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Abstract: The Himalayan region and hilly areas face severe challenges due to landslide occurrences
during the rainy seasons in India, and the study area, i.e., the Rudraprayag district, is no exception.
However, the landslide related database and research are still inadequate in these landslide-prone
areas. The main purpose of this study is: (1) to prepare the multi-temporal landslide inventory
map using geospatial platforms in the data-scarce environment; (2) to evaluate the landslide sus-
ceptibility map using weights of evidence (WoE) method in the Geographical Information System
(GIS) environment at the district level; and (3) to provide a comprehensive understanding of recent
developments, gaps, and future directions related to landslide inventory, susceptibility mapping,
and risk assessment in the Indian context. Firstly, 293 landslides polygon were manually digitized
using the BHUVAN (Indian earth observation visualization) and Google Earth® from 2011 to 2013.
Secondly, a total of 14 landslide causative factors viz. geology, geomorphology, soil type, soil depth,
slope angle, slope aspect, relative relief, distance to faults, distance to thrusts, distance to lineaments,
distance to streams, distance to roads, land use/cover, and altitude zones were selected based on the
previous study. Then, the WoE method was applied to assign the weights for each class of causative
factors to obtain a landslide susceptibility map. Afterward, the final landslide susceptibility map
was divided into five susceptibility classes (very high, high, medium, low, and very low classes).
Later, the validation of the landslide susceptibility map was checked against randomly selected
landslides using IDRISI SELVA 17.0 software. Our study results show that medium to very high
landslide susceptibilities had occurred in the non-forest areas, mainly scrubland, pastureland, and
barren land. The results show that medium to very high landslide susceptibilities areas are in the
upper catchment areas of the Mandakini river and adjacent to the National Highways (107 and 07).
The results also show that landslide susceptibility is high in high relative relief areas and shallow
soil, near thrusts and faults, and on southeast, south, and west-facing steep slopes. The WoE method
achieved a prediction accuracy of 85.7%, indicating good accuracy of the model. Thus, this land-
slide susceptibility map could help the local governments in landslide hazard mitigation, land use
planning, and landscape protection.

Keywords: landslide susceptibility; landslide inventory; weights of evidence (WoE); web-based
platforms; Google Earth®;, BHUVAN; remote sensing; geographical information system (GIS);
Rudraprayag district; Indian Himalayan Region (IHR)

1. Introduction

Landslides are among the most dangerous and frequently occurring natural hazards
in many hilly or mountainous terrains, which often occur without warning and cause the
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loss of life and property. The occurrence of landslides mainly depends on the local terrain
condition and control by geological and geomorphological processes. However, landslides
can be triggered on unstable slopes by external factors such as heavy rainfall, earthquakes,
flooding, snow melting, stream erosion, change in ground water-level, volcanic eruption,
or any combination of these natural factors [1-5]. The previous studies also indicated that
the frequency and the magnitude of landslides are increased in many hilly or mountainous
areas due to continuous disturbance by human activities such as the expansion of the
built-up and agricultural area, deforestation, clear-cutting, shifting agriculture, and poor
road construction [6-10]. Therefore, the frequency, magnitude, and volume of landslides
are expected to increase by both internal and external factors. Moreover, the frequency
and magnitude of landslides are further increasing due to climatic extremes in fragile hilly
or mountainous areas. Despite this fact, many countries worldwide are facing large-scale
human tragedies, material damages, and economic losses by landslide events [11-13]. It is
also essential to recognize that the spatial distribution, frequency, magnitude, and volume
of landslides negatively impact the natural landscape. The landslides can cause tree losses,
forest fragmentation, and land-use/land-cover changes, further enhancing slope instability
or slope failure [14-16]. The landslide can also affect the water quality of the river channels
and reservoirs by transporting significant sediment amounts, especially in landslide-prone
areas [17]. However, the role and effects of landslides on the natural landscape are often
overlooked, and less consideration has been given to landslide impact and disturbance on
the natural landscape. [18,19]. Therefore, to mitigate the risk of landslide occurrences in
unstable slopes and evaluate the short and long-term adverse effects of landslides on the
natural landscape, an interdisciplinary approach is needed.

