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Abstract: The COVID-19 pandemic is a major problem facing humanity throughout the world. The 

rapid and accurate tracking of population flows may therefore be epidemiologically informative. 

This paper adopts a massive amount of daily population flow data (from Jan 10 to Mar 15, 2020) for 

China obtained from the Baidu Migration platform to analyze the changes of the spatiotemporal 

patterns and network characteristics in population flow during the pre-outbreak period, outbreak 

period, and post-peak period. The results show that (1) for temporal characteristics of population 

flow, the total population flow varies greatly between the three periods, with an overall trend of the 

pre-outbreak period flow > the post-peak period flow > the outbreak period flow. Impacted by the 

lockdown measures, the population flow in various provinces plunged drastically and remained 

low until the post-peak period, at which time it gradually increased. (2) For the spatial pattern, the 

pattern of population flow is divided by the geographic demarcation line known as the Hu (Heihe-

Tengchong) Line, with a high-density interconnected network in the southeast half and a low-den-

sity serial-connection network in the northwest half. During the outbreak period, Wuhan city ap-

peared as a hollow region in the population flow network; during the post-peak period, the popu-

lation flow increased gradually, but it was mainly focused on intra-provincial flow. (3) For the net-

work characteristic changes, during the outbreak period, the gap in the network status between 

cities at different administrative levels narrowed significantly. Thus, the feasibility of Baidu migra-

tion data, comparison with non-epidemic periods, and optimal implications are discussed. This pa-

per mainly described the difference and specific information under non-normal situation compared 

with existing results under a normal situation, and analyzed the impact mechanism, which can pro-

vide a reference for local governments to make policy recommendations for economic recovery in 

the future under the epidemic period. 

Keywords: Baidu migration; COVID-19 pandemic; population flow; spatiotemporal pattern;  

network characteristic changes 

 

1. Introduction 

Human mobility is an important indicator and carrier of regional socioeconomic ac-

tivities. The human mobility reflects, to a certain extent, the functional relationship be-

tween cities [1,2]. Traditional human mobility/population flow research has been con-

ducted primarily based on static data, such as census data or statistical yearbooks, which 

are unable to dynamically capture the spatial patterns of rapid mobility and urban devel-

opment in real time and thus cannot directly and accurately reflect the directions and 

patterns of population flow. With the development of mobile technology, behavioral big 

data containing the positional information of individual users, such as Sina Weibo check-

in, mobile operators [3] and localized mobility data, which can be used to monitor the 

mobility of people, have continued to emerge [4]. Due to the price, incompleteness, or 
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other objective criteria, mobile operator data is usually unavailability. Compared with 

mobile operator data, localized mobility data is more available. It denotes the location 

tracking data from some mobile location service, and is in principle similar to data from 

mobile operators [5]. For instance, Google location data, which is collected by Google if a 

Google Maps user agrees to share their location, is widely used in the countries of Europe. 

Similarly, in China, Baidu Map location data launched in 2014 and has attracted wide 

attention. This data is similar to Google location data, but only provides daily trajectories 

of population flow publicly [6]. 

Certain recent studies have analyzed human mobility of human mobility by using 

localized data, such as the global variation in human mobility [7], human mobility char-

acteristics during typical flow periods like the Spring Festival [8]. Toward the end of 2019, 

a coronavirus strain called coronavirus disease-2019 (COVID-19) emerged in Wuhan, 

China, and proved to be transmissible from human to human [9]. To understand the im-

pacts of COVID-19 disease on human behavior, several studies about this have already 

been published worldwide, such as in the United States [10], Europe [5], China [11], and 

other countries. Different than other countries, the COVID-19 outbreak in China coincided 

with the Chinese Lunar New Year’s Eve, which is related to the annual mass movement. 

Nationwide transportation and travel restrictions were put in place to limit the spread of 

the pandemic. Some studies have analyzed the impacts of COVID-19 on human mobility 

[12,13] and inter-city transportation demand [14] during lockdown periods at national 

and prefecture-level cities scales, as well as economy recovery evaluation based on mobil-

ity operators and Baidu location data. However, the existing studies do not pay much 

attention to comprehensive comparisons of human mobility under both “pre-outbreak 

period” and “epidemic period”. Indeed, the pre-outbreak period (such as from Jan 10 to 

Jan 22, 2020 in China) can reflect human mobility at normal situation to some extent. In 

addition, human mobility of a city reflects the status of this city in urban network, the 

current studies few focused on the status and structure of China’s urban network im-

pacted by COVID-19. These concerns motivated the research.  

Based on Baidu location data, the objectives of this study are (1) to analyze the spati-

otemporal patterns of human mobility between prefectures of China during different pe-

riods, and compare their differences, as well as the differences in the same period in pre-

vious years, and (2) to assess the changes of city network status compacted by COVID-19 

by using the network analysis method. This study enhances our understanding of the spa-

tiotemporal changes and network structure of intercity population flow in China during 

the COVID-19 pandemic and provides a reference for the future management of public 

health emergencies on a nationwide scale and for the assessment of regional differences 

in urban development [15]. 

The paper is organized as follows: Section 2 discusses related work analyzing the 

spatiotemporal characteristics of urban population flow. Section 3 introduces the data 

sources and methodology. Section 4 discusses the changes of the spatiotemporal patterns 

and network structure in population flow. Section 5 presents the conclusions and future 

work. 

