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Abstract: Due to the development of globalization, transnational activities are more frequent and
evaluations of current accessibility are the basis for accessibility improvements. Accessibility eval-
uation indices generally contain two parts: travel time and travel probability. However, complex
transnational processes involve the multimodal transport system, including air and land transport
networks, which makes the calculation of these indices more difficult because large quantities of
fundamental data, in addition to suitable models, are needed. In this study, residential areas were set
as the basic evaluation unit for fine-scale and whole-process analysis. Then, multiple web-sourced
platforms were introduced to acquire the travel time between each pair of residential areas. The
temporal-range radiation model was applied to calculate transnational travel probability by consid-
ering spatial interactions of populations. Finally, the weighted-average travel time to South Asia
and Southeast Asia (SA&SEA) countries was generated to represent the overall accessibility for each
populated area in China. The results showed that China had better accessibility to SEA than SA, and
countries with high accessibility were Thailand, Singapore, and Malaysia. In China, southwest, south,
and southeast regions showed larger accessibility to SA&SEA. Improvements of accessibility were
also indicated by conjoint analysis of airport nodes. The proposed framework can help to delineate
the spatial patterns of transnational accessibility and guide the enhancements of accessibility.

Keywords: transnational accessibility; population; web-sourced data; temporal-range radiation
model; residential areas

1. Introduction

Due to the development of globalization, transnational transportation activities have
become frequent and permanent, and are essential to political exchanges, trade contacts, cul-
tural exchanges, and daily lives [1–3]. The evaluation of current accessibility is a priority for
the analysis, improvement, and planning of transportation system [4,5]. Accessibility is gen-
erally defined as the ease of access to activities by overcoming some impediment [6,7], and
is well recognized to represent the spatial relationships in various transport networks [8,9].
The air transport network (ATN) is the basis for population and commodity connectivity
at large scales, especially for transnational processes, and several existing studies have
addressed airport-to-airport accessibility [10–12]. However, the original departure place is
the residential area instead of the airport, and travels between residential areas and airports
via the land transport network (LTN) should not be ignored [13,14]. Thus, considerations of
the multimodal transport system (ATN and LTN, Figure 1) between residential areas are
necessary for the fine-scale and whole-process analysis of transnational accessibility [15–18].
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Figure 1. The explanation of the transnational travel from China residential areas to South Asia 

and Southeast Asia (SA&SEA) residential areas, including air and land transport networks. 

To measure accessibility, various quantitative indicators have considered which fall 

into two broad categories: travel cost and potential opportunities for interaction [7,19]. For 

travel cost, the minimum travel time between an origin and a destination is regarded as 

the most relevant indicator [20,21]. Thus, the travel time between transnational residential 

areas mainly contains two parts: the ATN travel time between airports, and the LTN travel 

time between residential areas and target airports (Figure 1). Due to the rapid develop-

ment of online technology, travel time can be directly acquired from online platforms, 

simplifying geographical data collection and processing [22,23]. Unfortunately, LTN and 

ATN travel time cannot be simultaneously acquired from a single platform. For LTNs, 

Google Maps provides an application programming interface (API) for travel time queries 

between an arbitrary origin and destination with mixed travel modes, such as walking, 

driving, and public transit [24–26]. For ATNs, third-party online booking platforms pro-

vide detailed flight information with different airline choices between airports. Consider-

ing the daily changes of flight arrangements, the web crawling method can be used to 

gather a large amount of dynamic daily flight information [27,28]. The use of both of these 

online data sources allows the overall transnational travel time via ATNs and LTNs to be 

determined. 

The interaction opportunities are broadly defined as the frequency or possibility for 

spatial interactions, and the travel probability or population is the most effective indicator 

[29,30]. Amongst all relevant indicators, the actual population that participates in trans-

national travel is challenging to determine due to data privacy issues and passenger di-

version within ATNs [11,31]. Thus, the spatial interaction model, which requires less ob-

servation data, was introduced to estimate the spatial pattern of travel probability, and to 

simulate the physical processes that make it more reliable [32,33]. Several models have 

been applied to estimate travel probability, including lognormal, Poisson, and gravity 

models, which require a priori data or socioeconomic data [12,34]. Due to its parameter-

free nature, the radiation model, which is analogous to particle movements, performs well 

in population flow estimations when previous mobility data are lacking [32,35]. This 

model has been successfully applied in various contexts, such as epidemic spread, popu-

lation mobility, and city planning [33,36,37]. 

The radiation model assumes that the potential population flow is positively corre-
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Figure 1. The explanation of the transnational travel from China residential areas to South Asia and Southeast Asia
(SA&SEA) residential areas, including air and land transport networks.