The Himalayas are among the most unstable and fragile mountain areas in the
world [20]. The Himalayan region and hilly areas in India are highly prone to land-
slides, i.e., over 12% of India’s land area is prone to landslide hazard, including northeast
and northwest Himalaya, western Ghats, and Konkan hills (Tamil Nadu, Kerala, Karnataka,
Goa, and Maharashtra) and in eastern Ghats of Aruku area in Andhra Pradesh [21]. In the
Indian Himalayan Region (IHR), landslide frequently occurs due to internal factors such
as lithology setting, higher altitude, steep slope, fragile soil, high relief, and groundwater.
However, the previous studies also emphasize that external factors such as heavy rainfall,
earthquakes, and anthropogenic activities such as deforestation, shifting agriculture, road
construction, and agriculture expansion further increased landslides in many potentially
unstable slope areas [22-26]. The recently updated global landslide catalog (2007-2018)
available on NASA’s open data portal (https://data.nasa.gov/browse (accessed on 2 Au-
gust 2020)) indicated that the Indian Himalayas is a hotspot area of landslides that were
mainly triggered by rainfall. However, such global efforts to prepare the landslide database
are limited and goal-oriented (earthquake and rainfall-induced landslides), which do not
provide detailed information of landslide types and volume (length, width, and depth) of
landslides. In addition, the point data of landslide may not be helpful to understand the
effects on ecology and hydrology system. Therefore, the development of multi-temporal
landslide inventory data is essential for disaster management and landscape protection,
especially in the biodiversity-rich region like the Indian Himalayas.

Moreover, the fragile nature of the Indian Himalayas and continuous human distur-
bance into the natural landscape can increase slope instability and lead to multiple hazards,
which may be further influenced by climate change or extremes. However, the previous
studies were considered separately on multiple natural hazards for disaster risk reduction,
which may have produced biased results related to risk assessment. It is clear now that
one hazard can influence other hazards. As a result, multiple hazards may affect the same
natural landscape with serious environmental problems in mountainous terrain or hilly
areas in India. Therefore, to tackle multiple hazards and mitigate disaster risk in the Indian
Himalaya Region (IHR), a holistic approach is needed.


https://data.nasa.gov/browse
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1.1. Literature Review of Landslide Susceptibility Mapping and Assesment: Global Context

We review the commonly used methods for landslide susceptibility mapping and
assessments and further discuss their limitations and advantages in this section. Many
researchers applied different approaches to assess and evaluate landslide susceptibility,
which can be broadly classified into three categories:

The qualitative approach (heuristic methods), which is a direct or semi-direct esti-
mation to assign weights to the relative impact of causative factors on the instability of
slopes by the logical judgment of expert. The heuristic methods are applicable when
the relationship between landslide hazard and the importance of intrinsic variables are
known [26-28].

The deterministic approach is an indirect estimation of slope instability analysis based
upon engineering principles and expresses susceptibility or hazard degree by the factor of
safety. The deterministic approaches are known as physical-based models or geotechnical
models and applicable when the ground conditions across a study area are relatively
homogeneous [29-31].

The quantitative approach (statistical methods) is an indirect estimation of slope
instability based on the importance or role of various geo-environmental factors that cause
landslides and determined by relationships with landslides [32-35].