2. Literature Review 

Understanding human mobility and how it manifests across spatiotemporal scales 

has important significance, and many related researches have been conducted [16]. For 

instance, Kraemer et al. (2020) used smartphone location data from Google Location His-

tory to analyze global human mobility patterns and found that compared with high in-

come people, the moving distance of people with low incomes is over 10 times shorter 

and the moving speed is 40% slower [7]. Ruktanonchai et al. (2018) collected Google Lo-

cation History (GLH) data by Android smartphones from October to December 2016, to 

assess human mobility patterns in the United Kingdom, and provided some insights 

based on GLH data, including infrastructure planning, infectious disease control, and re-
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sponse to catastrophic events [17]. Xu et al. (2017) studied the spatiotemporal characteris-

tics and network characteristics of population migration based on Tencent’s travel data 

during the Spring Festival, and analyzed the unbalanced migration between cities and the 

differences in development. The study found that cities along the east coast are the most 

attractive to migrant laborers, whereas cities located in the central part of China are mostly 

labor force exporters [18]. Wang et al. (2019) used mobile phone positioning data during 

the Spring Festival in 2016 to analyze the effect of socioeconomic factors on the spatial 

patterns of population mobility [19]. Based on the population migration data, Li et al. 

(2016) studied the spatiotemporal characteristics of the Spring Festival travel rush in 2015 

and found that the Baidu and Tencent migration data are more accurate than those of 

Qihoo [8]. Kraemer et al [7] described global human mobility patterns, based on the data 

from mobile phones whose users opted in to Google Location History (https://sup-

port.google.com/accounts/answer/3118687, accessed on 13 April 2019). 

The outbreak of the novel coronavirus pandemic at the end of 2019 has prompted 

some scholars to use LBS data to study human mobility [20], city transportation demand, 

and economy recovery evaluation during the pandemic [21,22]. For instance, both Apple 

and Google provided a dataset to deal with human mobility and trace individuals infected 

with COVID-19 (Apple Inc., 2020, https://www.apple.com/cz/newsroom/2020/04/apple-

and-google-partner-on-covid-19-contacttracing-technology/ (accessed on 7 March 2021)) 

[23]. Bonaccorsi et al. (2020) analyzed the effect of Italy’s lockdown measures on socioec-

onomic conditions based on real-time human movement data and found that the lock-

down measures had a greater effect on population mobility in cities with higher economic 

development [24]. Based on data from Google Location Service, Pászto et al. (2021) con-

ducted a micro-study describing and interpreting changes in the behavior of people in 

three months before and during the COVID-19 pandemic [25]. Santamaria et al. (2020) 

analyzed the mobility patterns of the EU population using a population mobility indicator 

derived from anonymous mobile positioning data and found that COVID-19 restrictions 

significantly affected population mobility in the EU [26]. Pászto et al [5] offered unique 

information about changes in human activity due to the pandemic based on COVID-19 

Community Mobility Reports dataset, and showed how this dataset can be utilized in 

terms of geovisual analytics and clustering in order to reveal the spatial pattern of such 

changes in human behavior. Jia et al [12] used anonymous mobile operator data in China 

to analyze the flow of more than 11 million people who stayed in Wuhan at least two 

hours from 10 January to 24 January 2020, and reported that lockdown restrictions have 

been very effective in reducing human mobility significantly. Desjardins et al. (2020) used 

the scan-statistics method to detected the active clusters and potential clusters of conta-

gion [27], and Wellenius et al. (2020) evaluates the impacts of state-of-emergency declara-

tions, social distancing policies on human mobility by using Google Location data during 

COVID-19 pandemic in the United States [28]. Xu et al [11] used big data from the Baidu 

Migration platform to analyze the return of population, urban traffic conditions, and the 

resumption of social production and life at a provincial scale across China after the 2020 

Spring Festival holiday. Tong et al. (2020) reveals the daily characteristics and spatiotem-

poral patterns of the short-term impact of the COVID-19 epidemic at multiple scales, and 

evaluated the Chinese urban resilience by using Baidu migration data [13].  

Although there have been studies examining the patterns of human mobility during 

COVID-19, the majority have focused on the spatiotemporal patterns of human mobility, 

the transportation and economy situations during the COVID-19 periods. Whereas, few 

studies have reported on the changes of city network status compacted by COVID-19.  

3. Data and Methodology 

3.1. Data Sources  

The population mobility data used in this study are obtained from the Baidu Map 

Smart Eye through the Baidu Migration platform (referred to as Baidu Migration). Baidu 
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is the largest electronic map and LBS provider in China, the data is collected if a Baidu 

Maps user agrees to share their location, which is determined not only based on the loca-

tion of nearby BTS stations but also by connection to Wi-Fi networks (by IP address) and 

especially via GPS (if this option is enabled on the user’s device). The Baidu Migration 

platform displays the daily population flow in real time and records the migration paths 

of hundreds of millions of people, which represent the intensity and direction of popula-

tion flow over a certain period of time. Baidu migration big data provides China’s immi-

gration index and emigration index recorded in days at a provincial scale and city scale, 

as well as the Top 100 cities with the most moving population for each city or province. 

For instance, for city A, the data records the top 100 cities for moving in the city and their 

inflow ratios, as well as the top 100 cities for moving out of the city and their outflow 

ratios, as described in Table 1. The temporal resolution of this data is per day, and the 

spatial resolution is prefecture-level city in China.  

Table 1. Description of the Baidu migration data. 

Order City of Immigration Ratio City of Emigration Ratio 

1 City B 23.1% City F 34.1% 

2 City C 18.0% City G 14.0% 

3 City D 14.1% City H 11.1% 

… … … … … 

100 City W 0.2% City S 1.0% 

The data can be derived from the website of http://qianxi.baidu.com (accessed on 16 

March 2020). Baidu Maps data is updated every hour, and the flow data reflect the 

changes in population mobility during the preceding eight hours. In this study, Python 

3.3.3 software was used to capture the data from the Baidu Migration platform based on 

its open API. Firstly, query the immigration index of a city, and then use the browser to 

view the source code of the website page and query the “hearers” parameter, to obtain the 

server address of the request immigration index. Then batch set the date and City ID, and 

build a circular statement. After repeated debugging and manual inspection, all data can 

be derived.  

