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Abstract: Anyone can contribute geographic information to OpenStreetMap (OSM), regardless of
their level of experience or skills, which has raised concerns about quality. When reference data
is not available to assess the quality of OSM data, intrinsic methods that assess the data and its
metadata can be used. In this study, we applied unsupervised machine learning for analysing OSM
history data to get a better understanding of who contributed when and how in Mozambique. Even
though no absolute statements can be made about the quality of the data, the results provide valuable
insight into the quality. Most of the data in Mozambique (93%) was contributed by a small group of
active contributors (25%). However, these were less active than the OSM Foundation’s definition of
active contributorship and the Humanitarian OpenStreetMap Team (HOT) definition for intermediate
mappers. Compared to other contributor classifications, our results revealed a new class: contributors
who were new in the area and most likely attracted by HOT mapping events during disaster relief
operations in Mozambique in 2019. More studies in different parts of the world would establish
whether the patterns observed here are typical for developing countries. Intrinsic methods cannot
replace ground truthing or extrinsic methods, but provide alternative ways for gaining insight about
quality, and they can also be used to inform efforts to further improve the quality. We provide
suggestions for how contributor-focused intrinsic quality assessments could be further refined.

Keywords: volunteered geographic information; crowdsourcing; data quality; intrinsic quality
assessment; contributors; OpenStreetMap; Mozambique

1. Introduction

OpenStreetMap (OSM), initiated in 2004, is a collaborative mapping project aimed
at providing a map of the world in the form of a freely available database of geographic
features that can be edited by anyone. OSM data resembles both volunteered geographic
information (VGI), i.e., voluntarily contributed by members of the public, and crowd-
sourced data, i.e., obtained by enlisting the services of a large number of people, typically
via the Internet [1]. The OSM project came about to overcome issues with spatial data
availability and restrictions on the use of proprietary data sets imposed by data producers
such as national mapping agencies. To a large extent, OSM was prompted by the success
of Wikipedia [2]. With over 7 million registered users in 2021 [3], the OSM database is
quite impressive and hosts a vast amount of geographic information contributed by users
from all over the world. It is one of the most well-known and successful examples of
crowdsourcing and volunteered geographic information so that OSM data, as well as its
contributors, have become focal points of research [4–9]. However, only very few studies
have focussed on OSM data in Africa [10,11].

OSM makes it possible for anyone to contribute geographic information, regardless of
their level of experience or skills. In developing countries, where geospatial data is often
scarce, OSM can be valuable for filling data gaps, e.g., during a disaster response [6,10,12].

ISPRS Int. J. Geo-Inf. 2021, 10, 156. https://doi.org/10.3390/ijgi10030156 https://www.mdpi.com/journal/ijgi

https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-8683-8047
https://doi.org/10.3390/ijgi10030156
https://doi.org/10.3390/ijgi10030156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi10030156
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/10/3/156?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2021, 10, 156 2 of 19

Since the task of creating geographic information is no longer exclusively performed by
trained professionals, data quality can be a concern and has been cited as a hindrance to
its use [12,13]. OSM data quality has often been assessed extrinsically by comparing it
to other reference datasets (see Section 2.2). However, such reference data is not always
available [14] and some feature definitions (e.g., wetlands) are subjective. Therefore,
intrinsic assessment methods have been employed to study OSM data quality, where the
data itself or metadata about it is analysed.

For example, knowledge about contribution characteristics in a specific area can
provide a better understanding of how volunteers contribute data and, therefore, insight
into data quality. Analysing contributors and their contributions can answer questions,
such as: What kind of contributors (e.g., experienced vs newcomers) have worked on
the data in the area? In which areas should the data be validated, e.g., where have many
newcomers or older non-recurring contributors worked? Several studies have analysed
and characterised OSM contributors [5,15,16], but none of these focussed on Africa. As
the number of OSM contributors continues to grow, knowledge about their characteristics
and the kind of data they contribute is increasing in importance, especially in Africa where
reference datasets are typically not available.

In this study, contributions to OSM data in Mozambique were analysed. Mozambique
lies in the south-eastern part of Africa (see Figure 1) and has a sizable coastline of roughly
2700 km on the Indian ocean [17]. Mozambique covers an area of 801,537 km2, which
makes it the world’s 36th-largest country, comparable in size to Turkey [18]. Even though
Mozambique’s rate of economic growth has shown significant increase over the past two
decades, the country still faces development challenges and is ranked as one of the world’s
most underdeveloped nations. The population is among the poorest and most vulnerable
to climate conditions. Over 60% of the population lives in low-lying flood prone zones with
poor drainage, inadequate sanitation and flimsy infrastructure (e.g., rural and informal
dwellings). Due to its geography—namely, a vast coastline, low-lying terrain and tropical
climate—Mozambique is often faced with droughts, tropical cyclones and flooding near
the coast and in river basins [17,19].
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In 2019, cyclones Idai and Kenneth caused significant flood damage and a subsequent
humanitarian crisis in Mozambique. In response, the Humanitarian OpenStreetMap Team
(HOT) initiated a large number of mapping projects in support of relief operations, which
resulted in a significant amount of attention in the OSM community. Smaller OSM mapping
projects, aimed at filling gaps in spatial data coverage in the country, have also taken place
over the years. We chose Mozambique for our study because we expected many new and
recurring users to have contributed OSM data over a relatively short and recent timespan
in the aftermaths of cyclones Idai and Kenneth.

