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Abstract: Analyzing land cover using remote sensing images has broad prospects, the precise seg-
mentation of land cover is the key to the application of this technology. Nowadays, the Convolution
Neural Network (CNN) is widely used in many image semantic segmentation tasks. However,
existing CNN models often exhibit poor generalization ability and low segmentation accuracy when
dealing with land cover segmentation tasks. To solve this problem, this paper proposes Dual Func-
tion Feature Aggregation Network (DFFAN). This method combines image context information,
gathers image spatial information, and extracts and fuses features. DFFAN uses residual neural
networks as backbone to obtain different dimensional feature information of remote sensing images
through multiple downsamplings. This work designs Affinity Matrix Module (AMM) to obtain
the context of each feature map and proposes Boundary Feature Fusion Module (BFF) to fuse the
context information and spatial information of an image to determine the location distribution of each
image’s category. Compared with existing methods, the proposed method is significantly improved
in accuracy. Its mean intersection over union (MIoU) on the LandCover dataset reaches 84.81%.

Keywords: land cover; semantic segmentation; convolution neural network

1. Introduction

Land cover monitoring and evaluation is crucial in land planning and natural resource
management. With the advancement of science and technology, we can obtain detailed
land use information by analyzing remote sensing data. Land cover information involves
many aspects, including but not limited to city planning, water area change, and vegetation
coverage. By analyzing land cover data, we can study urbanization rates, forestry and
agriculture, and the changes of other natural environments.

Most of the remote sensing data uses multispectral satellite images, but satellite data
is low in resolution, typically at 10 m to 30 m [1]. Compared with satellite images, aerial
photographs have higher pixel resolution but fewer bands, the common pixel size is
usually at 25 cm to 50 cm. High resolution aerial images are very important in detecting
buildings, forests, and waters areas. Professional image classification tools are usually
used in the detection process [2,3], and GIS programs always provide relevant tools.
However, it is time-consuming to use professional image classification tools to detect
objects, and when the workload is heavy, errors often occur. In order to solve this problem,
related research attempts to use machine learning (ML). In the past ten years, many scholars
used machine learning algorithms to analyze remote sensing images and made considerable
achievements. For example: Xu et al. [4] employed a nonparametric rule-based classifier,
which is based on decision tree learning. They used decision tree regression to estimate the
classification ratio of mixed pixels in remote sensing images and compared its classification
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accuracy with the Maximum Likelihood Classifier and supervised version of fuzzy c-
means classifier. Samaniego et al. [5] proposed Modified kNN based on k-nearest neighbor
(kNN), the difference between Modified kNN and kNN lies in finding the embedded
spaces and their corresponding metrics. In Modified kNN, the basic condition to find an
embedding space is that the cumulative variance of a given class label for a given portion
of the closest pairs of observations should be minimum. Gislason et al. [6] employed
Random Forest (RF) to remote sensing images, the RF classifier uses bagging, or bootstrap
aggregating, to form an ensemble of classification. Melgani et al. [7] studied the potentially
critical issue of applying binary support vector machine (SVM) to multiclass problems in
hyperspectral data. In land cover classification and detection, machine learning showed
excellent performance.

In recent years, with the improvement of computer hardware and the increasing
demand for image processing in practical work, deep learning (DL) has made great progress
in the field of security [8], handwritten digit recognition [9], human action recognition [10],
financial trading [11], remote image processing [12–17], and others [18–22]. According
to the study of Kussul et al. [23] in processing land cover remote sensing images, deep
learning algorithms are significantly better than machine learning algorithms such as the
SVM. Convolutional Neural Network (CNN) [24] is a representative algorithm of deep
learning, and CNN is a feedforward neural network that includes convolution calculations
and deep structures. CNN is widely used in computer vision.

This paper proposes Dual Function Feature Aggregation Network (DFFAN) based
on multiple semantic segmentation models. In view of the complex characteristics of the
spectral environment in land cover segmentation, DFFAN not only aggregates contextual
information but also fuses spatial information of remote sensing images, thus improving
the accuracy of semantic segmentation. Experimental comparisons show that DFFAN
has better performance, and its mean intersection over union (MIoU) and Kappa are
higher than other semantic segmentation networks. We make our code publicly available
https://github.com/jqbetter/DFFANet, accessed on 20 December 2020. In general, there
are three contributions in this work: (1) An Affinity Matrix Module is proposed to aggregate
contextual semantic information. (2) Boundary Feature Fusion is proposed to fuse the
boundary information of each feature map. (3) Feature Channels Maximum Element is
proposed to strengthen the class location information.