The data used in this study cover a period from 10 January to 15 March 2020, includ-

ing the period of the novel coronavirus outbreak in China and the Spring Festival travel 

rush. Using the Baidu Migration platform, we obtain the relative proportions of popula-

tion flow of the top 100 migration flow sources and destinations among 336 cities of China 

(excluding Hong Kong, Macao, Taiwan, Sansha, and some cities in Hainan) over a period 

of 66 days. More than 443 million flows were captured. To further explore the effect of the 

epidemic outbreak on China’s population mobility, the study period is divided into three 

stages based on the development of the outbreak: the pre-outbreak period (10 January to 

23 January 2020), the outbreak period (23 January to 20 February 2020), and the post-peak 

period (20 February to 15 March 2020).  

3.2. Methodology  

3.2.1. Data Standardization  

The data provided by Baidu Migration are the relative weight proportion of the total 

inflow and outflow of each city, rather than the actual population flow data, and thus the 

data need to be standardized before analysis. Based on the principles of data standardiza-

tion [29], this paper first uses the min-max normalization method (Equation (1)) to stand-

ardize the data; then, by combining the migration scale index horizontally between cities, 

the migration index ratio in 2020 relative to the same period in 2019 is obtained. Finally, 

based on the index ratio, the standardized data are corrected again, and finally, the scores 

of the top 10 inflows or outflows for each city in the population mobility network are 

obtained. The general formula for min-max normalization is given as: 
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��� =
��� − min����

max���� − min����
(� = 1,2, ⋯ , �; � = 1,2, ⋯ , �) (1)

where ���  is the j-th weighted ratio of the i-th city, min (��) is the minimum value of the 

index �, and max (��) is the maximum index of the index �. 

3.2.2. Calculation of Total Population Mobility 

Based on the standardized data, with the outflow cities on the ordinate and the inflow 

cities on the abscissa, input the connectivity data of the top 10 cities with the highest pop-

ulation mobility to construct the adjacency matrix table of the population flow between 

336 cities over 66 days, and ultimately obtain 66 (336 × 336) directional multivalued net-

work matrices � = (���), R_ij is the population flow intensity from city ⅈ to city j, as shown 

in Equation (2) [30]. 
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 ��              ��     …      ����        ��
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⋮
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⎢
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⎥
⎥
⎥
⎤

 (2)

The total flow ���_��� (gross migration) i measures the daily total population flow 

of city �, the net migration value ���_��� (net migration) measures the daily net popula-

tion inflow (���_��� > 0) and the net population outflow (���_��� < 0) of city �, and 

���_��� and ���_��� are given as [20]: 

   �
������

= ��
� + ��

������
= ��

� − ��

 (3)

where �� is the population flow matrix and ��
�  is the transpose of ��. 

3.2.3. Network Feature Analysis Method 

The complex network is a network with the of small-word and scale-free character-

istics and a community structure between regular networks and random networks. In re-

ality, most networks are complex networks, and population mobility networks also have 

complex network characteristics. Therefore, this paper uses a complex network analysis 

method to explore the characteristics of China’s urban population mobility network. Com-

plex networks focus on the study of nodes and the topological relationships between the 

nodes and grasp the connections between individuals through the study of node relation-

ships, thereby revealing the integrity and hierarchy of the network. Currently, complex 

network analysis methods have been applied in many research fields [31]. The following 

indices of the network characteristic index are used in this paper: degree and its probabil-

ity, centrality, clustering coefficient and characteristic path length. 

(1) Degree and probability analysis 

The degree value represents the number of adjacent city nodes for the focal city node 

and is the simplest but most important feature of that city node. The inflow and outflow 

degrees reflect the attraction and radiation capabilities of a city node to other city nodes, 

respectively. To a certain extent, the total degree indicates the degree to which a city node 

is at the center of the network; that is, the network status. If the number of city nodes with 

k-degrees in the network is n_k, then the degree distribution is given as: 

�(�) =
��

�
 (4)

(2) Network centrality 
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Centrality is a structural location indicator that can measure the influence and control 

of a city node in the population mobility network, and the closer to the center it is, the 

greater its influence. Among them, middle centrality represents the ratio of the number of 

all the shortest paths in the network that go through a city node to the total number of all 

city nodes that include the shortest paths. This indicator characterizes the probability of 

population flow to the focal city node in the network, and the higher the value, the better 

the connectivity of the city. The centrality ��  of city �����  is given by: 

�� = �
���(�)

���
�����∈�

 (5)

where ���(�) is the number of shortest paths between city-node pair (�, �) and city node 

�, and ��� is the number of shortest paths between city-node pair (�, �). 

(3) Clustering coefficient 

The clustering coefficient is a parameter that reflects the local clustering of a network 

and describes the local attributes of a network connection, and it is often used to analyze 

a group’s relational network formed by a common relationship in the social network [32]. 

The clustering coefficient is given by: 

�� =
2�

��(�� − 1)
 (6)

where � is the number of paths between the city node and its �� neighboring nodes. 

Ucinet software is used in this study to conduct complex network analysis. Ucinet is 

a social network analysis program developed by Stephen Borgatti, Martin Everett and 

Linton Freeman. The program is distributed by Analytic technologies. It can read and 

write a multitude of differently formatted text files, as well as Excel files. In addition, this 

program has strong matrix analysis routines, such as matrix algebra and multivariate sta-

tistics, which can analyze a complex network well.  

4. Results and Discussion 

To better understand the human mobility in different during different situations, this 

paper first analyzes the temporal and spatial patterns of population flow in prefectures 

during three different periods. Due to that human mobility can reflect the status of a city 

in the city network, in order to evaluate the impact of epidemic on city network status, the 

changes in the flow network characteristics are analyzed, which is of significance to un-

derstand the functional robustness of Chinese prefectures under health emergencies. 