To measure accessibility, various quantitative indicators have considered which fall
into two broad categories: travel cost and potential opportunities for interaction [7,19]. For
travel cost, the minimum travel time between an origin and a destination is regarded as
the most relevant indicator [20,21]. Thus, the travel time between transnational residential
areas mainly contains two parts: the ATN travel time between airports, and the LTN travel
time between residential areas and target airports (Figure 1). Due to the rapid development
of online technology, travel time can be directly acquired from online platforms, simplifying
geographical data collection and processing [22,23]. Unfortunately, LTN and ATN travel
time cannot be simultaneously acquired from a single platform. For LTNs, Google Maps
provides an application programming interface (API) for travel time queries between an
arbitrary origin and destination with mixed travel modes, such as walking, driving, and
public transit [24–26]. For ATNs, third-party online booking platforms provide detailed
flight information with different airline choices between airports. Considering the daily
changes of flight arrangements, the web crawling method can be used to gather a large
amount of dynamic daily flight information [27,28]. The use of both of these online data
sources allows the overall transnational travel time via ATNs and LTNs to be determined.

The interaction opportunities are broadly defined as the frequency or possibility
for spatial interactions, and the travel probability or population is the most effective
indicator [29,30]. Amongst all relevant indicators, the actual population that participates in
transnational travel is challenging to determine due to data privacy issues and passenger
diversion within ATNs [11,31]. Thus, the spatial interaction model, which requires less
observation data, was introduced to estimate the spatial pattern of travel probability, and
to simulate the physical processes that make it more reliable [32,33]. Several models have
been applied to estimate travel probability, including lognormal, Poisson, and gravity
models, which require a priori data or socioeconomic data [12,34]. Due to its parameter-
free nature, the radiation model, which is analogous to particle movements, performs well
in population flow estimations when previous mobility data are lacking [32,35]. This model
has been successfully applied in various contexts, such as epidemic spread, population
mobility, and city planning [33,36,37].

The radiation model assumes that the potential population flow is positively correlated
with the total population in the origin and destination places, and individuals tend to be
absorbed by spatially adjacent populated areas [32]. However, “spatial adjacent areas”
are defined as simple circular regions without the consideration of geographical obstacles,
including lakes and mountains. Because travel time is the most efficient cost indicator, a
modified temporal-range radiation model was applied in this study, turning simple spatial
adjacency into irregularly shaped “temporal adjacent areas” [38]. The temporal range for
the radiation model is consistent with the travel time for the travel cost indicator, and is
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strongly correlated with the Manhattan distance in transport networks. The temporal-range
radiation model has proven successful in estimating the spatial pattern of travel population
at large scales, such as national and continental scales [37,38]. However, the temporal-range
radiation model has rarely been applied in large-scale accessibility research or, in particular,
transnational accessibility research. In addition, complex transnational travel contains
multiple segmented processes, and the identification of adjacent areas for the radiation
model is also different from that for single transport network.

To evaluate large-scale or transnational accessibility, travel time and travel probabil-
ity/population should be integrated to generate an overall evaluation indicator, wherein
the travel probability/population is set as a weight index [39,40]. One commonly used
model is the weighted-average method, which can integrate two or more indexes with
different semantics [41,42]. The model is widely used in network analysis, and a smaller
weighted cost value indicates higher overall accessibility [42]. Two common forms are the
population-weighted travel time/distance index [30] and travel probability/population-
weighted travel time/distance index [43]. Although previous research has suggested that
the travel probability/population-weighted accessibility index is superior [44], the weighted-
average travel time index is seldom applied in transnational accessibility research.

China launched the “Silk Road Economic Belt and the 21st-Century Maritime Silk
Road Initiative” (B&R) in 2014, aiming at promoting multifaceted collaborations between
China and surrounding areas [2]. South Asia and Southeast Asia (SA&SEA) have direct
spatial relationships with China, and the evaluation of transnational accessibility is urgently
needed between China and SA&SEA. Notably, the transnational LTNs are complex and
were not considered in this study, and the accessibility indices are calculated between China
and each SA&SEA country. Due to the difficulty of calculating the accessibility indices
of the transnational travel and multimodal transport system, including data acquisition
and model adaption, the research aims of this study were to: (1) construct the accessibility
indices between residential areas under the multimodal transport system, with travel time
from multiple online platforms and travel probability using the temporal-range radiation
model; (2) evaluate the overall transnational accessibility between China and SA&SEA for
application demonstration.

In Section 2, the study area and materials used in this article are described. In Section 3,
the methodology is described. Section 4 contains the main results and findings. A discus-
sion is presented in Section 5. Our conclusions are presented in Section 6.

2. Study Area and Materials
2.1. Study Area

The study area included China, South Asia (SA), and Southeast Asia (SEA). China has
a land area of 963.41 × 104 km2 (square kilometers), with a population of 1.41 billion in
2015. South Asia comprises 7 countries and covers a land area of about 443.93 × 104 km2

with a population of 1.71 billion in 2015 (Table 1). Southeast Asia contains 11 countries,
covering a land area of 448.25 × 104 km2 with a population of 0.63 billion in 2015 (Table 1).
To construct the inter-regional ATN, we selected the 65 busiest civil international airports
in China (including Hong Kong, Macao, and Taiwan), which account for 93.08% of the
total passenger flows in China [45] (Figure 2). Beijing, Shanghai, and Taipei each have
two international airports, with International Air Transport Association (IATA) codes
of PEK/NAY, SHA/PVG, and TPE/TSA, respectively (refer to https://www.iata.org/
en/publications/directories/code-search/, accessed on 10 May 2018). Correspondingly,
63 main airports in SA&SEA offered service to China in 2017, of which 13 were located in
SA and 50 in SEA (Figure 2). Thailand, Indonesia, and India contained the largest number
of navigable airports (flight routes/flights between airports) with China, with about 14, 8,
and 6, respectively.

https://www.iata.org/en/publications/directories/code-search/
https://www.iata.org/en/publications/directories/code-search/
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Table 1. The name abbreviation (Abbr), area, 2015 population (Pop_2015), number of residential
points (No. of RP), and number of selected airports (No. of AP) for China (EA, East Asia), 8 countries
in South Asia (SA) and 10 countries in Southeast Asia (SEA).