In order to get a better understanding of OSM data quality in Mozambique, we
applied principal component analysis and k-means clustering, an unsupervised machine
learning (also referred to as statistical learning) technique, to characterize contributors
of OSM data in Mozambique. Based on the contributor characterization, conclusions are
presented about the quality of the data in Mozambique. To our knowledge, this is the first
contributor-focussed intrinsic assessment of OSM data quality for an African country that
makes use of unsupervised machine learning.

In the next section of this paper, we review data quality and how it can be assessed,
specifically if the data is contributed by volunteers. Then we explain how we analysed
OSM contributors in Mozambique and present the results of our analysis. The paper is
concluded with a discussion of the results and potential future work.

2. Background and Related Work
2.1. Data Quality

Data quality refers to the degree to which a set of inherent data characteristics fulfils
requirements [20]. If data is collected for a specific purpose, then these requirements are
clear. However, geospatial data is typically collected and used for many different purposes;
therefore, the quality cannot be assessed fully at the time of data collection. Instead, users
need to assess the quality with reference to their context and the intended purpose of its
use. In other words, the quality of geospatial data is subjective, as it depends on the user,
purpose and context in which it is used [21].

There are several dimensions of geospatial data quality [22]:

• Completeness describes the presence or absence of features, their attributes and rela-
tionships;

• Logical consistency refers to the degree of adherence to logical rules of data structure,
attribution and relationships;

• Positional accuracy measures the closeness of a feature’s position to values as accepted
as or being true;

• Thematic accuracy comprises the accuracy of quantitative attributes, the correctness
of non-quantitative attributes and the correctness of the classification of features and
their relationships;

• Temporal quality describes the quality of temporal attributes and temporal relation-
ships of features;

• Usability is based on user requirements and assessed by evaluating quality along the
other dimensions.

Since quality is often assessed by users who were not involved in the data collection,
the user has to rely on metadata provided by a contributor when assessing the quality
of geospatial data. However, despite the availability of standards and tools for metadata
collection and automation, metadata required to assess data quality remains a challenge
and there is even less metadata available for VGI. Other VGI quality challenges include
anonymous contributions and the detection of data that is volunteered maliciously, e.g., to
manipulate property prices [21].

2.2. Data Quality Assessment

Data quality assessment methods are either direct, i.e., by inspecting the data, or
indirect, i.e., by relying on external knowledge or experience of the data. Direct meth-
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ods can be classified as intrinsic (internal) where quality is assessed based on the data
only, or extrinsic (external) where data quality is assessed against another (external) data
source [22]. Researchers have applied and evaluated both intrinsic and extrinsic data
quality assessments methods for VGI [14,23].

In the early days of OSM, extrinsic methods were frequently used to compare OSM
to external reference data for determining how well it measured up to professionally
produced data, e.g., by traditional mapping agencies. Haklay [24] is one of the earliest of
such examples with an assessment of the positional accuracy and completeness of the OSM
road network in the United Kingdom. Girres and Touya [25] and Neis et al. [26] conducted
similar assessments of the OSM road network in France and Germany, respectively. Mooney
and Corcoran [27] assessed the accuracy of tags assigned to OSM road segments in Ireland,
United Kingdom, Germany, and Austria, while Helbich et al. [28] evaluated the positional
accuracy of road junctions in a German city. The quality of OSM building footprints was
assessed in Munich, Germany [29] and in Lombardy, Italy [30]. OSM data has also been
compared to land use data in Southern Germany [31].

Intrinsic quality assessments are useful when reference data is not available [14] or
for data with subjective feature definitions [28], such as wetlands. Data-focused intrinsic
assessment derives insight about data quality by considering the characteristics of the
data itself, such as the number of versions of a feature, the type of edits made to the
feature, when a feature was last edited and the number of contributors associated with a
feature [32]. Contributor-focused intrinsic assessment derives insight about data quality by
analysing the contributors, e.g., the frequency of their contributions, mapping preferences,
contribution longevity and knowledge of the area (e.g., local vs. non-local contributors).
The assumption is that features that have been worked on by experienced contributors, who
have been active over a long period, are most likely to be of good quality [4]. Data-focused
and contributor-focused assessments are often combined (e.g., [14]). Barron et al. [23]
proposed a framework of 25 intrinsic indicators of OSM data quality, some of them focused
on data and others on contributions. Whether data-focused, contributor-focused or a
combination thereof, the reliability of results of intrinsic quality assessment methods
depend on the availability of sufficient history data [32].

