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Abstract: Flood occurrence is increasing due to the expansion of urbanization and extreme weather 
like hurricanes; hence, research on methods of inundation monitoring and mapping has increased 
to reduce the severe impacts of flood disasters. This research studies and compares two methods 
for inundation depth estimation using UAV images and topographic data. The methods consist of 
three main stages: (1) extracting flooded areas and create 2D inundation polygons using deep learn-
ing; (2) reconstructing 3D water surface using the polygons and topographic data; and (3) deriving 
a water depth map using the 3D reconstructed water surface and a pre-flood DEM. The two meth-
ods are different at reconstructing the 3D water surface (stage 2). The first method uses structure 
from motion (SfM) for creating a point cloud of the area from overlapping UAV images, and the 
water polygons resulted from stage 1 is applied for water point cloud classification. While the sec-
ond method reconstructs the water surface by intersecting the water polygons and a pre-flood DEM 
created using the pre-flood LiDAR data. We evaluate the proposed methods for inundation depth 
mapping over the Town of Princeville during a flooding event during Hurricane Matthew. The 
methods are compared and validated using the USGS gauge water level data acquired during the 
flood event. The RMSEs for water depth using the SfM method and integrated method based on 
deep learning and DEM were 0.34m and 0.26m, respectively. 

Keywords: 3D inundation mapping; remote sensing; CNN; SfM; LiDAR; GFI 
 

1. Introduction 
Flooding is one of the most destructive natural disasters, the severity and frequency 

of which have increased in recent years due to the expansion of urbanization and extreme 
weather such as hurricanes [1]. For example, Hurricane Harvey in 2017 caused about $125 
billion in damage in the U.S. and ranked as the second-most costly hurricane to affect the 
U.S. mainland since 1900 [2]. Hurricanes Irma and Maria followed within a month of Hur-
ricane Harvey and brought widespread death and destruction to Florida, Puerto Rico, and 
the U.S. Virgin Islands, causing $50 billion and $90 billion in damages, respectively [3]. 
According to the National Hurricane Center report, 2017's hurricanes caused more than a 
quarter-trillion dollars in insured and uninsured losses [4]. Thus, studying efficient meth-
ods to quickly estimate the magnitude of floods in terms of coverage area and inundation 
depth is compelling for effective emergency response and damage assessment activities 
[5,6].  

A variety of remote sensing systems are capable of providing spatial data that are 
needed to create an inundation map [7,8]. However, critical factors such as spatial cover-
age, data acquisition timing, and image quality impact the operational suitability of these 
systems for flood mapping. Satellite remote sensing has been used as one of the powerful 
tools for inundation mapping. The increasing availability of satellite imagery allows the 
production of flood maps at a large scale [9,10]. However, the spatial resolution of freely 
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available data such as Landsat and Sentinel is not good enough to create precise and de-
tailed inundation maps, and very high-resolution satellite imagery such as QuickBird and 
Ikonos is relatively costly to acquire [11]. In addition, the acquisition of suitable optical 
imagery constrained by clouds, and the satellite's regular trajectory, view angle, and their 
predefined schedule may fail to collect data at critical times, such as peak flood. With 
recent technological advances, unmanned aerial vehicles (UAV) have been considered as 
effective platforms for flood management applications. UAVs can acquire very high-res-
olution imagery with flexibility in the frequency and time of data acquisition [12]. In con-
trast, their short flight endurance and small-scale coverage remain areas of weakness for 
their wide-scale implementation in remote sensing.  