Country Abbr Region Area
(104 km2)

Pop_2015
(104) No. of RP No. of AP

China CHN EA 963.41 140,730.56 44,682 65
Bangladesh BGD SA 14.03 16,099.56 544 1

Bhutan BTN SA 4.01 77.48 205 1
India IND SA 316.70 131,105.05 5967 6

Sri Lanka LKA SA 6.63 2071.52 13,941 1
Maldives MDV SA 0.03 35.88 250 1

Nepal NPL SA 14.82 2851.37 3990 1
Pakistan PAK SA 87.71 18,892.48 396 2
Brunei BRN SEA 0.58 42.32 40 1

Indonesia IDN SEA 190.11 25,756.38 498 8
Cambodia KHM SEA 18.25 1557.79 1621 3

Laos LAO SEA 23.11 680.20 140 4
Burma MMR SEA 67.26 5389.72 326 3

Malaysia MYS SEA 33.15 3033.10 932 5
Philippines PHL SEA 29.58 10,069.91 41,954 4
Singapore SGP SEA 0.07 559.82 55 1
Thailand THA SEA 51.62 6795.94 927 13

Timor-Leste TLS SEA 1.50 131.45 442 1
Vietnam VNM SEA 33.02 9344.76 688 7
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Figure 2. The spatial distribution of the 65 busiest airports in China (including Hong Kong, Macao,
and Taiwan), and the main 63 navigable airports in South Asia (SA) and Southeast Asia (SEA). The
grid population data is also shown for better representation than residential point data [46]. The
figure is under WGS-84 geographical coordinate system.
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2.2. Materials
2.2.1. Resident Population Point Data

The estimated resident population point data for 2015, adjusted by the United Nations,
were acquired from the Center for International Earth Science Information Network [46]
(Figure 2). The point location information mostly represents the geometric center of each
populated administrative unit (village or town), and the property contains the estimated
population of each unit. This data includes 44,682 residential points in China, 25,293 res-
idential points in SA, and 47,623 residential points in SEA (Table 1). The point density
for different regions varies slightly due to different spatial granularities for the original
administrative units.

2.2.2. Web-Sourced Flight Information for ATN

Information available from online booking platforms contains daily airline schedules,
travel time, and flight arrangements. Online booking is the main pathway for the purchase
of plane tickets in China, accounting for 59.2% of the market, and third-party platforms,
including Qunar, Alitrip, and Ctrip, account for the largest online market share. These
three platforms offer authoritative and complete flight information, and were selected
as the data sources. The web crawling method was introduced to obtain relevant flight
information, such as departure airport, departure time, flight duration, flight layover
information, arrival time, and arrival airport, without associated commercial information,
such as price and ticket information. For non-direct flight routes, the layover time was
included within the total flight time. The small amount of error information for ATN,
caused by the network, web crawler, or web page, were removed to ensure the data quality
according to network return message. Flight information from China airports to SA&SEA
airports was acquired for a two-month period from 1 June to 30 August 2017, because this
is the busiest travel period in this region.

2.2.3. Web Mapping API Data for LTN

LTN travel time can be directly acquired from the open-access web mapping APIs,
including the Baidu Maps API for China and the Google Maps API for SA&SEA regions.
Baidu Maps offers superior and more up-to-date geographical information on China,
including high-speed railways and highways. The latitude/longitude coordinates of
residential points and airport points in the WGS84 coordinate system were transformed
into the “bd09” Baidu Maps coordinate system (http://lbsyun.baidu.com/index.php?title=
webapi/guide/changeposition, accessed on 10 May 2018). Then these “bd09” coordinates
were input into the Baidu “Direction” API queries (http://lbsyun.baidu.com/index.php?
title=webapi/direction-api-v2, accessed on 10 May 2018). The API can directly return
precise travel time using optimal forms of public transit (i.e., railway, subway, and inter-
city bus) and driving modes. Public transport time was prioritized for consideration and
driving time was only adopted in cases where public transit was unavailable. The same
method was applied for the SA&SEA region using the Google Maps “Directions” API
(https://developers.google.cn/maps/documentation/directions/, accessed on 10 May
2018), and only travel time within individual countries was considered. The travel time
generated by the two APIs reflected historic averages, and standardized query time was set
to minimize daily time changes: morning (8–10 a.m.), afternoon (12–13 p.m.), and evening
(5–7 p.m.) on weekdays. These three time slots represent daily variations within transport
systems, and thus yield more reliable average values [25].