The rest of the paper is organized as follows: Section 2 introduces the related work
of CNN in the field of computer vision. Section 3 describes the structure of DFFAN
and the function of each module. Section 4 presents the experimental setup and data
details. Section 5 summarizes the corresponding work of this article and proposes future
research directions.

2. Related Work

Early CNN networks were often used to process image classification tasks, such as the
VGG [25] and the ResNet [26]. However, a land cover detection task could not be treated
as an image classification task, and the image semantic segmentation method was usually
used for the land cover detection problem.

The Fully Convolutional Network (FCN) [27] proposed by Jonathan Long et al. in 2015
was a groundbreaking semantic segmentation algorithm. FCN classified images at the
pixel level and solved the problem of semantic segmentation. However, FCN used high-
level features of spatial information as the basis for pixel classification, which led to the
neglection of low-level features with rich semantic information, and thus resulted in the
facts that the FCN did poorly in processing multi-images and its segmentation was very
rough. For the shortcomings of the FCN, Ronneberger proposed the U-Net [28]. U-Net
network used a U-type structure to strengthen low-level features. RefineNet [29] and
SegNet [30] and U-Net used a similar network structure. This network structure used an
encoder–decoder structure, the encoder was used to extract the feature information from
images, and the decoder restored the extracted features. The decoder will made up the

https://github.com/jqbetter/DFFANet
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lost information in the encoding process, fused the low-level features, and improved the
segmentation accuracy of the network. However, these models were limited by convolution
layer structures, which made the aggregation of context information insufficient, resulting
in poor prediction results. In order to obtain more accurate segmentation results, the model
needed to be able to aggregate the relevance of context information as much as possible.
There were two common methods for aggregating context information, they were the
global average pooling method based on the pyramid model and the aggregation method
based on the attention mechanism. These methods tended to ignore the dependency of
context information. The CPNet [31] proposed by Changqian Yu et al. could aggregate
spatial information and considered context information, and thus had better prediction
performance in multiclass distributed pictures. They designed the Context Prior Layer
in CPNet, which was used to aggregate the intracontext and intercontext for each pixel.
Meanwhile, the Aggregation Module was designed to aggregate the spatial information for
reasoning. However, Context Prior Layer and Aggregation Module in the CPNet increased
the amount of calculation geometrically, so that as convolutional layers became deep,
gradient would disappear, which affected the accuracy of semantic segmentation.

3. Proposed Method

In this section, the overall structure of DFFAN is described first. Second, the functions
of each module in DFFAN is introduced. Finally, the Affinity Matrix Module (AMM),
the Boundary Feature Fusion Module (BFF) and the related function modules are intro-
duced in detail.

3.1. Model Overview

In tasks of land cover semantic segmentation, it is necessary to distinguish some
confusing categories, and furthermore, some objects which are quite different in their
appearances should be put into the same category. Therefore, in the process of semantic
segmentation, it is necessary to improve the recognition ability of various types of features
in remote sensing images. In DFFAN, the AMM is used to construct the affinity matrix to
distinguish the classification of pixels. The affinity matrix supervises the priority mapping
of the context and classifies pixels accurately. The AMM improves the accuracy of classifi-
cation in remote sensing images. The BFF is used to aggregate the spatial information of
images, BFF module uses high-dimensional spatial information to guide low-dimensional
semantic information, this feature fusion is very efficient. DFFAN adopts a U-shaped struc-
ture, and the overall structure is shown in Figure 1. Furthermore, DFFAN is composed of a
backbone, a AMM, and a BFF modules. The backbone uses improved ResNet and extracts
features of different dimensions through 4×, 8×, 16× and 32× downsamplings, the 32×
downsampling layers contains abundant spatial information. Pyramid pooling [32] uses a
parallel structure, and it takes into account the characteristics of multiple receptive fields,
and thus has a better recognition of the target. The pyramid pooling module can capture
the context information, which has a very positive impact on segmentation results.
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Figure 1. The structure of the Dual Function Feature Aggregation Network (DFFAN).