The extraction of 2D flood extent has been extensively studied, and several methods 
have been developed to efficiently map inundation areas from remote sensing imagery 
[13–16]. Among these, convolutional neural networks (CNN) have shown promising re-
sults for 2D inundation mapping. CNNs are becoming popular techniques for remote 
sensing tasks due to their ability to automatically extract and learn directly from input 
data/images and successfully handle large datasets. Recent studies used CNNs for auto-
matically extracting 2D inundation extent using remote sensing optical or Synthetic Ap-
erture Radar (SAR) imagery [17–21]. For optical imagery, Gebrehiwot et al. [18] fine-tuned 
and trained Fully Convolutional Neural Networks (FCNs) to create a flood extent using 
UAV optical images and achieved more than 95% accuracy segmenting the flood in non-
vegetated areas. Peng et al. [19] used a residual patch similarity convolutional neural net-
work (ResPSNet) to map urban flood hazard zones using pre- and post-Hurricane Harvey 
flood imagery in Houston, Texas. They achieved a precision of 0.9002 and a recall of 
0.9302. Sarker et al. [20] applied an FCN model to detect the inundation area using Landsat 
satellite images in Australia and achieved (76.7%) compared to SVM (45.27%) for the flood 
classification task. Wu et al. [21] proposed a multi-depth flood detection CNN (MDFD-
CNN) to classify and extract the water region from SAR imagery. Kang et al. [22] fine-
tuned an FCN to generate flood extent maps from Gaofen-3 SAR images and achieved 
more than 90% accuracy with a few training samples. Although the results demonstrate 
the highly promising potential of deep learning methods for inundation mapping, CNN 
methods, like other image classification approaches, are limited to extract only 2D flood 
extent, and water depth cannot be measured from 2D imagery. The water depth infor-
mation is critical for flood management practices such as quantifying impacts and dam-
ages, better-characterizing flood risk, implementing disaster risk reduction measures, as-
sessing accessibility and designing suitable intervention plans, calculating water volumes, 
and allocating resources for water pumping. 

Satellite altimetry data are one of the data sources for estimating floodwater depth. 
Satellite altimetry measures the water's depth by measuring the time taken for a sensor 
pulse to travel from the satellite to the water surface and back to the satellite. Altimetry 
data have been used to measure rivers and floodplains [23–25]. However, it is impossible 
to estimate the inundation level of the entire flood extent using this approach, since satel-
lite altimeters can only measure floodwater depths along their trajectory/orbit. Water 
depths can be also measured using photogrammetry methods, such as structure from mo-
tion (SfM). SfM is a method of reconstructing the 3D structure of objects from a series of 
2D sequential images. Some researchers have used the SfM method for flood applications. 
For example, Meesuk et al. [26,27] used the SfM method to process multidimensional 
views of photographs for flood mapping. Hashemi-Beni et al. [28] provided an overview 
of the opportunities and challenges of 3D inundation mapping using SfM from UAV im-
ages. Some of the challenges involve the weather conditions during a flooding event, 
mainly the wind; unavailability of the ground control points (GCPS); and insufficient tie-
points for image calibration due to the homogenous appearance of the water surface. 
Moreover, in spite of SfM’s 3D surface reconstruction ability, it cannot directly measure 
the floodwater depths. It only creates a 3D surface or DEM and estimates water height 
above mean sea level. The rapid advancement of Geographic Information Systems (GIS) 
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has given researchers an effective way of dealing with floodwater depth mapping com-
plexity. The floodwater depth can be measured by spatial integration of SfM-based DEM 
and pre-flood DEM.  