3. Methods

The systematic framework included three main parts: (1) calculate the minimum total
travel time between residential areas by integrating LTN and ATN travel time; (2) construct
the temporal-range radiation model by identifying the temporal range and calculate the
travel probability; and (3) propose the weighted-average travel time to represent the overall
accessibility between China and SA&SEA at national scales.

http://lbsyun.baidu.com/index.php?title=webapi/guide/changeposition
http://lbsyun.baidu.com/index.php?title=webapi/guide/changeposition
http://lbsyun.baidu.com/index.php?title=webapi/direction-api-v2
http://lbsyun.baidu.com/index.php?title=webapi/direction-api-v2
https://developers.google.cn/maps/documentation/directions/
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3.1. Total Travel Time between Residential Areas

Travel time between residential areas contained both LTN travel time and ATN travel
time, without considering waiting time between LTN and ATN. The calculation of the
minimum total travel time from China residential area i to SA&SEA residential area j was
divided into the following three steps:

(1) LTN travel time. For a certain residential area, there might be several airports
within a reasonable travel time. The airport with the least LTN travel time from a residential
area might have a large ATN travel time due to the lack of direct flight routes. Thus, a
maximum of five airports with the least LTN travel time were selected as alternative
airports. The transnational LTNs were not considered in this study and LTN travel time
was calculated within only one country.

(2) ATN travel time. The daily average flight time of direct and non-direct flight routes
was first calculated separately based on 60 days of data (Equation (1)). Then the ATN travel
time from China airport AP1 to SA&SEA airport AP2 (tAP1_AP2) was set as the minimum
value of these two daily average values. Thus, we constructed a [65 × 63] two-dimensional
matrix, representing ATN travel time from 65 China airports to 63 SA&SEA airports, and
ATN travel time of any pair of airports could be easily determined.

tdirect f r
, tnon f r =

∑ time f r
N f r

tAP1_AP2 = min(tdirect_ f r, tnon_ f r)
(1)

where time f r is the travel time of a single trip for different flight routes and N f r is the total
number of flights during 60-day period. tdirect_ f r and tnon_ f r are the daily average travel
time for direct and non-direct flight routes, respectively, and tAP1_AP2 is the ATN travel
time between AP1 and AP2.

(3) Minimum total travel time. Due to the extension of international airline options,
travelers have more choice in terms of different departure and arrival airports. In this study,
we assumed that airports with the least total travel time were the target connection airports
for given residential areas. The total travel time contained three parts: travel time from
China residential area i to China airport AP1 (ti_AP1), travel time from AP1 to SA&SEA
airport AP2 (tAP1_AP2), and travel time from AP2 to SA&SEA residential area j (tAP2_j). The
minimum value of the sum of these three values (ti_AP1 + tAP1_AP2 + tAP2_j) was set as the
point-to-point minimum total travel time between i and j (tij) (Figure 3A).

3.2. Temporal-Range Radiation Model for Travel Probability
3.2.1. Description of the Temporal-Range Radiation Model

The radiation model, which simulates particle movement, was proposed to measure
the travel probability [32]. The modified temporal-range radiation model assumes that
when an individual travels from origin point to destination point, he/she has a larger
probability of being absorbed by temporally adjacent areas (temporal range) with greater
populations than by other areas [38]. Thus, the travel probability is negatively correlated
with total population within a certain temporal range between given origin and destination
points [38,40].

In this study, the origin point was set as China residential area i, with population of
popi, and the destination point was set as SA&SEA residential area j, with population of
popj. The temporal range between i and j were the set of the potential residential areas
m, where minimum travel time from i to SA&SEA residential areas m (tim) was less than
minimum travel time from i to j (tij), which could be calculated based on Section 3.1. In
contrast to the circle region of spatial range, the temporal range was irregularly shaped, and
only related with travel time (Figure 3B). For each pair of China and SA&SEA residential
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points, the point-to-point travel probability from i to j (pij) by the radiation model within a
certain temporal range S was calculated as Equation (2):

pij =
popi×popj

(popi+PopS)×(popi+popj+PopS)
PopS = ∑ popm, m ∈ {tim <= tij, m 6= j}

(2)

where pij is the travel probability from residential area i to j, popi and popj are the popula-
tion of i and j, respectively. Pops is the population sum for temporal region S, containing
potential residential areas m. tij and tim are the minimum total travel time from i to j and
from i to m, respectively.
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3.2.2. Identification of Temporal Range

According to Equation (2), the calculation of Pops and identification of temporal range
S were the core of the temporal-range radiation model, where popi and popj were specific.
The existing temporal or spatial range for radiation model was the spatially continuous
region around origin i [32] (Figure 3B). However, transnational travel natively separated
the origin i and destination j. In addition, the target destination was the SA&SEA country
instead of China, and any regions in China should not be considered for temporal range.
Thus, the origin i and temporal range S were disconnected, and S should be in the same
country as j (Figure 3C).