The previous work indicated that the heuristic and deterministic approaches are in-
fluenced by limitations of data availability, quality, and techniques and can yield biased
results without expert knowledge [11,12]. That is why the heuristic and deterministic
approaches have uncertainties to produce a significant landslide susceptibility map and
might yield biased results in a data-scarce environment. Since the 1990s, the various deter-
ministic approaches (computer-assisted physical base models) are available for predicting
slope instability using specific landslide, digital elevation model (DEM) as primary input
data based upon engineering principles. These physical-based models widely applied in
slope stability, triggers, failure, and slope dynamics includes Shallow Landslide Stability
Model (SHALSTAB), Rainfall Intensity and Regional Slope Stability (TRIGRS), Stability
Factor Method (SINMAP), Hydrological Stability Model (CHASM), Slope Morphology
Model (SMORPH), Shallow Landslide Model, Dynamic Stability and Shallow Landslide
Mode (iSLAM/IDSSM), Shallow Landslide Analysis Models (ASLAMs), Stability Analy-
sis (LISA), European Hydrology System (SHETRAN), Slope Probability Analysis Model
(PISA), PCRaster GIS Package—Stability Model (PROBSTAB), Slope Stability Probability
Model (SSPM), Slope Stability and Water Saturation Simulation (SUSHI), Hydrological
Dispersion Model (GEOtop-FS) [36—42]. However, the deterministic approach (physical-
based models) has a certain degree of uncertainty related to complicated calculation of
safety factor, required detailed datasets, scale, and understanding of physical laws con-
trolling slope instability [43,44]. Therefore, the results are often biased in the absence of
appropriate data related to slope material and conditions, techniques, and high-resolution
DEM [45]. In addition, the deterministic approaches require large volumes of detailed
data derived from laboratory tests and field surveys, making them highly unsuitable for
regional-scale studies and cost-effective approaches for extensive studies [35]. However,
many researchers claimed that the deterministic approaches are acceptable for the ground-
work of an approximate prone area zoning to produce a small-scale landslide susceptibility
mapping [46,47].

In recent years, the statistical (quantitative approach) methods have been widely
applied to assess landslide susceptibility or hazard map due to the advantages of the
remote sensing and geographical information system (GIS) techniques [48]. The statistical
(quantitative approach) methods gained importance because such methods can reduce the
inherent subjectivity in selecting the input data and can be applied in small to large-scale ar-
eas [49,50]. The various statistical methods (broadly can classify into three types: bi-variate,
multivariate, and probabilistic prediction models) have been applied and compared to
test the validity and efficiency to find the best suitable model to assess landslide suscepti-
bility mapping [51-56]. Some of the statistical methods frequently applied for landslide
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susceptibility mapping include the information value (IV) method [57], logistic regres-
sion (LR) method [57,58], fuzzy logic (FL) method [59], artificial neural network (ANN)
method [60,61], frequency ratio (FR) method [62,63], Bayes’ theorem based on weights
of evidence (WoE) method [64,65], and bivariate statistical analysis [66,67]. The previous
studies also emphasize that quantitative methods such as WoE, FR, FL, and LR can be
employed in a small-scale mapping if geo-environmental factors and landslide inventory
is available [68]. An excellent effort and recommendation for the landslide methodology
framework was recently made to apply the quantitative approach of landslide hazard,
vulnerability, and risk analysis at different spatial scales [69]. However, the availability
and quality of input data and scale of the study area are critically significant to apply the
proper quantitative technique for landslide susceptibility or hazard mapping. There are
many efforts also made to combine empirical and physically-based models to improve the
prediction capability for landslide susceptibility or hazard mapping [70].

More recently, machine learning (ML) techniques are gaining importance due to high
predictive results, reproducibility, and superior performance capabilities than other statis-
tical or knowledge-based methods. Many researchers widely applied ML techniques to
find out the best suitable model to assess the landslide susceptibility mapping including
neural-fuzzy [71], support vector machines (SVMs) [72,73], decision tree (DT) method [74],
artificial neuronal networks (ANNSs) [75], neuro-fuzzy-NF and adaptive neuro-fuzzy infer-
ence system (ANFIS) [76], generalized additive model (GAM) [77], adaBoost (AB) [78,79],
random forest (RF) [80,81], naive Bayes’ (NB) [82], kernel logistic regression (KLR) [83],
boosted regression tree (BRT) [84], classification and regression tree (CART) [85], general
linear model (GLM) [85], multivariate adaptive regression spline (MAR Spline) model [86],
maximum entropy (MaxEnt) [87], and quadratic discriminant analysis (QDA) [88]. Many
researchers compared different machine learning (ML) techniques and ensemble with
the statistical method to test the model performance, which can be found in the litera-
ture [87,88]. However, machine learning (ML) techniques are sensitive to the selection
of controlling factors and still complex to apply without advanced knowledge of algo-
rithms [89,90]. Therefore, to understand available ML techniques, a detailed description of
algorithms is needed. In conclusion, each of these methods has advantages and disadvan-
tages regarding the role and importance of causative factors, selection of technique, spatial
scale, and data collection quality [49]. In addition, no one method or technique is accepted
universally for adequate assessment of landslide susceptibility or hazards mapping. That
is why landslide study is still a complicated and debatable issue to produce the accurate
and useful landslide susceptibility or hazards mapping [49].