Several methods have been proposed for quantifying inundation depth using remote 
sensing-based flood extent maps [29–35]. Schumann et al. [29] and Matgen et al. [30] de-
veloped an inundation depth calculation model based on flood extent and DEM. They 
used regression analysis to estimate floodwater depths at a given flood event. However, 
the linear regression method is currently less applicable for remote sensing mapping. 
Huang et al. [31] estimated inundation depth by combining satellite optical images and 
DEM, assuming the flood surface was flat if the inundation area was sufficiently small. 
Accordingly, they “split” the inundation extent map generated from the satellite imagery 
into 750 m by 750m squared tiles and then “filled” the DEM up to the level for which the 
resulting flood extent was closest to the satellite imagery-based map. Then, the water sur-
face was created using a kriging interpolation method, and the floodwater depth was cal-
culated as the difference between the water surface and the DEM. Similarly, Cian et al. 
[32] presented a method for estimating inundation depth using SAR imagery-based flood 
extent and DEM. They used a change detection method to create a flood/water map. Then, 
DEM was used to estimate flood elevation using a statistical analysis of terrain of inunda-
tion areas. Recently, Manfreda et al. [33] developed a DEM-based method based on a ge-
omorphic descriptor—the geomorphic flood index (GFI)—to predict inundation extent 
and depth. The GFI, a descriptor of the basin's morphology, was formulated to represent 
a flood hazard metric. However, the water depth results are valid when the calculations 
and analyses are done for a large area in a river basin or subbasin area. This method takes 
the flow accumulation values of the entire river basin or sub-basin and a detailed calibra-
tion flood map as input for floodwater depth calculation. This makes the method unsuit-
able for flood mapping at a small scale or for pluvial flood mapping.  

This research aims to develop and compare two methods for floodwater depth map-
ping: 

1. Estimating floodwater depth by reconstructing 3D water surface using SfM and 
deep learning methods 

2. Estimating floodwater depth by reconstructing the 3D water surface using a deep 
learning method and spatial analysis of topography information.  

The performance of the measurements of floodwater depth highly depends on the 
accuracy of the flood extent map, and DEM and any errors in the data can lead to an over- 
or under-estimation of the floodwater depths [36]. Since deep learning methods have been 
proven to be an efficient method for floodwater extent detection [18], the integration of 
deep learning-based water extent maps and topographic data will potentially provide 
high accuracy floodwater depth.  

The paper is organized as follows: Section 2 presents the study areas and data used 
for the research. Section 3 explains our proposed methodology and data processing pro-
cedures to estimate floodwater depth. The implementation and results are presented in 
Section 4. Finally, we conclude by summarizing our results in Section 5. 

2. Study Area and Data 
The town of Princeville, a flood-prone area in North Carolina in the USA, was se-

lected as our study area for this research (Figure 1). Princeville is located along the Tar 
River in Edgecombe County and has been seriously affected by several flood events, in-
cluding Hurricane Floyd and Hurricane Matthew. They both caused widespread devas-
tation when the Tar river overflowed. 
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Figure 1. Study area—Princeville, North Carolina. 

The datasets used for the study include UAV imagery and Lidar data, which were 
acquired by North Carolina Emergency Management. The flood imagery in Princeville 
was collected during Hurricane Matthew in 2016 using a Trimble UX5 fixed-wing UAV. 
Each image consisted of three bands (RGB) at 2.6 cm spatial resolution. The LiDAR data 
was acquired in 2014 with two pulses per square meter (pls/m2) with an accuracy of 9.25 
cm RMSE and was used to generate a pre-flood DEM over the town of Princeville. We 
also collected USGS surface water gauge station information on the study area from the 
NOAA website. USGS gauge stations collect time-series data that describe stream levels, 
streamflow or discharge, reservoir and lake levels, surface-water quality, and rainfall.  

3. Methodology  
In this section, the two proposed methods for estimating flood depths are discussed. 

The workflow for the methods is shown in Figure 2. The proposed approaches involve 
three stages: (1) 2D inundation mapping; (2) 3D water surface generation; and (3) flood-
water depth estimation. 
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Figure 2. The proposed methods for floodwater depth estimation. 

3.1. Stage 1: Flood Extent Mapping  
The first stage of the methods involved automatically extracting the flood extent from 