Moreover, for countries with one destination airport, such as Singapore and Nepal,
the temporal range was unique. For countries with multiple airports, with the exception of
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target SA&SEA airport AP2, regions around other airports could include some residential
areas with minimum total travel time tim less than tij. Notably, transnational LTNs were
not considered in this study, and these regions were in the same country as j. This means
that residential area m might be spatially detached from residential area j, resulting in
several independent subregions of temporal range S around different airports within the
same country (Figure 3C). Different subregions had various sizes, different numbers of
residential areas, and different target destination airports within the same country. By
comparison, the origin airport in China could be the same for residential area m in different
subregions. At the intersections of these subregions, the population was counted only once
and Pops was the summed population of these subregions.

3.3. Weighted-Average Model for National Scale Accessibility

After obtaining travel probability between different pairs of residential areas, the
weighted-average model was introduced to integrate the travel time and travel probability
at the national scale. In this study, 44,682 residential points in China and 72,916 residential
points in SA&SEA were considered, resulting in 44,682 × 72,916 pairs of travel probability.
For travel time, lookup tables were constructed from each residential area to a maximum of
5 potential airports and each pair of airports. For each travel probability, the corresponding
minimum total travel time could be easily queried from these tables. Then the national scale
accessibility was calculated from each residential area in China to all residential areas within
each SA&SEA country based on the weighted-average model, with the travel probability
as the integrated weight (Equation (3)). This national scale accessibility represented the
weighted-average travel time to each SA&SEA country for each residential area in China.

Tk
i =

∑n
j=1 tij × pij

∑k−n
j=1 pij

(3)

where Tk
i is the weighted-average travel time from China residential area i to all residen-

tial areas in SA&SEA country k, tij and pij are the point-to-point travel time and travel
probability, respectively, and n is the number of residential areas in country k.

The above-mentioned processes were mainly conducted using Python 3.6 and related
libraries, with the help of ArcMap 10.2.

4. Results
4.1. Travel Time from Web-Sourced Datasets

(1) Travel time in air transport networks
Approximately 417 direct flight routes (airlines) were offered from 53 China airports

to 48 SA&SEA airports, where the average number of daily flights was about 809 and the
average flight time was about 4.21 h (Table 2). Direct flight routes were mainly concentrated
in the southeast, east, and southwest regions of China (Figure 4A), and airports in Hong
Kong, Guangzhou, Taipei, Shanghai, Beijing, and Kunming city (IATA codes: HKG, CAN,
TPE, SHA/PVG, PEK/NAY, and KMG) had the largest number of daily direct flights to
SA&SEA. These regions or cities are advantageously positioned relative to SA&SEA, and
most cities offer more than three daily direct flights on average (Figure 4A).

Overall, 3776 non-direct flight routes were identified, representing an average of
71,034 daily flights with an average flight time of 19.62 h (Table 2). In addition, the overall
flight time for non-direct flights included layover time, resulting in a value that was far
larger than that of direct routes. For non-direct routes, the average number of layovers
showed a positive relationship with total flight time. Moreover, most of the non-direct
flights had an average of 1.00 to 1.86 layovers, also accounting for a large proportion of
daily flights.
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Table 2. Direct and non-direct flight route information, including daily average number of routes,
daily average number of flights, average flight time (FT), and the involved number of China airports
(AP) and SA&SEA airports (including two airports (IATA codes) with the largest total number of
flights). The non-direct flights were divided into four categories according to the average number of
flight routes, with a different number of layovers 1©– 4©.

Routes Flights FT (hours) China AP SA&SEA AP

Direct 417 809 4.21 53—HKG/CAN 48—BKK/SIN

Non-direct 3776 71,034 19.62 65—HKG/TPE 63—BKK/HKT

1©1.00–1.64 968 29,493 17.25 62—SHA/HKG 46—BKK/SIN

2©1.65–1.86 988 20,256 17.09 63—TPE/HKG 61—KBV/CEI

3©1.87–1.98 986 15,919 24.98 62—TPE/CGQ 57—URT/UTH

4©>1.99 834 5366 26.22 57—WNZ/LHW 57—BLR/HUI
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Figure 4. (A) The daily average number of direct flights (DF) from China airports to SA&SEA airports. (B) The travel time
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WGS-84 geographical coordinate system.

(2) Travel time in land transport networks
LTN travel time was calculated based on the least travel time from residential points

to target airports according to Baidu Maps and Google Maps API. Figure 4B showed travel
time to the nearest airport for each residential point, with a clearly visible radial spatial
pattern around airports. For economically developed regions in eastern China, travel
time to the airports was much smaller due to dense airports and highly developed LTNs.
The statistics data suggested that about 89.10% of China’s population can travel to the
nearest airport under 4 h via public transit or driving. In most SEA countries, the majority
of the population could reach the nearest airport within 2–4 h (Figure 4B). This may be
attributable to two main factors: (1) some SEA countries, such as Singapore and Brunei,
have a relatively small area, and (2) some countries have several navigable airports with
links to China, such as Thailand and Malaysia (Table 1). In SA, most of the population
had a higher travel time to the nearest navigable airport, due to the relative dearth of
international airports, poor LTNs, or more widely dispersed residential areas.
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4.2. Travel Probability by Temporal-Range Radiation Model