4.1. Temporal Characteristics of Population Mobility 

In view of their large number, carrying out a time-series analysis of prefecture-level 

cities may affect the presentation of data patterns and analysis results. Therefore, this pa-

per selects a total of 31 provincial capitals/municipalities in China to analyze the charac-

teristics of the population mobility time series. These selected cities have a high adminis-

trative level, a well-developed economy and high population attraction and radiation, and 

the total population flow accounts for nearly 30% of China’s total population flow. Figure 

1 shows the time-series distribution of the daily total population flow based on the prov-

ince as a unit. On the whole, the scale of China’s total population flow varies significantly 

in different periods, showing a trend of incubation period > post-peak period > outbreak 

period. During the pre-outbreak period, the scale of population movement in a first-tier 

city, like Beijing, Shanghai was at the forefront, whereas a southwest city, like Lhasa, Xi-

ning were relatively low. Since 17 January, the population flow of most provincial capitals 

has increased significantly because of the “homecoming tide” before the Chinese New 

Year. However, there are significant differences in the magnitude of the changes among 

provinces, with the greatest changes occurring in the representative first-tier cities. The 

reason for this is that these cities have a more developed economy and attract a large 
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number of laborers from other cities, indicating that behind the migration of population 

is actually a manifestation of the attractiveness and competitiveness of a city. This result 

is similar to the finding of Li et al [8].  

 

Figure 1. Total population flow in various provinces in China. 

Unlike the same periods with a normal situation, following 25 January (Lunar New 

Year in China), the population flow of various provinces plunged drastically, especially 

in Wuhan. Wuhan, as the outbreak epicenter, had the most stringent prevention and con-

trol measures and was affected by the epidemic earlier than other cities. When Wuhan 

was quarantined on 23 January—the day before Lunar New Year’s Eve—its population 

mobility fell almost to 0. However, in fact, by this time, many people have already mi-

grated from Wuhan before New Year’s Eve. According to the government report of Wu-

han municipal, by 23 January, approximately 5.2 million people flow out of Wuhan, of 

which more than 70% of the flows to prefectures within Hubei Province. Based on Baidu 

migration index in this paper, the movements to other prefectures were evaluated. The 

flows to Huanggang city (about 800 thousands), Xiaogan City (about 700 thousands) and 

Jingzhou City (350 thousands) were the most, which is similar to the finding of Liu et al 

[33]. From 23 January to 15 March, Wuhan was in quarantine, and the counts of popula-

tion inflow and outflow were nearly zero. After Wuhan was quarantined, most of the re-

maining cities also began to show a downward trend starting on 24 January, with a slight 

delay. On 31 January, the population mobility in a few cities, including Beijing and Shang-

hai, saw a small increase, which was the “return to work” following the Spring Festival. 

However, due to the epidemic, only a small portion of the labor force returned to their 

cities of employment, which is similar to Xu et al [11]. During the Lantern Festival on 8 

February, some cities experienced “small ups” but movement rapidly declined in the sub-

sequent two days. It is worth noting that during the outbreak of the epidemic, there was 

still a small-scale population movement in various cities, possibly due to the constant flow 

of medical personnel and material transportation teams throughout the country traveling 

to assist Hubei Province. As of 21 February, China’s epidemic prevention and control sit-

uation has gradually improved, the national resumption of work and production has ad-

vanced steadily, and epidemic control has gradually entered a phase of relaxation. During 

this period, the population flow in most southern cities and first-tier cities increased grad-

ually.  
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Figure 2 shows the time-series distribution of the net population flow by province. 

Generally, during the pre-outbreak period, the human mobility of first-tier or new-first-

tier cities, like Shanghai, Beijing, Guangzhou, Chengdu, and Hangzhou were predomi-

nantly an outflow. Tourism-oriented cities or labor export cities, like Chongqing, Nan-

chang, and Lanzhou, are represented by a net population inflow. During the outbreak 

period, some first-tier cities showed a reverse trend in the population flow, and a popula-

tion inflow gradually emerged. This is consistent with the findings of Lai et al [34], but the 

scale of the reverse trend was much smaller than that before the Spring Festival. It should 

be noted that Chongqing had the most obvious trend of population inflow followed by 

outflow, similar to the finding of Xu et al [11], which may be because in recent years, as a 

popular “net celebrity city”, attracted a large number of tourists on the eve of the Spring 

Festival. A considerable number of tourists remained in the city after the epidemic out-

break and gradually flowed out as the epidemic eased. 

 

Figure 2. Net population flow in China’s provincial capital cities. 

4.2. Spatial Characteristics of City Population Mobility 

4.2.1. The Spatial Pattern of Population Mobility during Pre-Outbreak Period 

Figure 3 shows the spatial pattern of the average daily population flow scale during 

the pre-outbreak period, which reflects human mobility at normal situation to some ex-

tent. The average of the flow distance is about 1150 km. As illustrated by Figure 3, the 

population flow network is clearly divided by the Hu Line (Heihe-Tengchong Line), 

showing a high-density pattern in the east and a low-density pattern in the west. The two 

ends of the Hu Line form a relatively stable population flow pattern [35]. This study finds 

that the spatial associations of cities to the west of the line are mostly connected in series, 

and the population flow of these cities occurs mainly to establish connections with other 

cities through specific gateway cities. For example, Urumqi is a gateway city in Xinjiang, 

Xi’an and Lanzhou are the gateways to the northwest, and Chengdu and Chongqing are 

gateway cities in the southwest. The population flow east of the Hu Line is mostly parallel, 

and the flow between various cities is highly interoperable [36]. The human mobility is 

mainly distributed in the eastern coastal and central transportation-hub regions, and the 

rhombus structure formed by the Beijing-Tianjin-Hebei, Pearl River Delta, Yangtze River 
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Delta, and Chengdu-Chongqing urban agglomerations as the apex contains most flows in 

the country, which directly reflects the important role of these four major agglomerations 

in the pattern of population flow. Furthermore, the population flow has the characteristics 

of spatial proximity; that is, population flow mainly occurs between regional core cities 

and their neighboring cities. This core-periphery structure can be found at both the na-

tional and regional scales, which proves that the population outflow area and inflow des-

tination are more prone to migration.  