imagery data (e.g., UAV data). The flood extent mapping in this study was based on the 
authors' approach [18], which fine-tuned a fully convolutional neural network with a 
stride of 8 (FCN-8s) model. The FCN-8s was proposed by Long et al. [37] to train an end-
to-end directly from the input images for semantic segmentation. In this model, VGG16 
fully-connected-based classification layers [38] were replaced by convolutional layers to 
maintain the 2D structure of images. The data processing based on this method consisted 
of training, testing, and evaluation stages. In the training stage, the network trained using 
150 manually annotated UAV images (4000 x 4000-pixel size each) using stochastic gradi-
ent descent (SGD) for 6 epochs with a learning rate of 0.001, and a maximum batch size of 
2. The Hurricane Matthew UAV images acquired in the city of Lumberton in 2016 were 
used to train the FCN-8s model, whereas the Hurricane Florence image collected over the 
city of Princeville was used to test the model. The results were then georeferenced using 
8 GCPs available in the study area for geospatial data integration purposes, since the train-
ing and testing images were not georeferenced initially. In the accuracy assessment stage, 
the confusion matrix was calculated to analyze the performance of the FCN-8s. Finally, 
the FCN-based extent map was converted to inundation polygons using raster to vector 
conversion for further spatial data analysis, integration, and visualization. More detailed 
information about the floodwater extent mapping approach can be found in [18].  

3.2. Stage 2: Creating 3D Water Surface 
3.2.1. Method 1: 3D Water Surface Reconstruction using SfM and CNN 

In this approach, SFM was used to create a 3D point cloud or 3D digital surface model 
of the study area from UAV imagery data. SfM is a photogrammetry method to recon-
struct a 3D point cloud from a series of overlapped 2D photos of an area or an object taken 
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from different angles [39]. SFM employs feature-based image matching methods such as 
scale-invariant feature transform (SIFT) to automatically identify matching features in 
these input photos. The features are tracked from photo to photo and are used to estimate 
the camera positions and orientations and the features' coordinates, and finally, create a 
3D point cloud for features.  

The point cloud created using the SfM approach is unclassified; 3D point cloud clas-
sification is a crucial step to group water points, reconstruct 3D water surface, and extract 
meaningful information from the inundation areas. However, the classification is very 
challenging due to irregular geometric attributes and highly noisy and nonuniform sam-
pling of point cloud data. To overcome the issue of point cloud classification, we proposed 
to employ the flood extent polygons created using the deep learning method in stage 1 
and spatial overlay analysis to classify the point cloud to water (water/flood) and no water 
(dry) points. Then, a noise removal method needed to be implemented to identify and 
eliminate noise points and obvious outliers that do not represent the actual water surface 
from the water point’s class. The noise removal stage is very critical, as generating point 
clouds using photogrammetry containing water bodies tends to be problematic due to the 
homogeneous appearance of the water surface and insufficient tie-points for image match-
ing and create noise points above and below the water surface. The issues are especially 
troublesome as they adversely affect the water surface estimation and consequently result 
in underestimating or overestimating water depth measurements. We used a hydro-flat-
tened approach to enhance the water point cloud surface by removing artifacts, consider-
ing the water bodies to be flat bank to bank with a constant elevation within each 
bank/polygon. Finally, the point cloud interpolation was done to create water surfaces 
(flood DEM) with a 10 cm cell size. 

3.2.2. Method 2: 3D Water Reconstruction using DEM and CNN 
This research also investigated another method to create a 3D water surface by spatial 

analysis of the flood extent extracted using the deep learning method and pre-flood DEM 
elevation. In this approach, 3D water surfaces were obtained by intersecting the flood ex-
tent polygons and the DEM and creating 3D water/dry interfaces. Thus, the elevation of 
each inundation area's boundary was computed by performing a statistical analysis of 
their elevation values from the DEM. This approach assumes that the water surface of the 
flooded areas is flat and has constant water elevation inside each detected flood/water 
polygon. It should be noted that the assumption of a constant water surface elevation 
across individual polygons may not completely accurate for extreme events due to com-
plex flow paths. It should be also noted that the elevation of the polygon vertices on the 
water–vegetation or water–building interfaces should be modified, as there is an ambigu-
ity in the water level estimation in those areas. In other words, the line segments resulting 
from the intersection of water and vegetation polygons or water and building polygons 
do not necessarily represent the interfaces between dry and water areas [40,41]. Thus, as-
signing a water elevation to any point located on those line segments could be inaccurate. 
In the research, our algorithm assigned the mean water elevation of the polygon vertices 
located on water/dry interfaces to these line segments and finally created a 3D water sur-
face/mask for the area. In this study, water surface and pre-flood DEM were created with 
10 cm cell sizes to match with the water surface (flood DEM) previously created in Section 
3.2.1 for pixel by pixel floodwater comparison purposes. Although this method is fast and 
straightforward, the 3D water surface quality heavily relies on the quality of DEM and 
floodwater extent.  