Travel probability was calculated using the temporal-range radiation model for each
residential area in China. For easier interpretation, county-scale summaries for travel prob-
ability were prepared. Administrative data were acquired from the Global Administrative
Areas dataset (GADM, http://gadm.org/, accessed on 10 May 2018) for the 2456 county
administrative units in China. Then, the average travel probability was calculated between
these areas and 10 countries in SEA (Figure 5A) and eight countries in SA (Figure 5B).
Overall, China had higher levels of travel probability with SEA than with SA, especially
in central and west China, such as Sichuan, Chongqing, and Hubei provinces. However,
counties in north and northwest China region had higher levels of travel probability with
SA region, such as Shandong and Xinjiang provinces. Regarding the spatial distribution
of travel probability in China, counties around major cities had the highest probability of
traveling to SA&SEA. East and southeast China had the highest overall travel probability,
including Shanghai, Jiangsu, Zhejiang, Guangdong, and Fujian provinces. In west China,
counties within or around Kunming, Chengdu, Chongqing, and Xi’an cities had high travel
probability. Counties in the northeast and northwest regions had relatively lower travel
probability with SA&SEA.
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4.3. Accessibility at National Scale

The overall accessibility of each country was based on the travel probability and travel
time between different residential points. The results revealed that China has higher general
accessibility to SEA countries than SA countries, with smaller weighted-average travel
time (Figure 6). Overall, residential areas near Beijing had relatively higher accessibility
to each country, reflecting Beijing’s important political role, and Hong Kong, Macao, and

http://gadm.org/
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Taiwan experienced higher general accessibility to most countries due to their earlier and
stronger international connections.
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Most residential areas in China had relatively high accessibility to Sri Lanka, Maldives,
and Nepal in SA, because these countries are popular tourist destinations. Bhutan, India,
and Pakistan were less accessible from China (Figure 6). Regions with high accessibility to
SA countries were concentrated in southwest and south China, such as Yunnan, Chongqing,
and Guangdong provinces (Figure 6). Xinjiang and Xizang provinces had the highest
accessibility to Pakistan and Nepal, respectively, due to their geographical proximity. For
SEA, most regions in China had high accessibility to Thailand, Singapore, and Malaysia, but
relatively low general accessibility to Timor-Leste, Indonesia, and Brunei. High accessibility
regions in China were concentrated in the southwest, south, and east regions, such as
Yunnan, Hainan, Guangxi, Guangdong, and Fujian provinces.

The population cumulative curve on weighted-average travel time increased more
gently in SEA than in SA, where a sharp increase indicated the travel time range of popula-
tion concentration (Figure 7). This range for the SA region was about 25–40 h, whereas the
range for the SEA region was only about 10–25 h, indicating a better accessibility situation
in the SEA region. About 85% of China’s population can travel to Thailand and Singapore
within an average travel time of 16 h and 22 h, respectively. For Cambodia, Vietnam, and
Malaysia, these values increased to 28, 30, and 30.2 h respectively, indicating slightly poorer
accessibility. This value increased considerably to about 34 h for other SEA countries and
to around 40 h for other SA countries.
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5. Discussion
5.1. Airport Selection and Web-Sourced Data

High level of transport accessibility is the cornerstone of the B&R’s goal to promote po-
litical, economic, and cultural collaborations between China and SA&SEA. Air travel is a vi-
tal transport mode for international and large-scale movement of people and goods [47,48].
The number of global aviation passengers reached 3.79 billion in 2016, representing an
increase of about 54% over the previous 10 years. The Asia–Pacific region contributed
most to this increase, accounting for 32.9% [49]. As supplements of ATNs, LTNs are also
essential for transnational travel and serve as important connections between residential
areas and airports. Because airports serve as ATN/LTN connection nodes, airport choice
may greatly influence the overall travel time and inter-regional accessibility results. The
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various influencing factors associated with airport choice, including price, travel cost, and
travel mode, make evaluations of airport choice complex [17,50–52]. Travel time was the
only factor considered to affect airport selection in this study, and should be the most
important factor. Meanwhile, travel time was also the only uncertain variable for the
construction of the temporal-range for the radiation model, which organically related these
two indicators. In future studies, more influencing factors should be considered for airport
choice to yield more accurate travel time estimates.

In this study, travel time between residential areas was acquired from online platforms,
allowing calculation without the need to construct the physical multimodal transport
networks [53,54]. Moreover, ATNs exert a larger influence on overall accessibility for flight
time is much larger than LTN travel time, and thus determining accurate ATN travel
time is particularly important. Unlike statistical airline data, online booking platforms
provide the average flight time from actual daily flight arrangements, and time series
data can be constructed for further analysis. Similarly, LTN travel time was also acquired
from web mapping APIs, thereby avoiding repeated works for road network analysis.
In addition, current web mapping services contain accurate geographical data that are
not easily obtained through other methods, making such platforms suitable for use in
scientific research.