 

Figure 3. Spatial pattern of the average daily population flow. 

The four agglomerations contain most flows in China, and to better understand their 

human mobility during the pre-outbreak period, this paper further analyzes the popula-

tion flow pattern and their internal and external movements in detail, as shown in Figure 

4. For Beijing–Tianjin–Hebei urban agglomeration, Beijing, Tianjin, and Shijiazhuang are 

the core cities and have the highest migration index. It is evident that Beijing–Tianjin–

Hebei urban agglomeration has gradually formed the development pattern of the Beijing-

Tianjin development axis, the Beijing–Baoding–Shijiazhuang axis, and the Beijing–Tang-

shan–Qinhuangdao axis. The total population flow within this agglomeration accounts 

for 48.2% of the total population flow, indicating that this agglomeration is equally attrac-

tive to population flow for internal and external cities. For Yangtze River Delta agglomer-

ation, Shanghai, Nanjing, and Hangzhou have the highest population flow. Hangzhou is 

interconnected mostly with cities in Zhejiang Province, which is inconsistent with some 

studies [6] in 2016 that found Shanghai has high connectivity with Zhejiang and Jiangsu. 

Similar to the Beijing–Tianjin–Hebei urban agglomeration, the total population flow 

within the Yangtze River Delta agglomeration accounts for 51.2% of the total population 

flow, suggesting that its internal and external flows are relatively balanced. The Chengdu-

Chongqing urban agglomeration exhibits a network system centered on Chongqing and 

Chengdu, of which Chengdu is the main distribution city. It is the strategic support of the 

Yangtze River Economic Belt, and its population flow accounts for 54.1% of the total pop-

ulation flow. Guangzhou, Shenzhen, and Foshan are the core cities of the Pearl River Delta 

urban agglomeration. It is one of the most dynamic economic regions in the Asia-Pacific 
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region, and its internal flow accounts for 27.8%, while its external population flow ac-

counts for 72.2%. The significant imbalance in the population flow shows that the Pearl 

River Delta has a more significant spatial siphon effect on external cities, driving the de-

velopment of South, Central, and Southwest China. 

 
 

(a) (b) 

 
 

(c) (d) 

 

Figure 4. Spatial patterns of population flow in the four major agglomerations. (a) Beijing-Tianjin-Hebei urban agglomer-

ation; (b) Yangtze River Delta agglomeration; (c) Chengdu-Chongqing urban agglomeration; (d) Pearl River Delta urban 

agglomeration. 

4.2.2. The Spatial Pattern of Population Mobility during Outbreak and Post-Peak Periods 

The intensity of population flow dropped significantly during the outbreak period, 

the distance traveled in the population flow has been significantly shortened (about 483 

km), and interprovincial population mobility has almost disappeared. In addition, the 

overall distribution of intercity population flow is relatively scattered, as illustrated in 

Figure 5. The four major urban agglomerations and their nearby cities are no longer the 
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main distribution areas. Hubei Province, especially Wuhan City, appears as a hollow in 

the population flow, which indicates that the impact of the complete lockdown on Wu-

han’s population flow was much higher than the impact on other cities in China, reflecting 

the key role of Hubei Province and Wuhan City in preventing the epidemic. 

With the situation of the epidemic basically stable, the population flow gradually re-

covers during the post-epidemic period. It is found that the intensity of population mo-

bility in China’s provinces has increased significantly, which is closely related to the active 

promotion of the resumption of work and production in various provinces. The average 

of the flow distance increased to 725 km. However, most of the intra-provincial popula-

tion flow is dominated by cities in southern China, such as Guangdong, Shanghai, Jiangsu, 

and Zhejiang. This is related to the issue of specific regulations on the resumption of work 

by government. In addition, as seen from Figure 3, some interprovincial flows have begun 

to gradually appear, and the distribution pattern of population mobility is gradually pick-

ing up. To further explore the recovery of cities in this period, the growth rate of popula-

tion flow (recovery rate) compared with the outbreak period, is calculated. Figure 4 shows 

that most of the cities with high recovery rates are located in China’s southern provinces, 

such as cities in Yunnan and Guizhou, whereas cities with the lowest recovery rates are 

located in Hubei Province. It is notable that the recovery rates in West and Northeast 

China are also relatively low, which are located along less developed regions. In addition, 

affected by the culture of ethnic minorities, these regions are relatively closed, resulting 

in low population exchange activity. Some first-tier cities, such as Beijing had a recovery 

gap occur. These findings are similar to the resumption studies of Tong et al [13] and Xu 

et al [14].  

 

(a) Population flow during outbreak period 



ISPRS Int. J. Geo-Inf. 2021, 10, 145 12 of 21 
 

 

 
(b) Population flow during post-peak period 

 

 

(c) Recovery rate 

Figure 5. Spatial pattern of the average daily population flow and recovery rate. (a) Population 

flow during outbreak period, (b) Population flow during post-peak period, (c) Recovery rate. 

4.3. Changes in the Structure of the Urban Population Mobility Network 

As depicted in the above sections, the population mobilities of prefectures were im-

pacted by the COVID-19 epidemic significantly. Actually, human mobility of a city reflects 

the status of this city in the city network, and in order to further evaluate the changes of 

the cities’ function impacted by COVID-19, the status and structure of China’s urban net-

work during outbreak period is discussed, which has important practical significance for 

the management of future public health emergencies between cities. The population mo-

bility network degree, centrality, and clustering of 336 cities in China are calculated dur-

ing the COVID-19 epidemic. Then, we compare our results with the network structure 
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during a non-pandemic period to reflect the differences in the network status, connectiv-

ity, and clustering trends of Chinese cities during the epidemic. 