The use of intrinsic methods for assessing data quality is becoming increasingly
relevant due to the lack of reference data in many parts of the world, specifically in
developing countries, e.g., because it does not exist or because it is outdated [14] or too
expensive. It is interesting to note that the countries for which intrinsic quality assessments
of OSM data and contributors have been done do not only include developed countries,
such as Canada [4,33]; Ireland and Lithuania [6]; Austria [34]; UK [35]; Germany [32];
Ireland, UK, Germany, and Austria [7]; Germany, France and UK [16], but also Haiti,
Philippines, Liberia and Nepal [14]; Tanzania [11]; Jakarta [36]; India [37]. Tools have also
been developed to support intrinsic quality assessment [38].

We chose Mozambique for our intrinsic approach to quality assessment focusing
on contributor characteristics. Firstly, because few quality assessments have been done
in Africa, and secondly, because we were interested in the impact of mapping projects
initiated by HOT after two cyclones had affected Mozambique.

2.3. Contributor-Focused Intrinsic Quality Assessment

Table 1 summarizes contributor characteristics analysed in recent intrinsic quality
assessments of OSM data. We categorized them into four kinds of characteristics; namely,
time-related, activity-related, area-related and person-related, thus describing the when,
how, where and who of contributions. We used some of these characteristics in our study.
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Table 1. Contributor-focused characteristics.

Time-related characteristics (when?)

Lifespan (longevity) The timespan between the first and last
contribution [5,15,16,36,39].

Mapping frequency The frequency at which a contributor updates data in a given
area [39].

Mapping days The number of days on which data was contributed [5,14,16,36].
Mapping weeks The number of weeks during which data was contributed [16].

Mapping timeframe A specific timeframe (during the overall lifespan of OSM)
during which data was contributed [15].

Duration of uninterrupted
contribution period

The longest number of successive days on which data was
contributed [16].

Weekday productivity The number of contributions on weekdays divided by the sum
of all contributions (including those on weekends) [16].

Average contribution time
The average amount of time a contributor spends when editing
map features, based on the first and last timestamp associated

with a changeset [40].

Activity-related characteristics (how?)
Overall feature editing

quantities
The number of edits by the contributor on any kind of

feature [4,36,39].
Specific feature editing

quantities
The number of specific features created or edited by a

contributor, e.g., nodes in [5,15]; polygons in [6].

Feature editing preference The types of features or objects that a contributor prefers to
edit [4,15].

Editing characteristics The types of edits, e.g., creating new features vs modifying or
deleting features [41].

Changeset quantity The number of changesets a contributor has worked on [36].

Area-related characteristics (where?)

Contributor density The number of contributors active on a given part of the
map [14,35,42].

Contribution stage

The number and kind of contributions on a given part of the
map, based on distinct stages through which the map

progresses from initial creation to mostly maintenance at a later
stage [14].

Contribution area The geographic area in which a contributor has been
active [4,15].

Person-related characteristics (who?)

Local knowledge

Based on the distance from the first created node to the study
area, assuming that most users will start mapping close to a
place they are familiar with [15,36], based on the centre of

activity of the contributor [15] or based features that cannot be
traced from aerial imagery [39].

Reputation Based on the trustworthiness of the feature editing done by the
contributor [34].

Skill Based on the OSM editor tool used by the contributor [16,33,36].

The OpenStreetMap Foundation grants free membership to active members, which
they define as a user who has contributed on at least 42 days in the past year [43]. The
OSM Tasking Manager refers to beginner, intermediate and advanced mappers, based
on the number changesets on which a user has worked [44]. Researchers have classified
contributors, mostly based on descriptive statistics. For example, Anderson et al. [14]
differentiated between experienced and inexperienced contributors based on whether
they had been active for more than seven days; Budhathoki and Haythornthwaite [5]
distinguished casual mappers from serious mappers based on node contributions, lifespan
and mapping days; Bégin et al. [4] identified the main contributors as those who had
mapped almost 95% of the study area; based on node contributions, Neis and Zipf [15]
divided contributors into Senior Mappers, Junior Mappers, Non-recurring Mappers, and
No Edit Mappers, and they also counted contributors by country and by continent; Yang
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et al. [16] distinguished professionals from amateurs, based on practice, skill and motivation
(weekday productivity and duration of uninterrupted contribution periods).