5.2. Temporal-Range Radiation Model and Simple Validation

Travel population and travel probability are metrics that quantify potential oppor-
tunity for interaction, and it is important to integrate the travel time between residential
areas when considering these metrics. However, multimodal transport networks are char-
acterized by a wide variety of travel population flow, making it difficult to estimate travel
populations. New techniques, such as deep learning and big data, can provide more
precise estimates of the travel population, but these methods are greatly limited by the
original data [55]. Thus, the spatial interaction model is still the preferred method for
estimating the large-scale or transnational travel probability/population by considering
spatial correlations of different population units [56]. In this study, the temporal-range
radiation model was used to estimate travel probability, with population point data as the
model input. Population grid datasets have relatively finer spatial granularity, but large
amounts of grid data are null values without population numbers [57,58]. Meanwhile, the
use of grid datasets entails a relatively high computation time, where the computation
complexity of the radiation model is about O(n2). Thus, population datasets of county
units were selected for their balance between accuracy and computation efficiency.

Moreover, in contrast to the original spatial-range model, travel time was set as the
criterion for temporal range S in our radiation model [38]. Region S for a single LTN or
ATN was defined as the unique spatially continuous area around origin residential areas.
In multimodal transport processes, airport selection can result in non-contiguous temporal
ranges with a center of different SA&SEA airports. Within a given country, large airports
with more direct flight routes have a more complete LTN and larger surrounding popu-
lation than smaller airports (Figure 4B). Thus, for a certain destination residential point,
subregions of S around other small airports may cover less population, and subregions of
S around other large airports may cover larger population. Consequently, populated areas
are essentially guaranteed to have a higher travel probability in the radiation model, and
also have a greater accessibility weight. This outcome is in agreement with existing research
that identified a high correlation between population and accessibility levels [59,60], which
qualitatively supports the reliability of the radiation model for accessibility research.

We also determined the county scale correlation between population and travel prob-
ability, where Pearson’s r (correlation coefficient) was 0.71 and 0.62 for SEA and SA,
respectively (Figure 5C,D). This indicates that regions with a larger population have a
larger travel probability, which also aligns with existing research [32,37]. For the validation
of transnational travel probability, datasets with actual values are often hard to obtain. This
study considered validation data from the “2019 big data report on outbound tourism for
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the B&R” [61], which ranks the number of passengers from different Chinese cities that
travel to various SEA countries. This kind of travel population ranking was comparable to
our estimated travel probability, and city-scale travel probability was also summed based
on GADM data. The city-level rankings were more consistent with the estimation results
of the temporal-range radiation model, both for Thailand and Indonesia (Figure 8A,B).
However, the estimation results using the spatial-range radiation model and gravity model
had some large outliers, such as Shenzhen and Guangzhou cities, and small outliers, such
as Ha’erbin and Wuhan cities. In addition, these three models also overestimated the travel
probability of some cities that were not within the top 20 in the report, including three
cities in the temporal-range radiation model, nine in the spatial-range radiation model, and
12 in the gravity model. These results further indicate that the temporal-range radiation
model offers better performance in delineating the spatial distribution of transnational
travel probability.
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and gravity model from China to (A) Thailand and (B) Indonesia. Top 20 cities and rankings on the x-axis are from the
“2019 big data report on outbound tourism”.

5.3. Overall Accessibility and Analysis

Generally speaking, SA&SEA countries have high overall accessibility to China, and
particularly the SEA region. However, because no directly related research or authentication
datasets exist, the validation or comparison of the accessibility levels calculated in this
study is difficult, and only the general rationality of our results could be verified. According
to statistical data, the 10 most popular international travel destinations for Chinese tourists
includes seven countries and four cities in SA&SEA, with 20% of the tourist population
selecting Thailand in 2017 [62]. Of the 10 most popular islands for vacations, eight are
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located in this region, including Phuket/Samui/Krabi in Thailand, Sabah in Malaysia, Nha
Trang in Vietnam, Boracay in Philippines, Maldives, and Bali in Indonesia. In addition,
China has proactively and rapidly improved its ATN and strengthened transnational air
travel to surrounding areas, especially SA&SEA [63,64]. All of this evidence illustrates
the strong existing relationship between China and SA&SEA, and suggests a high level of
inter-regional accessibility.

Based on the parameters of the assessment index, high overall accessibility can be
attributed to lower travel time and higher travel probability. Travel time in LTNs entailed
relatively minor spatial differences, where travel time for most regions was less than 4 h and
ranges were rarely larger than 4 h. For ATNs, flight time for direct and non-direct airlines
had more significant spatial differences, where the variation of average time was about 15 h
(Table 2). Thus, more direct flights and greater airport connectivity could greatly decrease
the travel time and increase the overall accessibility, such as to Thailand, Singapore, and
Malaysia in SEA. Analysis of the daily average flights also showed that the economically
developed regions or capital cities had larger numbers of transnational flights.