3.3. Stage 3: Floodwater Depth Estimation  
In Stage 2, 3D water surfaces were created using two different methods. The inunda-

tion depth could simply be estimated for each pixel as the difference between the pre-
flood DEM and the 3D water surfaces created in stage 2 (Figure 3).  



ISPRS Int. J. Geo-Inf. 2021, 10, 144 7 of 14 
 

 

 
Figure 3. A schematic description of inundation depth estimation. 

Figure 3 represents a cross-section of a 3D water surface or mask (yellow line) and a 
cross-section of the pre-flood DEM and datum that are shown by green profile and red 
dashed line, respectively. H is the elevation of the water surface above the datum, h is the 
elevation of the earth's surface before the flood event, and ID is the inundation depth. 
Assume A is a point (pixel) on the earth's surface and A′ is the location of the correspond-
ing point on the water surface (inundation area). The pre-flood DEM is considered as a 
benchmark to estimate the floodwater depth. The elevation difference between the 3D 
water surface (H) and its corresponding pixel point on the DEM (h) gives the inundation 
depth (ID):  

ID = H – h (1)

3.4. Evaluation and Comparison 
The proposed approach's performance was evaluated using the gauge station eleva-

tion obtained from the USGS website. The root mean squared error (RMSE) assessment 
technique was used to quantify the floodwater depth error calculated using the proposed 
methods. RMSE is used to measure how well a given model performs. Two RMSEs were 
calculated to quantify the floodwater depth error calculated using our two proposed 
methods: a) SfM and deep learning classification, and b) deep learning, DEM, and spatial 
analysis. Based on the RMSE results, the two methods' performance were compared, and 
a conclusion was made. 

4. Implementation  
The methodology for flood extent mapping and water depth measurements was im-

plemented using MATLAB, Pix4Dmapper, and ArcGIS. The computing unit was config-
ured with 32 GB memory, an Intel(R) Xeon(R) ES-2620 v3 @ 2.40GHz ×2 processors 
memory, and a single NVIDIA Quadro M4000 GPU.  

4.1. Flood Extent Mapping Results 
The UAV images were classified using FCN-8s to extract the flood extent map. Figure 

4 illustrates the classification results (water, building, vegetation, and others), and the de-
tailed information on the performance of each classifier is described via the confusion ma-
trix in Table 1. As previously mentioned, vegetation and building polygons were needed 
to modify the 3D water surface (3D inundation map) at building–water and vegetation–
water interfaces. The overall accuracy and kappa index achieved by FCN-8s were about 
97% and 0.934, respectively. 

For more detailed information on the implementation of stage 1 (deep learning image 
classification) please see [18]. Our primary goal was to extract inundation areas (water 
class) from the UAV imagery. The FCN-8s achieved 98.71% accuracy in extracting the in-
undation areas in non-vegetated areas from the UAV imagery. Having an accurate flood 
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extent map is vital for floodwater depth measurements based on the proposed ap-
proaches, because the flood extent map leads the classification of the SFM-based point 
cloud (method 1) and spatial analysis/overlay (method 2). 

  

 

   
(a) (b)  

Figure 4. Two sample FCN-8s) results. (a) Input aircraft images acquired during Hurricane Matthew in Lumberton, NC 
in Oct 2016; (b) classification results. 

Table 1. Confusion matrix of FCN-8s (unit: percentage). 

