.org/10.1016/j.trf.2019.09.017
https://github.com/lcodeca/LuSTScenario
http://doi.org/10.1007/s12061-018-9258-6
http://doi.org/10.1080/12265934.2017.1281150
http://doi.org/10.3390/ijgi8040187
https://github.com/schwoz/sumopy/
http://dati.istat.it/
https://sumo.dlr.de/docs/Contributed/SUMOPy.html
http://doi.org/10.1016/j.ecolmodel.2010.08.019
https://sumo.dlr.de/docs/netconvert.html
https://sumo.dlr.de/docs/netedit.html
http://doi.org/10.1049/iet-its.2015.0135
https://www.istat.it/it/archivio/3847


ISPRS Int. J. Geo-Inf. 2021, 10, 165 20 of 20

60. Rupi, F.; Poliziani, C.; Schweizer, J. Data-driven Bicycle Network Analysis Based on Traditional Counting Methods and GPS
Traces from Smartphone. ISPRS Int. J. Geo-Inf. 2019, 8, 322. [CrossRef]

61. Schweizer, J.; Rupi, F.; Poliziani, C. Generating Activity Based, Multi-modal Travel Demand for SUMO. In Proceedings of the
SUMO User Conference 2018, Berlin, Germany, 14–16 May 2018.

62. Osservatotio PUMS. Available online: https://www.osservatoriopums.it/bologna (accessed on 15 November 2020).
63. SUMO. Demand/Dynamic User Assigment. Available online: https://sumo.dlr.de/docs/Demand/Dynamic_User_Assignment.

html (accessed on 15 November 2020).
64. Grimm, V.; Revilla, E.; Berger, U.; Jeltsch, F.; Mooij, W.M.; Railsback, S.F.; DeAngelis, D.L. Pattern-oriented modeling of

agent-based complex systems: Lessons from ecology. Science 2005, 310, 987–991. [CrossRef]
65. I Numeri di Bologna Metropolitana. Il Parco Veicolare di Bologna al 31.12.2017. Available online: http://inumeridibolognametropolitana.

it/studi-e-ricerche/il-parco-veicolare-di-bologna-al-31122017 (accessed on 29 December 2020).
66. Hansen, N. The CMA Evolution Strategy: A Tutorial. Inria 2011, 1–34. Available online: https://hal.inria.fr/hal-01297037

/document (accessed on 29 December 2020).
67. Kang, J.-Y.; Aldstadt, J. Using multiple scale spatio-temporal patterns for validating spatially explicit agent-based models. Int. J.

Geogr. Inf. Sci. 2018, 33, 193–213. [CrossRef] [PubMed]
68. Tawfeek, M.H.; Mohamed, E.; Khaled, E.-A.; Hatem, A.-L. Calibration and Validation of Micro-Simulation Models Using

Measurable Variables. In Proceedings of the Canadian Society for Civil Engineering 2018 Annual Conference, Fredericton, NB,
Canada, 13–16 June 2018.

69. Maciejewski, M. A comparison of microscopic traffic flow simulation systems for an urban area. Transp. Probl. 2010, 5, 27–37.

http://doi.org/10.3390/ijgi8080322
https://www.osservatoriopums.it/bologna
https://sumo.dlr.de/docs/Demand/Dynamic_User_Assignment.html
https://sumo.dlr.de/docs/Demand/Dynamic_User_Assignment.html
http://doi.org/10.1126/science.1116681
http://inumeridibolognametropolitana.it/studi-e-ricerche/il-parco-veicolare-di-bologna-al-31122017
http://inumeridibolognametropolitana.it/studi-e-ricerche/il-parco-veicolare-di-bologna-al-31122017
https://hal.inria.fr/hal-01297037/document
https://hal.inria.fr/hal-01297037/document
http://doi.org/10.1080/13658816.2018.1535121
http://www.ncbi.nlm.nih.gov/pubmed/31695574

	Introduction 
	The Scenario Building Process 
	The Road Network Model 
	Public Transport Services 
	Transport Demand from OD Matrices 
	Transport Demand from GPS Traces 
	Construction of External Demand 
	Construction of the Activity Based Synthetic Population 

	Calibration of a Simple Plan Choice Model 
	Results and Discussions 
	Mode Share Model Calibration Results 
	Microsimulation Results and Model Validation 

	Conclusions 
	References