A recent study by Jacobs and Mitchell [33] seems to be one of the first to move beyond
descriptive statistics by applying k-means clustering to segment contributors in Ottawa-
Gatineau (Canada), based on OSM history data. They identified four distinct clusters of
contributors: Proficient Mappers/Validators, Power Mappers/Validators, Novice Map-
pers/Validators and Node Mappers/Validators. The Power Mappers/Validators cluster
consists of contributors who are registered on OSM for longer, tend to map more complex
features and use more advanced OSM editing software. Our study is one of the first to apply
k-means clustering to segment contributors, and the first to do this for an African country.

3. Method

The analysis was conducted in Python, making use of various Python libraries; namely,
Pyosmium, Pandas, Numpy, and Scikit-learn. Pyosmuim provides a range of functions for
handling OSM data (e.g., reading and writing). Pandas has a range of tools to load, prepare,
manipulate and analyse data. The data was analysed in a Pandas dataframe. Numpy
provides mathematical functions and the efficient handling of multi-dimensional arrays.
Scikit-learn has machine learning functionalities and a set of data analysis capabilities;
it was used for the principal component analysis and cluster analysis. The Matplotlib
and Seaborn libraries were used for data visualization. The analysis was conducted on a
Packard Bell Laptop with an Intel® Core™ i3-5005U CPU and 8GB RAM.

3.1. Step 1: Extracting Contribution Data from OSM History Data

First, OSM history data was downloaded and contribution data extracted. OSM data
is available in two formats: eXtensible Markup Language (XML), published as BZIP2
compressed file; Protocolbuffer Binary Format (PBF). The complete copy of the OSM data
contains the latest version of all features. The history file also includes any older versions
of features and deleted features since the inception of OSM. The files are updated weekly
on the Planet OSM website (https://planet.openstreetmap.org, accessed on 9 March 2021).
Due to the large size of the history file, it is advisable to work with a subset, provided
by third parties. For this study, we downloaded the history file for Mozambique (in PBF
format) from the Geofabrik website (https://www.geofabrik.de/, accessed on 9 March
2021) where it is available to registered OSM users only. The file was downloaded in June
2019. The first contribution to Mozambique is dated 1 January 2006 and the most recent
contribution has a date of 3 June 2019.

In OSM, geographic features are represented as nodes, ways and relations. For each
feature, a set of attributes is stored: id (unique identifier), uid (last user to modify the
feature), user (display name of uid), timestamp (time of last modification), visible (false
means the feature is deleted), version (edit version of the object, initialized to 1 when the
feature is created), and changeset (number of the changeset in which the feature was created
or updated). Any edit to the feature results in an increment in the feature’s version number.
A changeset consists of a set of changes made by a single user over a short period of
time [45]. Figure 2 provides an example of three records for the same node (id = 251993180)
in the OSM history file. A total of three contributors (Firefishy, kr12 and ChosoMoz) edited
the feature in 2008, 2013 and 2016, respectively, each as part of a different changeset.

https://planet.openstreetmap.org
https://www.geofabrik.de/
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We followed the framework developed by Rehrl and Gröchenig [40] for transforming
OSM history data into user- and feature-centred actions that can be analysed for various
research goals (e.g., change detection, contribution profiling, etc.) [40,46]. It describes
how database changes (i.e., changes performed on OSM features) can be aggregated to
construct information about how volunteers contributed (user-centred) and how features
were impacted by these contributions (feature-centred). Aggregation is based on CRUD
(create, read, update and delete): the changes (i.e., creating, updating and deleting features)
performed on OSM features by contributors provide information about the editing actions
of contributors.

We prepared three sets of attributes for analysing contributions. Firstly, contribution
lifespan was determined from the first and last timestamp among all the feature edits by a
specific contributor (user) in the Mozambique data. The lifespan reveals how long a user
has been contributing to OSM. Users with a longer lifespan are likely to be more familiar
and experienced with OSM contributions.

Secondly, information to provide insight into a user’s contribution intensity was
prepared: the number of changesets (quantity) a contributor has worked on, the average
contribution time spent on editing map features (based on the first and last timestamp
associated with a changeset) and the number of mapping days (derived from the timestamp
attributes of features edited by a specific user). Note that the changeset timestamps and,
therefore, the value for time spent on editing map features, depends on the application
used for contributing data. These attributes describe how active or involved someone is in
OSM contributions.

Thirdly, the contribution actions of each contributor were determined based on the
specific feature editing quantities (for nodes, ways and relations, respectively) and the
feature editing preferences, i.e., the types of edits (creating, modifying or deleting features).
These attributes describe how someone contributes to OSM, e.g., one can distinguish
between a contributor who added a few points of interest (nodes) and a contributor who
repeatedly edited ways and relations to improve the quality of a road network in an area.