3.2. Backbone

In the process of land cover semantic segmentation, it is very important to extract high-
precision feature information of remote sensing images, so it is very important to select
a suitable depth convolution neural network for the whole segmentation task. Classical
deep convolution neural networks include VGG, ResNet, DenseNet [33], MobileNet [34],
and Inception [35]. It is well known that as the convolution layer increases, more feature
information could be extracted. However, if there are too many convolution layers in
the network, the gradient would disappear and the error would propagate backward.
The ResNet solves this problem by using a residual connection structure. Figure 2a shows
the original residual block in ResNet, and Figure 2b shows the residual block after the
improvement. The modified residual block uses the activation function Mish [36] instead
of ReLU.

Figure 2. Comparison of two residual blocks: (a) original residuals (b) modified residuals.
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The identity mapping of deep residual networks can effectively solve the problem of
training accuracy saturation caused by network layer increasement. In the original residual
block, the ReLU [37] is used. The function of ReLU is to activate the weight in the original
network, which is described as:

f (x) = max(0, x). (1)

We know from Formula (1), convolutional neural network local weights are set to
0 when using the ReLU; therefore, ReLU will affect neuron renewals during reverse
propagation. In order to make the network update its data easily, we use Mish instead of
ReLU, the mish expression is as follows:

f (x) = x tanh(ln(1 + ex)). (2)

The graphs of ReLU and Mish are illustrated in Figure 3, comparing Formula (1) with
Formula (2), we can get the following conclusion: when x is positive, Mish and ReLU can
reach an infinite value, which can avoid saturation caused by thresholds. However, when x
is negative, Relu drives the function value to 0 abruptly, whereas Mish does it more gently,
the output of the Mish function is smooth and continuous, and thus it has a better gradient
stream. Mish allows the deep neural network to obtain better information, and thus the
Mish function has better accuracy and generalization.
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Figure 3. Graph of Mish and ReLU activation functions.

3.3. Affinity Matrix Module

In tasks of remote sensing land cover segmentation, the spectrum and radiance of
different samples are different. For example, in building segmentation, isolated buildings
need to be identified completely and the features of the subsidiary buildings around
large buildings could not to be ignored during segmentation. However, in woodland
segmentation, few isolated shrubs should be ignored and edges of woodland need to be
segmented accurately to prevent misclassification. Based on the above problems, in tasks
of land cover segmentation, we should fully consider relationships between each pixel and
its context information. We propose AMM in this paper, this module integrates intraclass
and interclass relationships to capture context dependencies within and between classes.
The Affinity Matrix Module is shown in Figure 4.



ISPRS Int. J. Geo-Inf. 2021, 10, 125 6 of 17

Figure 4. Affinity Matrix Module.

X ∈ RH×W×C0 is an input feature matrix, Affinity Matrix Module changes the feature
channels of X, we use CNN to adapt X to X1 ∈ RH×W×C1:

X1 = σ(bn( f k×k(X))), (3)

where f k×k represents a convolution with a kernel of k× k (same as below), k is adjusted
according to the scale of X. When the X is small, the calculation cost can be reduced,
but when the X is large, it can have a large enough receptive field. bn represents Batch
Normalization (same as below), and σ represents ReLU activation function (same as below).
The number of feature channels of an input feature graph is increased by Equation (3),
X1 aggregates rich high-dimensional spatial information. In order to construct a priori
graph that can indicate the same class of pixels in context, we calculate X1 as follows:

X2=reshape(X1), X2 ∈ RN×C1, (4)

A = reshape(δ(bn( f 1×1(X1)))), A ∈ RN×N , (5)

where δ represents Sigmoid activation function, N = H ×W. A is the Affinity Matrix, The
function of Affinity Matrix is to distinguish whether the pixels belong to the same category
or not and to establish relationships between pixels of the same category. We use Sigmoid
activation function instead of ReLU activation function. We encode the intraclass pixels
and interclass pixels by using A:

Y1 = reshape(X2 ⊗ A), Y1 ∈ RH×W×C1, (6)

Y2 = reshape(X2 ⊗ (1− A)), Y2 ∈ RH×W×C1, (7)

where ⊗ represents matrix multiplication (same as blow), 1 represents an identity matrix.
The function of reshape is to change the shape of the input feature. Y1 represents intraclass
context information, Y2 represents interclass context information. To distinguish the context
information of each pixel, we concatenate Y1 and Y2:

Y = σ(bn( f 1×1(concat(Y1, Y2)))), Y ∈ RH×W×C1, (8)

where concat(·, ·) represents concatenating two maps (same as below). After Equation (8),
we calculate Y, the size of Y is H ×W × C1. Y is extracted network features of different di-
mensions.
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3.4. Boundary Feature Fusion Module

At 32-fold downsample, 16-fold downsample, and 8-fold downsample of DFFAN,
pyramid pooling and AMM are used to obtain spatial feature information of different
dimensions. In order to fuse the information step by step, BFF is designed in this paper,
the structure of the BFF module is shown in Figure 5. BFF module contains two function
modules feature channels maximum element (FCME) and Information Extraction (IE),
which will be described in details later in this section.

BFF has two feature map inputs, X1 with size H ×W × C0 and X2 with size H ×W ×
C1. Pretreatment of X1 performed at a M_channel and a S_channel, and then the results
from the two channels are added together. In the M_channel, X1 convolutes twice, but the
sizes of X1 does not change, its corresponding result is XM:

XM = σ(bn( f 3×3(σ(bn( f 3×3(X1)))))). (9)

In S_channel, FCME is used to extract the largest element and its location at each
feature channel in X1, and the result is XS. The output Y of BFF is obtained as in
Formula (10):

Y = upsample(IE(concat(X2, (XM + XS)))), (10)

where upsample represents upsampling.

Figure 5. The structure of Boundary Feature Fusion Module (BFF).

Feature channels maximum element (FCME) function module keeps the maximum
value at the same position of each channel and clears the remaining values to 0. The FCME
and channel attention mechanism (CAM) are different. CAM uses global maximum pooling
to extract the maximum value of each feature channel; however, the function of FCME
is to compare the values of each feature channel in the input feature map at the same
position and to select the maximum value. For a three-dimensional feature map, see
Figure 6a. The function of CAM is to save the maximum value in x-y plane, but the
function of FCME is to save the maximum value in z axis. The effect of FCME is shown in
Figure 6b. The function of FCME is to strengthen position information of each category
contained in input feature maps, especially to enhance the edge prediction.
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Figure 6. The Dual Function Feature Aggregation Network (FCME) function diagram. (a) The
three-dimensional feature map. (b) The effect of FCME.

Information Extraction (IE) function module uses separable convolutions to extract
local spatial information of input feature maps in the depth dimension. In this way, we
can infer the semantic relevance of each element. Meanwhile, IE module uses aggregated
high-dimensional spatial information to guide the classification of elements in feature
maps. The structure of IE functional module is shown in Figure 7.

Figure 7. The structure of IE function module.

Input feature map X ∈ RH×W×C1, IE uses two groups of asymmetric separable
convolutional networks to aggregate spatial information. We mark these two results as y1
and y2. The calculation process of IE functional module is as follows:

y1 = f 1×k( f k×1(X)), (11)

y2 = f k×1( f 1×k(X)), (12)

y3 = σ(bn(y1 + y2)), (13)

Y = σ(bn( f 1×1(y3))), Y ∈ RH×W×C2. (14)

In IE functional module, we use a k× 1 convolution and a 1× k convolution in two
steps instead of a k× k convolution. In this way, the computation is reduced by half and
the receptive field of the original convolution is retained.
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4. Experiment and Result Analysis

This chapter compares experimental results of each model; experiments are carried on
land cover datasets. The results show that DFFAN is better than other models.

4.1. LandCover Dataset

The land cover aerial dataset published by Boguszewski.[38] was used in the experi-
ment. The landcover dataset collects more than 200 square kilometers of land cover images
in Poland. And this dataset has 41 remote sensing images, 8 of them have resolution of
50 cm/pixel, and the remaining 33 have resolution of 25 cm/pixel. We used Python
to cut all the images into pixel blocks and got a total of 7938 pictures, each picture is
512× 512 pixels. According to a ratio of 7:3, 5557 pictures were chosen as the training set
and 2381 pictures as the validation set. The RGB values of dataset labels are shown in
Table 1, and the cropped pictures and their labels are shown in Figure 8.