1.2. Literature Review of Landslide Susceptibility Mapping and Assessment: Indian Context

We summarize recent research progress and gaps in landslide susceptibility mapping
and assessments in the Indian context. Since 1980, the landslide hazard zonation, vulner-
ability, and risk analysis related research gained importance in India. The first paper on
landslide hazard zonation in India was published in the 1980s by [91,92]. For the first time,
the heuristic approach was applied to evaluate landslide hazard and zonation mapping
in mountainous terrain by [26]. After that, in the year 1998, under the guideline of the
Bureau of Indian Standards (BIS-IS 14496, Part 2), the BIS [93] method (heuristic approach)
was introduced and recommended for medium-scale landslide hazard zonation map on
1:25,000 or 50,000 scales for Indian mountainous terrain initially proposed by [33]. However,
the BIS method may be challenging to carry out landslide hazard mapping in a data-scarce
environment and can yield biased results without knowledge of geo-factors. In addition,
this method is based upon fixed ratings or rankings of geo-factors without including land-
slide inventory data. Although, a few (semi) quantitative approaches attempts were made
to modify BIS Code-Appraisal [94,95], and a few recommendations were suggested to
improve fixed ratings of geo-factors that exist in the BIS method by inclusions of landslide
inventory [96]. A few attempts were also suggested by the deterministic approach to
improving landslide susceptibility or hazard mapping in India [97].
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In the past and recently, there are many quantitative approaches, i.e., statistical and
GIS-based integrated approaches, that have been proposed and applied for landslide
hazard zonation or susceptibility mapping in many parts of the Himalayas and hilly areas
in India [98-111]. However, very few studies attempted in detail landslide susceptibility or
hazard mapping and their validation [96]. A few studies [95,96] were also attempted to
compare the different quantitative techniques for better landslide hazard mapping in India.
Recently, Ghosh [96] compared the BIS and the weights of the evidence (WoE) method to
improve landslide susceptibility mapping in Indian mountains. The results showed that
the WoE was a much better result than the BIS method. Other studies were also conducted
to compare the BIS, multi-criteria analysis (MCA), and FR method in the Western Ghats of
India, and the result has shown the FR method is more predictable compared to BIS and
MCA [111]. Moreover, the effects of different types of landslides cannot be ignored in the
Indian Himalayan region. However, very few attempts were made to address the types of
landslides and their consequences on the natural environment in the Himalayan region
and hilly areas in India. It is clear now that the landslide related database and research
are still inadequate in these landslide-prone areas. Hence, we address the current gaps
and discuss some opportunities to improve the landslide inventory, susceptibility, and risk
assessment in the Indian context in Section 4.2.

1.3. Landslide Susceptibility Mapping and Assessments: Present Study

The Rudraprayag district of the Indian Himalayan Region (IHR) is well known for
multiple-natural disasters such as landslides, earthquakes, cloudbursts, and flash
floods [14,112-116]. The area in Rudraprayag district, where the Kedarnath temple (Figure 1)
is situated, has already faced widespread destruction eight times by natural disasters in the
past 40 years, and many people have suffered [14,112-116]. The distructive natural disasters
that occurred in the past are still fresh in people’s mind. These disasters have occurred near
Agastmuni (2005 and 2006), Jakholi (2010), Ukhimath (2010, 2012, and 2013), and Vijaynagar
(2005), which has caused losses of life and property [117]. More recently, the Mandakini
river valley of Rudraprayag district and its surrounding areas were severely affected by
flooding tragedies (2013), which triggered approximately 2395 landslides and widespread
destruction [14,118]. These are a few examples of the devastation, which indicates risk
(hazard, exposer, and vulnerability) by natural disasters in the Rudraprayag district.