(1) Changes in the urban network status 

The degree value can well reflect the importance of different city nodes in the net-

work, that is, the city’s network status. This study uses weighted network methods to 

calculate the degree value. Due to the large number of prefectures, this study only sorts 

out the total degree values and ranking of cities that are provincial capitals and above in 

China during the epidemic outbreak period (Table 2). In general, it was found that there 

are large discrepancies between the total degree values of each provincial capital city, Bei-

jing ranked first with a total degree value of 2853, while Altay ranked last with a total 

degree of only 24, with an overall trend of directly under the central government > sub-

provincial cities > ordinary provincial capitals > prefecture-level cities, which indicates 

that during the epidemic period, first-tier cities, regional central cities still produce a non-

negligible effect. However, the differences in the network status of cities at different ad-

ministrative levels in this study are much smaller than those found by Lai et al [36] during 

a non-pandemic period; for example, the average total degree value of directly adminis-

tered municipalities is 1.5 times that of sub-provincial cities (2.4 times in existing research), 

2.0 times that of ordinary provincial capitals (5.5 times in existing research), and 4.4 times 

that of prefecture-level cities (9.4 times in existing research). It is reasonable to conclude 

that the impact of the epidemic outbreak and the network status gap between cities have 

narrowed. It is worth noting that the total degree of Tianjin during outbreak period was 

relatively low compared with its administrative level, which was related to the outbreak 

of infection in department stores on 10 February in Tianjin, which reduced the population 

flow in Tianjin. 

To further analyze the differences between different level cities during the outbreak 

period, the natural break point classification method (Jenks) was used to classify the total 

degree values of 336 cities (Table 3), which is similar to the conclusion of existing studies 

for non-epidemic periods; that is, the hierarchy has a pyramid distribution structure, in-

dicating that hierarchical distribution played an important role in the urban population 

flow network during the epidemic period. However, unlike in other studies, the network 

status of some cities was inconsistent with their administrative level. For example, the 

network status of some cities has been reduced: Wuhan has been reduced from a national 

network subcenter to a local network center; Xiamen, Jinan, and Qingdao have been re-

duced from regional to local network centers; and Xi’an has been reduced from a national 

network subcenter to a regional network center. These cities are more severely affected by 

the epidemic outbreak and are popular tourist cities and therefore more affected by epi-

demic control measures than other cities. In addition, there are also a few cities whose 

network-level status has risen; for example, Nanning has risen from a local network center 

to a national network subcenter, Zhengzhou and Suzhou have risen from a regional net-

work center to a national network subcenter, and Hengyang has risen from a local to a 

regional network center. These cities are basically located in the southern regions of China, 

where the epidemic situation is relatively stable, and have been less affected by the epi-

demic outbreak so that the population flow did not change substantially. 
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Table 2. Degree and ranking of cities at different administrative levels. 

Administrative Level Total Degree Rank Administrative Level Total Degree Rank 

Directly administered municipality Provincial capitals 

Beijing 2853 1 Changsha 1781 9 

Shanghai 2481 2 Nanning 1505 11 

Chongqing 1782 8 Shanghai 1450 12 

Tianjin 1140 23 Hefei 1361 13 

Average 2064  Zhengzhou 1303 15 

Sub-provincial city Kunming 1173 21 

Shenzhen 2421 3 Lanzhou 1122 24 

Guangzhou 2416 4 Fuzhou 908 34 

Chengdu 2401 5 Shijiazhuang 888 36 

Shenyang 1824 7 Guiyang 879 40 

Nanjing 1332 14 Nanchang 855 43 

Hangzhou 1286 16 Taiyuan 823 47 

Dalian 1244 17 Urumqi 733 74 

Changchun 1182 19 Lhasa 694 81 

Harbin 1181 20 Xining 690 83 

Qingdao 1060 25 Hohhot 657 93 

Ningbo 1051 27 Yinchuan 598 117 

Jinan 979 29 Average 1025  

Xi’an 936 31 

Prefecture level city 

average 
472  Xiamen 819 49 

Wuhan 440 202 

Average 1371  
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Table 3. Urban hierarchy in the population flow network. 

Level (total network value) City 

National network center (>2000) Beijing, Shanghai, Shenzhen, Guangzhou, Chengdu, Dongguan 

National network subcenter 

(1301–2000) 

Shenyang, Chongqing, Changsha, Suzhou, Nanning, Haikou, Hefei, Nanjing, 

Zhengzhou 

Regional network center 

(1001–1300) 

Hangzhou, Dalian, Foshan, Changchun, Harbin, Kunming, Hengyang, Tianjin, Lan-

zhou, 

Qingdao, Xi’an, Ningbo 

Local network center 

(501–1000) 

134 cities including Yongzhou, Jinan, Yancheng, Zhoukou, Ganzhou, Fuzhou, Linyi, 

Shijiazhuang 

Local network nodes (<500) 
185 cities including Danzhou, Kashgar, Ma’anshan, Liupanshui, Baoshan, Putian, 