In addition, some SA&SEA countries have deep-rooted connections and an enormous
demand for direct flights to southeast China, where ethnic Chinese accounted for about
74.1%, 21%, and 16% of the populations of Singapore, Malaysia, and Thailand in 2010.
In Vietnam, the number of Chinese travelers reached 4 million in 2018, representing 30%
of total inbound tourists. As the popular tourist destinations, these SEA countries, in
addition to Sri Lanka, Maldives, and Nepal in SA, have high numbers of direct airlines
from China [61,62]. Regarding travel probability, denser population distributions may
result in larger probability values based on the strong linear correlation and the properties
of temporal-range radiation model. However, travel probability is also greatly influenced
by the travel time or the availability of direct flights. For example, Jiangsu and Zhejiang
provinces have similar geographical locations, although Jiangsu has a higher population
and more international airports. However, Jiangsu’s six airports offer only 13 direct flight
routes to SA&SEA, and the Hangzhou airport in Zhejiang offers nearly the same number.
The additional 10 direct routes from Ningbo and Wenzhou give Zhejiang a higher overall
accessibility level than Jiangsu.

5.4. Suggestions to Improve Accessibility

Because transit nodes connect LTNs and transnational ATNs, international airports
should be the main focus of initiatives to improve accessibility [65]. When jointly analyzing
the population coverage of LTNs and number of flights in ATNs (navigable capacity)
for different airports, clear differences emerge among China airports (Figure 9A,B). In
direct ATNs, some airports that offer high connectivity to many international destinations
are situated within LTNs that serve huge populations, including airports in Guangzhou,
Beijing, Kunming, Chengdu, Shenzhen, and Shanghai cities (IATA codes: CAN, BJS, KMG,
CTU, SZX, and SHA). These airports are located in major regional cities with complete
public transit networks that allow the surrounding population to reach airports quickly. In
non-direct ATNs, airports in Beijing and Shenyang city (IATA code: SHE) are examples of
the above-mentioned nodes (Figure 9B). These airports are the key nodes connecting China
and SA&SEA, and issues within the international transit network would arise if problems
occurred at these nodes. Therefore, the construction of complementary airports in these
cities, such as Chengdu and Kunming city, could help improve the robustness of ATNs.
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Figure 9. The relationship between proportion (prop.) of population to the nearest airport in LTN and the proportion of
direct flights (A) and non-direct flights (B) to SA&SEA.

In addition, some airports have a high daily average number of direct or non-direct
flights, but are situated within LTNs with relatively low population coverage, including
airports in Xiamen, Fuzhou, and Haikou cities (IATA codes: XMN, FOC, HAK) (Figure 9A).
These airports offer several travel options to SA&SEA but their LTNs have relatively low
transport capacities. For example, Fuzhou and Xiamen cities, both in Fujian Province,
had only two high-speed railways in 2017, making it difficult to take advantage of their
well-developed ATNs. Therefore, to improve overall accessibility, the LTN infrastructure
supporting these airports should be expanded, such as railways and highways. Moreover,
other airports have the ability to draw large populations via LTNs, but offer only a small
number of routes or flights to SA&SEA, such as airports in Chongqing, Xi’an, Zhengzhou,
Changsha, Ji’nan, and Xuzhou cities (IATA codes: CKG, SIA, CGO, CSX, TNA, SUZ).
These airports are mostly located in west and central China, and are the only international
airport available for large, densely populated regions. Therefore, to improve the overall
accessibility, the daily number of flights should be increased, and available routes should
be expanded at existing airports or new airports could be constructed. Furthermore,
increasing domestic connections at these airports could also improve overall accessibility.

6. Conclusions

Transnational accessibility between China and SA&SEA regions via ATNs and LTNs
is an essential component of the B&R. However, transnational travel processes involve
a multimodal transport system, creating a problem for the construction of accessibility
indices, including data acquisition for travel time and model adaption for travel probability.
In this study, transnational travel time was acquired from various online platforms, and
travel probability was calculated using the temporal-range radiation model. Then, the
overall accessibility was set as the weighted-average travel time from each China residential
area to each SA&SEA country. The results showed that China had better accessibility to
SEA than SA, because the weighted-average travel time to SA was about 25–40 h and that
to SEA was only about 10–25 h. The countries with best overall accessibility were Thailand,
Singapore, and Malaysia in SEA, and Sri Lanka, Maldives, and Nepal in SA. Southwest,
south, and southeast China had greater access to SA&SEA than other regions of China.
Based on conjoint analysis, improving LTNs around airports with low population coverage
and increasing direct routes/flights of airports with low navigable capacity are suggested to
improve overall accessibility. Our study introduced multiple online platforms to calculate
the travel time under the multimodal transport system, and solved the problem of the
identification of the temporal range of the radiation model for transnational processes.
Furthermore, fine-scale accessibility results between China and SA&SEA could also help to
guide the improvements.
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However, the proposed framework and results leave room for further refinement
and research. First, the waiting time between the LTN and ATN was not considered, and
further study will consider this for more accurate estimation. In addition, time series
analysis of flight information and spatial patterns of overall accessibility also need in-depth
study. Second, to improve the reliability of transnational travel probability/population
estimates, more comprehensive parameters should be considered within more sophisticated
models. Finally, the lack of quantitative validation for transnational travel probability and
overall accessibility should be addressed through the excavation of more reliable datasets.
Moreover, the COVID-19 pandemic has already changed the current situation, and future
work will focus more on the transport accessibility and change analysis before and after
the pandemic.
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