Tables 2–4 show the 29 attributes prepared from the Mozambique history data, de-
scribing the contribution lifespan, contribution intensity and contributor actions of user
32,744, one of the most active users. For example, user 32,744 prefers to work mostly on
nodes and tends to modify existing features more than creating new ones. The user has
worked on 319 changesets with an average contribution time of approximately 18 min per
changeset (as noted above, contribution times vary depending on the application used to
make contributions). The user has contributed data in Mozambique for more than a decade
on 176 mapping days. In total, 132,390 contributions were made.
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Table 2. Contribution lifespan attributes prepared from the Mozambique history data for user 32744.

First contribution 2008-04-20 17:38:29 UTC
Latest contribution 2019-02-27 17:05:54 UTC
Lifespan (in days) 3964.98

Table 3. Contribution intensity attributes prepared from the Mozambique history data for user 32744.

Mapping days 176
Changeset quantity 319

Average contribution time (in minutes) 17.59
Number of edits per feature (average) 4.43

Table 4. Contributor actions attributes prepared from the Mozambique history data for user 32744.

Total contributions 132,390
Node contributions 131,164

Nodes created 28,467
Nodes modified 97,851
Nodes deleted 4846

Nodes last user to edit 10,710
Nodes modified by others 19,813

Nodes revisited 100,641
Way contributions 1221

Ways created 255
Ways modified 917
Ways deleted 49

Ways last user to edit 69
Ways modified by others 226

Ways revisited 926
Relation contributions 5

Relations created 0
Relations modified 5
Relations deleted 0

Relations last user to edit 0
Relations modified by others 4

Relations revisited 1

3.2. Step 2: Classification of Contributors

In this step, contributors were clustered based on their contribution lifespan, contribu-
tion intensity and contributor actions.

Cluster analysis is an unsupervised machine learning technique for finding structure
or revealing patterns in large, unexplored datasets [47,48]. It is frequently used for customer
segmentation, i.e., to group customers based on the similarity of their purchasing habits
and demographic characteristics [49]. ‘Unsupervised learning’ refers to the fact that the
algorithm works with unlabelled data (no predefined groupings) and attempts to ‘learn’
some sort of structure from the input data. This knowledge is used to partition the data
into clusters or groups. The k-means clustering algorithm is one of the most favoured and
efficient clustering algorithms [47,50,51]. It groups a set of observations into k clusters,
each with similar attributes, thereby measuring the similarity between observations and
segmenting them based on similarities [47,50,52].

In this study, k-means clustering was used to group contributors based on their
contribution lifespan, intensity and actions in the Mozambique area. The next three
paragraphs explain how feature scaling, principal component analysis and the elbow
method were used as part of the k-means clustering.

Feature scaling is the process of normalizing ranges of data values to the same scale [48,53].
This has to be done before implementing a distance-based machine learning algorithm,
such as k-means clustering, which is affected by scale [53]. Feature scaling is also required
before principal component analysis can be done.
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Clustering algorithms tend to struggle with high dimensional data, i.e., data described
by many attributes [54–56], because it increases computation time; the task of clustering
becomes complex so that it is difficult to visualize and interpret clusters; data properties are
not preserved because one cannot clearly differentiate between similar and dissimilar ob-
jects. To overcome these challenges, a dimensionality reduction technique, which describes
the data in fewer attributes, was applied in our study prior to clustering [50,54,55,57].

Selecting a suitable number of clusters for k-means clustering can be challenging [55].
There are different ways of doing this and the researcher has to decide on a method [57]. We
decided to use the elbow method, one of the most widely adopted methods for determining
an optimal number of clusters for k-means clustering. It uses the within-cluster sum of
squares or WCSS (i.e., the distance between points in a cluster) to determine an optimal
number of clusters for a dataset. To achieve an optimal clustering solution, the WCSS
needs to be minimized. The WCSS tends to decrease as the number of clusters increases,
however, the goal is not to have each data point in a separate cluster, i.e., where the number
of clusters is equal to the number of observations, meaning WCSS = 0. The elbow method
aims to find some sort of compromise (or middle ground), where WCSS is low enough but
the number of clusters is also not too large. This value of WCSS is referred to as the “elbow”
point: after the elbow point, the WCSS no longer decreases by a substantial amount as the
number of clusters increases. That is, after the elbow point, a significantly better solution
for WCSS would not be reached by increasing the number of clusters. By this logic, the
optimal number of clusters lies at the elbow point [58,59].

4. Results
4.1. Clustering

Results of the principal component analysis of the 29 attributes (normalized to values
between 0 and 1) showed that the first six principal components explained 80.4% of the
total variation in the data. See Figure 3.
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Next, we analysed how each of the 29 attributes contribute to the first three principal
components. The heatmap in Figure 4 shows the attribute loadings for each of the three
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principal components. A loading, either positive or negative, shows how strongly an
attribute is associated with a specific principal component. This helps with determining
what each principal component represents, as illustrated in Table 5. Principal component 1
represents inactivity (negative loadings on attributes representing contribution intensity
and actions), while principal component 2 represents activity and advanced editing (posi-
tive loadings on attributes representing contribution intensity and advanced actions) and
principal component 3 is somewhere between the two.
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Table 5. Characterising the principal components.