Yueyang, Xiaogan, Datong 

(2) Changes in urban connectivity 

The betweenness centrality of a city node reflects the city’s connectivity in the popu-

lation flow network. Cities with high betweenness centrality play a role as a bridge in the 

connection between the regional population flow. This paper used the natural break point 

classification method to classify the centrality of city nodes (Figure 6). During the outbreak 

period, the betweenness centrality and total degree show a positive correlation, cities with 

high betweenness centrality are concentrated primarily in the diamond-shaped region 

formed by Beijing, Shanghai, Guangzhou, and Chengdu, and most city nodes with high 

centrality are also located in the well-developed eastern coast region and the central and 

western provincial capital regions, which is consistent with the findings for the non-pan-

demic period. Among them, cities such as Beijing, Shanghai, Guangzhou, and Shenzhen 

still maintained their central functions. However, Wuhan, as a high-value intermediate 

central city ranks 48th in centrality but only 202nd in terms of the total degree, which may 

be caused by Wuhan being the epidemic epicenter, receiving the assistance of medical 

staff and shipments of medical equipment and supplies from all over the country, leading 

to its high connectivity ranking. Similarly, affected by the epidemic, the centrality value 

of western cities such as Urumqi and Lanzhou are also significantly higher than their total 

degrees, becoming a transportation hub city that undertakes population movement dur-

ing the epidemic. This may be because its location in the northwest region of China is 

relatively unaffected by the epidemic, and then took on the role of a transfer hub between 

the western region and other regions. In contrast, Shenyang is an important hub city in 

the three eastern provinces, its betweenness centrality is less than its total degree value 

ranking, the reason is that impacted by the epidemic, its population flow is coming pri-

marily from its neighboring cities, which reduces its connectivity. 
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Figure 6. Betweenness centrality in the outbreak period. 

(3) Changes in urban agglomeration trends 

The clustering coefficient is used as a parameter for the local clustering of a network. 

This study calculates the average clustering coefficient of the entire network during the 

outbreak as 0.679 based on the clustering coefficient formula, which indicates strong clus-

tering. At the same time, a random network with 336 nodes was constructed, and the av-

erage clustering coefficient of this random network was calculated as 0.249, which is much 

lower than 0.679 of the population network; the average characteristic path length of the 

random network is 1.501, which is slightly larger than the population network (1.405) in 

this study, indicating that the population flow network has a shorter average characteris-

tic path length and a higher average clustering coefficient, thus suggesting that the urban 

population flow network has small-world characteristics during the pandemic period and 

a certain degree of internal cluster structure [37]. Then, we calculated the cluster structure 

and obtain the cluster structure distribution of the population mobility network during 

the epidemic outbreak (Figure 7). According to the number of cities included in the cluster 

and spatial coverage, the cluster structure is divided into large cluster covering 5 or more 

provinces, medium cluster covering less than 5 or more than 2 provinces, and small cluster 

covering 2 or less. The large clusters contain Northwest Cluster composed of 31 cities such 

as Gansu, Qinghai and Inner Mongolia; Southwest Cluster composed of 38 cities such as 

Chongqing, Sichuan and Guizhou; Northern Cluster composed of 65 cities such as Beijing, 

Hebei, Shandong. The three medium clusters include East Cluster composed of 41 cities 

such as Shanghai, Jiangsu and Zhejiang; South China Cluster composed of 60 cities in-

cluding Jiangxi, Hunan and Guangxi; Northeast Cluster composed of 40 cities including 

Liaoning, Jilin and Heilongjiang. The small clusters contain Hubei-Shanxi City Cluster 

composed of 25 cities, Xinjiang City Cluster composed of 16 cities in Xinjiang, Yunnan 

Small Cluster composed of 15 cities in Yunnan, Fujian City Cluster composed of 9 cities 

in Fujian, and Hainan City Cluster composed of 3 cities in Hainan. It can be seen from 

Figure 7 that during the epidemic outbreak, cities with the same cluster structure are lo-

cated in adjacent provinces, and the cluster boundaries closely follow provincial bounda-

ries, reflecting the administrative characteristics of the connections between cities in a 

province, which is inconsistent with the findings of [38] during a non-holiday period and 

those of Pan et al [38], who found that during the Spring Festival, urban population flow 
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has a trans-provincial clustering structure. The main reason for the results of the analysis 

is that the epidemic has caused a significant reduction in the distance traveled by the pop-

ulation flow, highlighting the fact that population flow is subject to geospatial factors. 

 

Figure 7. Urban clustering distribution. 

4.4. Discussions and Policy Implications 

Comparing the existing findings of human mobility under the COVID-19 pandemic. 

The COVID-19 pandemic is a major problem facing humanity throughout the world. 

Rapid and accurate tracking of population flows may therefore be epidemiologically in-

formative. The geographers conducted researches by adopting timely geographic big data 

and GIS technology, such as the relationship between human mobility and confirmed 

COVID-19 cases, the evaluation of further spread of the disease cities, in order to better 

understand the pandemic consequences and how to prevent in the future. By using Baidu 

migration data, this paper showed that there are about 78.95% and 21.05% movements 

from Wuhan city to prefectures within Hubei, which is similar to the results of Jia et al 

[12] in a study (75.67% and 24.33%) by using mobile phone data from individuals leaving 

or transiting through the prefecture of Wuhan. This suggests that the study of population 

mobility by using Baidu migration data is feasible to some extent. Impacted by COVID-

19, the human mobility decreased steeply in Spring Festival, and the people return is sig-

nificant reduced in scale and extended of the time span. This is consistent with many of 

the current studies that have found the number of returning people remained low and 

stable [11–13]. In addition, and similar to the study of Xu et al [11], cities in west China, 

such as Hohhot, Xining, Yinchuan, and Lhasa, were less effected by the pandemic, due to 

these cities having a lower level of urbanization, low population density and less devel-

oped transportation. These indicate that the Baidu migration data used in this paper can 

adequately reflect the changes in human mobility during the pandemic.  