 Water Others  Vegetation 
water 98.71 0.85 0.44 
others 1.51 95.52 2.97 

vegetation data 1.31 98.43 

4.2. 3D Water Surface Reconstruction  
4.2.1. Method 1: 3D Water Surface using SfM and CNN 

Figure 5 shows the 3D water point classification and water surface creation results 
using SfM and CNN methods. A total of 1800 UAV images with 4000 x 4000 pixels size 
and 80% overlap between consecutive images were processed for 3D point cloud genera-
tion using the SFM method. Four ground control points (GCPs) within our study area 
were used for georeferencing. Note that acquiring remote sensing images using the Real-
Time Kinematic Global Navigation Satellite System (RTK-GNSS)-mounted UAV or post-
processing kinematic (PPK) technology can reduce the use of GCPs for georeferencing 
purposes in the photogrammetry process. The use of RTK or PPK helps to avoid time-
consuming target deployment procedures and provides the position of each image with 
centimeter-scale accuracy [42]. The point cloud resulting from SfM was unclassified; thus, 
the flood extent polygons were overlaid on the 3D point cloud to identify the point data 
within the inundation areas (Figure 5b) and classify the point clouds as flood and non-
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flood points (Figure 5c). The quality of 3D flood point data was improved using a noise 
removal process, and then a 3D water surface was created using the natural neighbor in-
terpolation technique. Voids in the point cloud occurred in some inundation areas where 
the selection of sufficient tie-points to reference the UAV images was challenging due to 
the water surface's homogenous appearance. This may have affected the depth estimation 
in those areas, since the elevation of the void areas was estimated by interpolation of 
nearby point clouds. 

   

 

(a) (b) (c)  

Figure 5. Three-dimensional surface reconstruction using method 1. (a) SfM-based unclassified point cloud; (b) overlaying 
flood extent polygons (red polygons) on the point cloud; (c) 3D point cloud classification for flood and non-flood point 
data. Note: the figures show a small portion of the study area (clipped) for the sake of visualization of the dense point 
cloud. 

4.2.2. Method 2: 3D Water Surface using DEM and CNN 
Figure 6 shows the 3D water surface created using DEM and CNN (method 2). A 

LiDAR-based DEM was created to represent the pre-flood elevation model of the study 
area (Figure 6a). This DEM was created with a 10 cm cell size to match the SfM-based pre-
flood DEM for pixel-based computation. The LiDAR data was acquired by North Carolina 
Emergency Management using a linear aerial sensor, collected at 2 points per meter in 
2014. The 3D water surface was created by intersecting the water polygons extracted by 
CNN and the pre-flood DEM and extracting the water elevation (z) for the water polygons 
boundaries from DEM (Figure 6b) with the assumption that inundation areas have a con-
stant water elevation within each water polygon.  

   

 

(a) (b) (c)  

Figure 6. Three-dimensional surface reconstruction using DEM and CNN; (a) pre-flood DEM; (b) intersecting flood extent 
polygons (red polygons) and DEM and extract Z value for each polygon; (c) 3D water surface (raster format). 
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4.3. Floodwater Depth Estimation Results  
Figure 7 shows the inundation depth (ID) results for the water surfaces created by 

two proposed methods for the study area. Figure 7b illustrates the 2D inundation map 
created for the test image (Figure 7a) using FCN-8s. The results show the FCN-8s accu-
rately extracted the flood extent from the test UAV image. The IDs were estimated by 
subtracting water surface raster data (stage 2) and pre-flood DEM. Floodwater depth es-
timates by method 1 (SfM and CNN) and method 2 (DEM and CNN) are illustrated in 
Figures 7c, d, respectively. The maximum water depths measured using method 1 and 
method 2 were 1.86 m and 2.2 m, respectively; these depth values for both approaches 
were recorded in the river area, as shown in Figures 7c, d (red areas). The areas with zero 
water depth or dry areas are shown in black.  