Principal Component 1 Principal Component 2 Principal Component 3

Changeset quantity (negative) Changeset quantity (positive) Changeset quantity (negative)
Total contributions (negative) Mapping days (positive) Node created (negative)

Node contributions (negative) Average number of edits per
feature (positive)

Nodes last user to edit
(positive)

Nodes last user to edit
(negative) Nodes created (negative) Nodes modified by others

(negative)

Ways created (negative) Ways created (negative) Ways last user to edit
(positive)

Way contributions (negative) Ways modified (positive) Ways modified by others
(negative)

Ways last user to edit
(negative)

Relation contributions
(positive)

Relations modified (positive)
Relations modified by others

(positive)

These three principal components (or dimensions) are used in the final solution to
describe each contributor. An example for user 32,744 is provided in Table 6, showing that
principal component 2 describes this user best.

Table 6. User 32744 characterised by the three principal components.

Principal component 1 −0.199
Principal component 2 2.332
Principal component 3 −0.746

Following the elbow method, we calculated the WCSS for each possible value of k
(clusters) and plotted the results (see Figure 5). The optimal number of clusters (i.e., k = 4)
was selected through trial and error. The elbow point was most visible when working with
a solution of three principal components.

Next, k-means clustering was used to group contributors (n = 10,237) into four clusters,
see Table 7. Following an assessment of solutions for three, four, five and six principal
components to examine how each performed during the clustering phase, a solution for
three principal components was selected. This was done through visualising and examining
the cluster solutions. The first three principal components provide a significant amount of
information that aids in differentiating between clusters (see Figure 6 below). However,
the rest of the principal components (principal components 4, 5 and 6) do not contribute
much information for further differentiation between clusters, as illustrated in Figure 7.
Thus, only principal components 1, 2 and 3 were included in the final cluster analysis.
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Table 7. The four clusters, characterised by the three principal components.

Cluster
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(17.8%)
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(12.7%)

Number of
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of Total)

0 0.49 −0.35 −0.41 2676 (26%)
1 1.11 0.68 0.36 1301 (13%)
2 −0.25 −0.29 0.31 3708 (36%)
3 −0.71 0.44 −0.20 2552 (25%)
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In order to better understand the clusters produced, some descriptive statistics were
calculated (see Table 8), revealing that cluster 3 has the highest averages for all three values,
while cluster 1 has the lowest averages for the number of changesets and contributions.
These results show that cluster 3 is the simplest to characterise, as it has significantly
different (and higher) averages than the other clusters. For clusters 0, 1 and 2, the averages
do not differ significantly, and interpretation of these clusters required additional visual
inspection of the clusters (i.e., the contributors of each cluster) in order to better understand
their principal component loadings and characteristics.

Table 8. Descriptive statistics for each cluster.

Number of Mapping Days Changeset Quantity Total Contributions

Cluster Average Median Average Media Average Median

0 1.15 1 5.06 2 256.83 119
1 1.91 1 3.27 1 44.43 5
2 1.15 1 5.38 3 513.09 337
3 9.10 3 90.13 23 14,489.20 2346.5

4.2. Description of the Four Clusters

Cluster 0 (n = 2676) mostly consists of contributors with older contributions who have
not continued to contribute data in Mozambique over time. These contributors have a low
number of mapping days and total contributions, and a large number of their contributions
have been modified by others, i.e., most of the time they do not return to their contributions.
They are associated with only a small number of features where they were the last user
to modify the feature. This indicates contributors who have not maintained an interest
in contributing and have not continued to make contributions. This cluster represents
non-returning contributors in the Mozambique area.

Cluster 1 (n = 1301) consists of contributors who have not been very productive in
Mozambique during their respective lifespans. Most of these contributors have worked on
a small number of changesets and their total contributions are low. Even the contributors
in this cluster who have a higher number of mapping days do not have a higher number
of total contributions. The contributors in this cluster appear to be the least productive,
supported by the average and median values for changeset quantity and total contributions
in Table 8, which are even lower than those of the non-returning users. This cluster
represents the least-productive contributors in Mozambique.

Cluster 2 (n = 3708) consists of contributors who have been active recently in the
Mozambique area. They do not have a large number of mapping days but have a large
number of nodes and ways where they are the latest contributor (although only second
highest compared to contributors in cluster 3). A significant number of the contributors in
this cluster are new to Mozambique. Contributors in this cluster are also associated with a
larger number of total contributions, particularly for nodes and ways. The average and
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median values for changeset quantity and total contributions for this cluster (in Table 8)
show that they are the second-most active contributors. This cluster represents the new
contributors in the Mozambique area.