The dataset has three classes, including woodland, water, and building. More explic-
itly, Woodland includes neither single trees nor very small shrubs that are not connected.
Ditches and dry riverbeds are excluded from water. In the water segmentation task, differ-
ent remote sensing images have different spectral and radiometric. Building classification
and water classification are similar, but attention should also be paid to the subordinate
buildings of the main building and small unobvious buildings. In woodland segmentation
task, a few shrubs are often classified as woodlands because the pixel values of trees in the
same picture are often not very different and thus misclassification could happen.

Table 1. The RGB values of dataset labels.

R G B

Void 0 0 0
Building 128 0 0

Woodland 0 128 0
Water 0 0 128

Figure 8. Image and label example from land cover. In (A) Line, the red circle area is the water, in different regions, even in
the same region, but the remote sensing shooting angle is different, the spectral of water area will be different. In (B) Line,
the red circle area is the subsidiary buildings of the main building and small buildings with weak characteristics. In (C)
Line, the red circle area indicates one shrub or a few shrubs, which are not marked on the label.
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4.2. Evaluation Metric

In this experiment, we selected four evaluation metrics: including mean pixels accu-
racy (MPA), mean intersection over union (MIoU), frequency weighted intersection over
union (FWIoU), and Kappa. They are as follows:

MPA =
1

k + 1

k

∑
i=0

Pii

∑k
j=0 Pij

, (15)

MIoU =
1

k + 1

k

∑
i=0

Pii

∑k
j=0 Pij+∑k

j=0 Pji − Pii
, (16)

FWIoU =
1

∑k
i=0 ∑k

j=0 Pij

k

∑
i=0

Pii

∑k
j=0 Pij+∑k

j=0 Pji − Pii
, (17)

Pa =
∑k

i=0 Pii

∑k
i=0 ∑k

j=0 Pij
, (18)

Pe =
∑k

i=0 (∑
k
j=0 Pij)× (∑k

j=0 Pji)

(∑k
i=0 ∑k

j=0 Pij)× (∑k
i=0 ∑k

j=0 Pij)
, (19)

Kappa =
Pa− Pe
1− Pe

, (20)

where k represents number of categories. Pij is a pixel whose correct label is i but its
prediction result is j. If the correct label is i, when i 6= j, Pii is true positive, Pij is false
negative, Pji is false positive and Pjj is true negative.

In this evaluation metric, MPA, MIoU, and FWIoU are common evaluation metric
in semantic segmentation, and Kappa measures classification accuracy. Kappa is different
from Pa (pixels accuracy). Pa can directly reflect the proportion of correctly classified
pixels, and is easy to calculate. However, if the number of samples of different categories is
unbalanced in the data set, the prediction results of the model tend to prefer the categories
with more samples and ignore the categories with less samples. For example, if the pixels
of a certain category reaches 90% of the total and even if all prediction drops into this
category, the Pa would be as high as 0.9. Because the pixels of woodland or water could
cover very large proportions in cropped images, Pa cannot objectively reflect the accuracy
of segmentation. We need an index that can punish the bias to replace Pa, in Formula (19)
and Formula (20), it is noted that the more unbalanced the sample distribution, the higher
the Pe would be and the lower the Kappa would be, in consideration of that, we choose
Kappa as the evaluation index.

4.3. Experiment Setting and Training

In this paper, we chose FCN, LEDNet, PSPNet, BiSeNet, DeepLabv3+, and UNet as
comparison models. During the training phase, we selected the SGD optimizer and set the
batch size as 4; we adjusted the learning rate in each iteration, using the formula:

new_lr = lr× (1− iter
total_iter

)0.9, (21)

where lr is the initial learning rate, new_lr is the new learning rate, iter represents the iter
iteration. total_iter is the total number of iterations. All models were trained for 300 epochs
with a batch size of 4. All experiments were carried out on Ubuntu16.04 LTS with a Intel(R)
Core(TM)i5-9400F CPU @2.90 GHz, 16 G of memory (RAM), and a NVIDIA GeForce RTX
2060S (8 GB). Python 3.6 was used and the experiments were based on the pytorch 1.0.1
programming framework with CUDA10.1 and cudnn7.6.5. We used the cross-entropy loss
function to calculate the loss of a neural network, as shown in Formula (22):
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loss =
n

∑
i=1

p(xi) log(p(xi))−
n

∑
i=1

p(xi) log(q(xi)), (22)

where xi is the sample; p(·) and q(·) are two separate probability distributions of random
variables, n is the number of samples. The training process used a gradient descent
algorithm; by comparing labels and predictions, the parameters were updated continuously
by using back propagation. All optimal parameters of training models were saved.