 

  

 

 (a) (b)  

 

  

 

 (c) (d)  

Figure 7. Inundation depths results; (a) test image; (b) flood extent from CNN; (c) ID results for method 1; (d) ID results 
for method 2. 

The inundation depth maps were compared to determine how the spatial distribu-
tion of water depth measurements are correlated. The floodwater depth rasters were com-
pared cell-by-cell, and a water depth difference surface was created (Figure 8a). Figure 8b 
shows the histogram of flood depth differences between the two approaches. The maxi-
mum and minimum absolute flood depth differences were 0.4 m and 0.001 m, respec-
tively. The mean difference value was 0.2 m with a standard deviation of 0.1 m. The per-
formance of the methods was also evaluated by comparing the IDs against the water 
gauge data. The RMSEs measured for method 1 and method 2 using the gauge elevation 
data were 0.34 m and 0.26 m, respectively. Based on the research results, method 2 offers 
better estimation performance compared to method 1.  
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Two main factors affecting the quality and performance of the methods for inunda-
tion depth estimation include a) the DEM quality, and b) the inundation extent map qual-
ity. 

a. DEM quality. Accurate topography data or DEM is indispensable for various 
remote sensing applications, including flood mapping. The DEM generation methods, 
such as LiDAR or photogrammetry, yield different levels of accuracy. LiDAR is generally 
the preferred source for generating elevation data due to its high data quality and ability 
to map beneath the canopy. For this research, we used two types of DEM: pre-flood Li-
DAR, and (photogrammetric) SFM-based DEM. Method 1 used these two DEMs to esti-
mate floodwater depths. Method 2, on the other hand, only used pre-flood LiDAR-based 
DEM and spatial analysis to calculate floodwater depth.  

b. Inundation extent map quality. The flood extent map accuracy is also another 
factor that affects the floodwater depth estimation approach's performance, because the 
3D point cloud classification in method 1 and the water elevation extraction in method 2 
highly depend on the flood extent polygon planimetric accuracy. Both methods use the 
flood extent polygon as input for inundation depth estimations. One of the advantages of 
the proposed approaches is using deep learning-based flood extent polygons. The data-
driven and deep learning methods like FCN8s have been proven to be efficient for classi-
fication tasks and achieved promising results (with 98.7% accuracy) in extracting flooded 
areas, reducing the issue of overestimation or underestimating floodwater depths.  

Overall, using accurate flood extent and DEM can improve the performance of the 
methods for flood depth estimations. The estimated floodwater depth values give addi-
tional information that can be used for rescue and damage assessment tasks. 

 

  
 (a) (b) 

Figure 8. Floodwater depth comparison. (a) Water depth difference between method 2 and method 1; (b) a histogram that 
shows frequencies distributions of the flood depth difference between the two methods. 

5. Conclusions 
The research proposes two approaches to calculate inundation depth using photo-

grammetric and topographic data. The proposed approaches calculate inundation depth 
information based on the integration of 3D flood extent and a DEM. These methods are 
only different in how they reconstruct their 3D water surface. The first approach used SfM 
to create a 3D point cloud for the area, and the water polygons were applied for water 
point cloud classification. In contrast, the second method reconstructed the water surface 
by intersecting the water polygons (2D flood extent) and a pre-flood DEM. The deep learn-
ing segmentation method used for 2D inundation mapping allowed for precise and rapid 
floodwater depth estimation, which is highly advantageous for immediate emergency re-
sponse and damage assessments. The methods were compared and validated using the 
USGS gauge water level data acquired during the flood event and demonstrated promis-
ing results. The RMSEs measured for method 1 and method 2 were 0.34 m and 0.26 m, 
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respectively. These results reveal that deep learning-based flood extent polygon (with 
98.7% accuracy) is a promising method to classify the SFM floodwater point cloud and 
create a 3D water surface, which is a crucial step for water depth estimation. Future work 
will focus on further validation and comparison of the proposed methods using more in 
situ data in different study areas, and it will study the effects of image resolution and DEM 
quality in 3D inundation mapping.  
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