Cluster 3 (n = 2552) consists of the most active contributors in the Mozambique
area. The strongest loading for this cluster is a negative principal component 1 value,
indicating that contributors in this cluster have worked on a large number of changesets,
and are associated with high numbers of total contributions, node contributions, way
contributions and ways and nodes where they were the last user to modify. The notion
that cluster 3 consists of experienced contributors is confirmed by the positive principal
component 2 value, suggesting contributors who have been active in the Mozambique
area for a significant amount of time and have maintained an interest in contributing data.
Contributors from this cluster are associated with a large number of mapping days and
have done a significant amount of work on relation features. They also tend to make a
lot of modifications. The average and median values for changeset quantity and total
contributions for this cluster confirm that among those who contributed in Mozambique,
cluster 3 users have contributed the most. This cluster represents active contributors in the
Mozambique area.

5. Discussion

Senaratne et al. [60] proposed the use of machine learning techniques for intrinsic
data-focused quality assessment, e.g., cluster analysis to assess the thematic accuracy of
volunteered geographic information. Kaur and Singh [61] describe a solution for intrinsic
detection and correction of OSM data errors that is based on supervised machine learning.
Similar to our study, Jacobs and Mitchell [33] applied the k-means clustering algorithm, an
unsupervised machine learning technique, for classifying OSM contributors.

The patterns witnessed through clustering contributors in Mozambique show that
most of the work (93%) is done by a small percentage (25%) of active contributors in
cluster 3. These results are consistent with similar OSM contributor studies in other
countries, e.g., in Canada [4] and the United Kingdom [35]. They display the “participation
inequality” pattern that is often witnessed in online peer production systems, not only for
OSM [5,14,15], but also for others, such as Wikipedia [62]. The active contributors in other
studies tend to account for a much smaller portion of the total contributors (around 10 to
15%) [5,15], compared to the 25% in our study. Cluster 2 contributed 5%, while clusters 0
and 1 have virtually no impact (2%) on contributions.

Disasters tend to attract large numbers of new contributors who produce large
amounts of data in a short amount of time and assist to satisfy informational needs of
disaster relief services [14,23]. The contributions in clusters 2 and 3 are likely to have been
influenced by the disaster mapping efforts following cyclones Idai and Kenneth. High
numbers of contributions were observed mostly during the disaster activation mapping
period in early 2019. Some contributors managed to produce thousands of contributions
in a short span of time. The same is true for the contributors in cluster 2, the newcomers.
This confirms what others have found; namely, that disaster events influence contribution
patterns [14].

However, it is important to note that not every contributor that is categorized as a
new contributor in this study is new to OSM; some contributors could just be new to
contributing in the Mozambique area, since this study is limited to Mozambique. Their
contribution characteristics in other parts of the world could be very different, and future
work could determine whether there are significant differences in contribution behaviour
inside vs outside Mozambique.

Understanding the behaviour of a small group of active contributors makes it possible
to characterize the quality of an entire dataset [4]. Since most of the data in Mozambique
originates from active contributors in cluster 3, who have on average worked on 90 change-
sets, confidence in the quality of the data is strengthened. Moreover, the small number of
active contributors in cluster 3 tend to make a lot of modifications and are often the last
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user to edit a feature. This could be an indication of their desire to improve the quality of
the data.

The majority of buildings (99.6%) and ways (84%) in Mozambique have been edited
twice at most. This may reflect that any data contributed through projects in the HOT task
manager is generally subjected to a validation process by experienced mappers. Most of
the buildings appeared in areas for which mapathons were conducted, outside larger cities.
Interestingly, Li et al. [9] also analysed OSM data for Mozambique following the cyclones.
They identified 13 built-up areas that were not yet included in OSM, suggesting that more
mapping is required to improve completeness of the Mozambique data.

Almost all the contributors in the first three clusters had between one and three total
mapping days. Contributors with only one mapping day make up the majority of these
clusters (70% or more in each cluster). In contrast, only 22% of contributors in cluster 3 have
only one mapping day. The contributors in cluster 3 with one mapping day could represent
data imports, as they are associated with a significantly high number of changesets and
contributions in a short span of time. This type of contribution needs to be approved
(the process is described here [63]); therefore, these kinds of contributions need further
investigation. The nature of changesets and the set-up of a contributor’s application could
affect how they submit changesets and, thus, the timestamps in the history file. Therefore,
relying solely on time related metrics can skew the results, especially when focusing on a
specific day or a short period of time. However, our analysis covered more than a decade
of contributions (2006 to 2019); therefore, the uncertainty about changeset timestamps has
a small effect on the results.