For data sets with less data, cross-validation technique or repeat the split into train-
ing/testing images several times and report the average performance with a standard
deviation can be used to improve the performance of the model. However, the dataset in
this paper contains a large amount of data, and the number of pictures in the randomly
selected test set can cover various possible situations. Therefore, we use simple split
validation to assess the quality of the proposed method.

4.4. Result Analysis

In order to compare the performance of each model, the models were tested under the
same conditions. The evaluation metrics of each model are illustrated in Table 2, and the
prediction results are shown in Figure 9. Because the FCN and LEDNet prediction images
are not ideal, there is no figure of them. It can be seen that the evaluation indexes of other
models are higher than those of FCN and LEDNet; all metrics of DFFAN are better than
the other models. On the other hand, the MIoU, FWIoU, and Kappa of UNet are higher
than those of PSPNet and DeepLabv3+. The MPA of DeepLabv3+ is higher than that of
UNet and PSPNet, but the Kappa of DeepLabv3+ is lower than that of UNet and PSPNet.
This explanation would be that the excessive aggregation of spatial information and the
neglection of the overfitting caused by context information make the prediction results of
DeepLabv3+ on images with unbalanced positive and negative sample distribution biased.

Table 2. Four evaluation metrics of models.

MPA FW IoU MIoU Kappa

FCN 0.8461 0.8032 0.7289 0.7865
LEDNet 0.843 0.7764 0.721 0.7613
BiSeNet 0.8757 0.8613 0.8028 0.8534
PSPNet 0.8907 0.8767 0.8284 0.8714

DeepLabv3+ 0.8938 0.8705 0.8337 0.8641
UNet 0.8788 0.8814 0.836 0.8755

DFFAN 0.9064 0.8921 0.8481 0.8872

It can be seen from Figure 9 that there were some observations in the prediction images.
First, when the distribution of different categories of the target to be identified is scattered
and the distribution of the same category is centralized, the prediction results of each model
are roughly consistent with their labels. It is obvious from the prediction images of line A.
Second, classifications of subsidiary buildings and the main building, which were marked
by red circles in line B, were not completely consistent with the original image. On the
other hand, a few shrubs in the image were also classified as woodland, it was marked by
a red circle in line C(d). Finally, misclassification also occurred in areas where multiple
classifications intersected. As shown in the yellow circles in line B(d), the blue circle in
line B(e) and the yellow circle in line C(c). In summary, each model in this experiment
had some shortcomings in land cover segmentation, but the prediction of DFFAN network
was the best, as shown in Figure 9 column (g). This is because that the AMM in DFFAN
can monitor the context information of each feature graph and guide its classification.
The FCME function module in BFF has the function of saving spatial information of feature
graphs and enhancing the ability to predict the edges of various categories.
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Figure 9. The prediction results of some models. The (A) line indicates the distribution of each category. The (B) line
indicates the inside of forest and the situation that the ancillary buildings are difficult to identify. The (C) line indicates that
the edge of each category is prone to classification errors. (a) Real image. (b) label. (c) BiSeNet. (d) PSPNet. (e) DeepLabv3+.
(f) UNet. (g) DFFAN.

The loss curves of all models are shown in Figure 10. The convergence speed of DFFAN
was slow, and it can be stabilized after 200 epochs of trainings, but its stability performance
was better than the other modules. After the network is stable, the loss fluctuates less.
BiSeNet was the opposite of DFFAN. BiSeNet converged very quickly before the 150th
epoch. However, from the results, the metric of DFFAN better than BiSeNet.
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Figure 10. The loss curves of models.

The MIoU curves of models are shown in Figure 11. At the beginning of the exper-
iment, the MIoU of PSPNet rose very rapidly. However, the MIoU of DFFAN exceeded
the other models after the 153th epoch and kept the highest since then. This showed that,
in the long run, DFFAN was more suitable for land cover segmentation.