Comparing human mobility during the pre-outbreak period with the same period in 

previous years. The specific population movement changes with that in previous periods 

are assessed to capture the development of prefectures of China in these two years. Com-

pared with previous years, this study reported that popular destinations are still first-tier 

cities, regional central cities and labor-intensive cities, and the four major urban agglom-
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erations have still embraced most population movements in China. However, some gate-

way cities, such as Lhasa and Urumqi, have begun to establish certain connections with 

cities in the central and eastern regions, which is inconsistent with the conclusions of Liu 

in 2016 [6], illustrating the shift in the labor force back from the eastern regions to the 

central and western regions due to the shift of industries. Different with the finding in last 

two years that Shanghai has high connectivity with Zhejiang, this paper found that Hang-

zhou, as a new-first-tier city, has played a more prominent role in driving the economic 

development of other cities in Zhejiang in these two years.  

Target suggestions for government to control infection can be provided. Although 

the fact that lockdown measure would lead to the reduction of population flow, thus re-

ducing the contact opportunity between people, is known, it is also necessary to better 

capture the time and space scope of the specific impact of the epidemic. Firstly, the corre-

lation between population density, population flow from Wuhan (Jan 1 to Jan 24) and 

confirmed cases (till 20 February) in prefectures were calculated, the results show that the 

relationship between population density and confirmed cases is not significant (p=0.858), 

but the Pearson between population flow and confirmed cases is 0.96 with p<0.005, which 

is similar to the findings of Jia et al [12] and Li et al [39]. This suggests that the assessment 

of the population flow can reflect the spread of the epidemic to some extent. Secondly, 

based on the findings of this paper, target suggestions and policies for government to 

control infection during outbreaks can be provided. In the future, the government’s epi-

demic prevention should focus more on dense movements in cities, as a larger number of 

population flows means a higher risk of cross infection incidents. For example, for cities 

with large outflow degrees, the population outflows should be controlled; for cities with 

large inflow degrees, the entry of outsiders should be strictly controlled to reduce the risk 

of the epidemic. Through the analysis and comparison of the network status of prefectures 

in China during the outbreak period, it is found that under the public health emergencies, 

although the population flow and the risk of the epidemic is high in eastern China, due to 

their sound economic foundation and convenient transportation, some cities, like Shang-

hai, Chengdu and Guangzhou, can still play a leading role for the promotion of work 

resumption. But some eastern cities, such as Xiamen and Qingdao, are more vulnerable, 

and many functions of these cities are lost, such as the function of betweenness centrality. 

On the contrary, for the southwest cities, although their economy is lagging compared 

with the eastern cities, their functional status is relatively stable under epidemic, and they 

can also be temporarily used as important functional centers in China, such as Lanzhou. 

Finally, based on the detailed analysis for the four major urban agglomerations, for public 

emergencies in the future, the population flow in the inner cities of Chengdu-Chongqing 

urban agglomeration should be concerned, and for the Pearl River Delta urban agglomer-

ation, the population movement from cities outsider the urban agglomeration should be 

focused strictly, such as movements from Jiangxi and part of Hunan.  

This paper used the data in this study are the population flow weight ratio data from 

Baidu Migration, although the overall result is relatively reasonable due to the min-max 

normalization method and can truly reflect the projection of human activity on geographic 

space, there remains some discrepancy compared with the actual population flow. Baidu 

is the largest electronic map and LBS provider in China, the migration data is collected if 

a Baidu Maps user agrees to share their location. These data may not be representative of 

the population as a whole; for instance, the migration data cannot be captured if a person 

doesn’t agree to share his/her location or there is no Baidu product in the user’s device, 

which lead some discrepancy with the actual flows. Next, actual population flow data or 

other timely location data, such as mobile operators and Google location data, should be 

integrated into our research to correct and expand the weighted ratio data.  
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5. Conclusions 

Population flow between cities is an important aspect of urban systems research. In 

this study, we used Baidu Migration data to explore the spatiotemporal patterns and net-

work characteristics of population flow from 1 January to 15 March. The results of this 

research are of significance for enhancing the awareness of network connections and sta-

tus changes between cities before and after the epidemic in China. The main findings are 

as follows: 

(1) For temporal characteristics of population flow, the scale of total population flow 

in China varied significantly in the different periods, showing a trend of pre-outbreak 

period > post-epidemic period > outbreak period. The first-tier cities and new-first-tier 

cities have a large population flow. Affected by the control of the epidemic, the population 

flow of various provinces plunged drastically during the outbreak period, and the popu-

lation flow of various cities increased gradually when the epidemic eased. 

(2) For a spatial pattern of the population flow, during the pre-outbreak period, Hu 

Line serves to divide a spatial pattern of the dense east and the west. The four major urban 

agglomerations occupy an important position in the spatial pattern of population flow. 

During the outbreak period, the spatial distribution of the population flow was relatively 

scattered, with Hubei Province, especially Wuhan City, appearing as a hollow area. Dur-

ing the post-epidemic period, although the scale of population flow increased, it was pri-

marily focused on intra-provincial flow and mainly concentrated in the southern region. 

(3) For the changes of the population flow network structure, compared with the non-

epidemic period, the network status gap of cities at different administrative levels was 

greatly reduced during the outbreak period. And cities with similar cluster structures in 

China are all neighboring provinces during the outbreak period, reflecting the close ad-

ministrative characteristics of close connections between cities in the province under out-

break conditions. 

This study is of great significance for an in-depth understanding of the spatiotem-

poral changes in intercity population flow in China and the impact of the epidemic on the 

characteristics of the urban network structure before and after the epidemic breakout, and 

it can serve as a reference for the management of public health emergencies between cities 

in the future. However, there are still some shortcomings in this study. First, the other 

location data from official or trustworthy entities should be integrated. In addition, we 

will carry out a comparative analysis of more time-series data to compare urban network 

changes during the non-epidemic and epidemic periods more deeply. And more driving 

factors that influencing the population movements and confirmed cases, such as the pop-

ulation density, economy situation, will be introduced to study the spread mechanism of 

epidemic in depth, thus providing a reference for the future management of public health 

emergencies on a nationwide scale. 
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