Some of the clusters revealed in this study align with categories that have been
described in other studies, e.g., cluster 0 (non-recurring contributors) is comparable to
the Non-recurring Mappers in Neis and Zipf [15] and cluster 3 (active contributors) has
similarities with the Power Mapper/Validator in Jacobs and Mitchell [33]. Unproductive
contributors (cluster 1) are identified in various studies (e.g., [4,5,14]). Our results reveal a
new category, namely, the newcomer contributors (cluster 2) who were most likely attracted
to mapping in Mozambique by the HOT mapping projects. Understanding contributor
behaviour in one geographic area can be used to assess data created by those contributors in
another region [4]. Analysing the characteristics of these Mozambique-newcomers in their
‘home’ regions could provide further insight into the quality of OSM data in Mozambique.

On average, the active contributors (cluster 3) in our study mapped in Mozambique
for nine days on 90 changesets. Compared to OSM contributors generally, this is rather
low. The OSM Foundation defines active contributors as those who edit on 42 days over
a period of 365 days. To become an intermediate mapper in the OSM Tasking Manager,
one should have worked on 250 changesets. It would be interesting to know how active
Mozambique contributors are in other parts of OSM. This could provide further insight
into the quality of their Mozambique contributions.

One could further characterise the individual contributors in cluster 3 based on
descriptive statistics, e.g., for lifespan, mapping days and contributions. This would
further refine the understanding of who contributed what, when and how in Mozambique.
Analysing the contribution characteristics of cluster 3 users in the whole of OSM would
also help to improve the understanding of OSM quality in Mozambique.

Determining a suitable cluster solution can be a challenging task. The final cluster
solution can be affected by several factors, including the data pre-processing techniques
chosen (e.g., dimensionality reduction, normalization), the number of clusters selected, the
method used to determine the number of clusters and the spread of the data. One would
have to repeat this study with different pre-processing techniques, a different method for
choosing the number of clusters and a different number of clusters to assess whether this
would lead to differently characterized clusters. A limitation of our study is that we only
used k-means clustering. A visual inspection of the four clusters shows that not all the
clusters are spherical around the centroid. Other clustering algorithms should be explored
to establish whether they are more suitable.
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In this study, individual contributors were clustered; however, the nature of con-
tributions depends on the types of features in an area and changes over time as the
map matures [14]. It would, therefore, be interesting to cluster changesets to under-
stand contribution behaviour across different changesets. The study by Budhathoki and
Haythornwaite [5] is one of few that involves contributor input through a questionnaire;
most contributor-focused intrinsic assessments are based on history data only. Combining
questionnaires with an analysis of OSM history data could help to explain the results
of contributor-focused intrinsic assessments and could guide the development of more
reliable contributor-focused intrinsic assessment metrics. Another avenue of future work
would be to analyse the spatial collective intelligence [64] of contributors in Mozambique.

6. Conclusions

In this study, we applied unsupervised machine learning to get a better understanding
of who contributed when and how to OSM data in Mozambique. The results of the k-means
cluster analysis revealed four distinct classes of contributors: active contributors (n = 2552);
older non-returning contributors (2676); least productive contributors (n = 1301); new
contributors (n = 3708). This is the first segmentation of OSM contributors for an African
country using unsupervised machine learning.

Similar to the results of other OSM contribution analyses, most of the data generated
in Mozambique (93%) was contributed by a small group of active contributors (25%).
Studies have suggested that such active contributors are more likely to be experienced and
knowledgeable about the project and are, therefore, more likely to produce data that is of
good quality [16,23]. Compared to other contributor classifications, our cluster analysis
revealed a new kind of contributor class, namely, the new contributors. Active and new
contributors were most likely attracted by HOT mapping events during the cyclone-related
disaster relief operations in Mozambique in 2019.

Even though no absolute statements can be made about the quality of the Mozambique
OSM data, the results of our contributor-focused intrinsic quality assessment strengthen
confidence in the quality of the data because it is mostly contributed by experienced users
who seem to have a desire to improve the quality of the data. Most features in Mozambique
were edited at least twice, suggesting that they have been quality checked at least once.
Initiatives to improve the quality of OSM data in Mozambique should prioritize data edited
only once and contributed by those classified into clusters 0, 1 and 2.

More studies in different parts of Africa would contribute to understanding whether
the patterns observed in Mozambique are unique or also found in other parts of the African
continent and/or in developing countries in other parts of the world. One could also
analyse contribution inequality between different (African) developing countries, similar
to Yang et al. [65], who found that the level of contribution inequality increases in countries
without huge imports.

The results of this study show how one can gain a better understanding of the com-
munity that contributes data in a specific area by inspecting history data with machine
learning techniques, and we have provided some suggestions for further work. Intrinsic
methods should not replace ground truthing or extrinsic methods, but rather complement
them by providing alternative ways to gain insight about data quality. Results of intrinsic
quality assessments can also be used to inform efforts to further improve the quality.
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