In consideration that there is a large deviation of positive and negative in samples
of the dataset, we use Kappa to evaluate the performance of models. Figure 12 shows the
Kappa curves of models, each model’s Kappa trend is similar to its MIoU. The Kappa of
UNet is higher than that of other models at the beginning of the experiment, and the Kappa
of UNet leads until it is overtaken by DFFAN.
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To observe the advantages of DFFAN in predicting pictures when there are large
differences between positive and negative samples and to verify the generalization of
DFFAN we choose pictures that have dominant categories and use trained models to
predict them. The prediction results are shown in Figure 13. In addition, these pictures we
selected did not appear in the training set nor test set.

The yellow circles in Figure 13 are the parts that are difficult to predict. Although pre-
diction results of DFFAN cannot be exactly the same as labels, its prediction ability is
better than the other networks. This is because AMM can extract the context information
of each feature map, and the BFF module can fuse the context information of the picture
and extract the location information of the picture. It can better predict edge areas and
distribution positions of each category.



ISPRS Int. J. Geo-Inf. 2021, 10, 125 14 of 17

Figure 13. The prediction results of each model for special images. (a) Real image. (b) label. (c) BiSeNet. (d) PSPNet.
(e) DeepLabv3+. (f) UNet. (g) DFFAN.

4.5. Generalization Experiment

To further verify the generalization abilities of the models proposed in this paper,
AISD, a public dataset, is selected for further experiment. The AISD has three categories,
namely building, road, and background. This work cuts the images into 512× 512 pixels,
and there are 30,000 pictures. According to a ratio of 7:3, 21,000 pictures are chosen as the
training set and 9000 pictures are chosen as the validation set. With the SGD optimizer,
the initial learning rate is 0.0001, the weight attenuation rate is 0.0005, the training batch
batch-size is 4, and the iteration is 300 times.

The generalization experiment results are shown in Table 3. The results show that the
metric of DFFAN is better than other models. Therefore, the generalization performance
and effectiveness of the proposed network is verified.

Table 3. The results on the AISD dataset.

MPA FW IoU MIoU Kappa

FCN 0.8195 0.6955 0.6903 0.7171
LEDNet 0.8104 0.6823 0.6787 0.7039
BiSeNet 0.8584 0.7526 0.7493 0.7785
PSPNet 0.8595 0.7543 0.7524 0.78

DeepLabv3+ 0.8668 0.7654 0.7621 0.791
UNet 0.8519 0.7429 0.7371 0.7673

DFFAN 0.8672 0.7661 0.763 0.7915

5. Conclusions

Land cover segmentation is one of the important applications of remote sensing image
processing, it has important significance in agriculture, forestry, and public land planning.
In order to explore the effect of convolutional neural networks in land cover semantic
segmentation, this paper proposed DFFAN and conducted experiments on the LandCover.
DFFAN uses ResNet as the backbone to extract different levels of features from remote
sensing images. Furthermore, DFFAN uses the AMM to construct the context prior of each
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feature map to distinguish the contextual relevance of each pixel. Meanwhile, DFFAN uses
FCME function module in BFF to extract spatial position information and uses asymmetric
depth separate convolutions to aggregate spatial information and semantic information.
In this way, BFF infers the spatial distribution of each category. The experimental results
show that the evaluation metrics of DFFAN are better than those of comparing networks,
and its prediction results are better in some edge areas.

However, DFFAN still has some shortcomings. First, DFFAN’s convergence speed is
slow, and it often takes 150 epochs before its evaluation metrics exceed the other networks.
Second, for some small buildings, DFFAN can only mark their locations, but the outlines do
not fit perfectly. This situation is the most obvious when predicting buildings are isolated
in woodland. Finally, in edge areas of woodland and water, the prediction results are
slightly different from labels.

To improve some shortcomings of DFFAN, the following methods can be considered.
First, self-attention mechanism can be added to AMM, which can enhance the aggregation
capability of context information. Secondly, smoothing ground truth in the training process
can increase the training effect. Finally, we consider adding a classifier to the output of
AMM, calculating the loss of classifier’s output and ground truth, and setting the loss as
auxiliary loss. In addition to the above methods, we will refer to relevant papers and learn
from some ideas of state-of-the-art methods to improve the DFFAN.
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