The Himalayan region and hilly areas face severe challenges due to landslide occur-
rences during the rainy season in India, and the Rudraprayag district is no exception. The
Rudraprayag district of the Indian Himalayan Region (IHR) is well known for multiple
disasters, including landslides [14,117]. Therefore, landslide susceptibility mapping is a
vital tool to identify hazardous areas and an essential basis for promoting safe human
occupations, infrastructure development, and landscape protection in this landslide-prone
area. It should be noted that multiple-temporal landslide inventory is necessary to prepare
the effective landslide susceptibility or hazard zonation map. However, the multi-temporal
landslide inventory data are lacking because of no systematic historical records [14,106].
The available landslide hazard zonation map provided by the Indian Government is too
general on a given map, as discussed in detail in Section 4.2.1. The previous studies
used point location of landslides for landslide hazard assessments, which may produce
biased results for this study area [119,120]. Hence, we used geospatial platforms to prepare
the landslides as a polygon for landslide susceptibility mapping and assessment in the
present study.
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Figure 1. The study area (a) location map of Rudraprayag district of Uttarakhand state in the Indian Himalayan Region; and
field photographs of landslide occurrences (2016/04/03) in the study area; (b) tree lost by landslide; and (c) road damaged

by landslide.

The previous study suggested that the WoE method has better accuracy than the BIS
method [96] and other statistical methods [110,111], as discussed previously in Section 1.2.
The currently used analytical hierarchy process (APH) method for landslide suscepti-
bility mapping by the Geological Survey of India (GSI) has uncertainty related to the
ranking of geo-factors, discussed in detail in Section 4.2.1. The advantage of the WoE
method is to avoid weight’s subjectivity to determine the causative factors compared to
the BIS [93,94,96] and APH methods, which needs to be investigated. The WoE method
was applied by Martha et al. [95,104] at a small watershed in the Rudraprayag district,
which needs further assessment. Hence, the development of a district-level susceptibility
map is required towards implementing risk management plans and effectively mitigate
landslide hazards. In addition, the landslide susceptibility mapping and risk assessment
are fundamental components for disaster management in landslide-prone areas, especially
in developing countries like India. However, landslide related database and research in
these areas are still inadequate. This hampers the further analysis of landslide hazard
related assessment. Therefore, taking the example of the Rudraprayag district, the main
purpose of this study was:
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1.  to prepare the landslide inventory map using geospatial platforms in the data-scarce
environment;

2. toevaluate the landslide susceptibility map using weights of evidence (WoE) method
in the Geographical Information System (GIS) environment at the district level; and

3.  to provide a comprehensive understanding of recent developments, gaps, and future
directions related to landslide inventory, susceptibility mapping, and risk assessment
in the Indian context.

2. Materials and Methods
2.1. Study Area (The Rudraprayag District)

The study area, i.e., the Rudraprayag district, is a part of the Garhwal Himalaya
division of Uttarakhand and covers about a 1936.54 km? geographical area (Figure 1). The
Rudraprayag district is under the high-risk earthquake zone because the Main Central
Thrust (MCT) is passing through this area [121,122]. The Rudraprayag district is prone
to multiple natural hazards such as landslides, earthquakes, and flash floods [115-117].
Rainfall-induced landslides are common in this study area. The rainfall is highly variable
depending upon the altitude in this study area. The average annual rainfall is around
1220.18 mm in the southern part, while in the central position at Chandrapuri, the average
annual rainfall is 1750.9 mm, and in the northern part at Ukhimath, the average annual rain-
fall is 1995 mm [117]. The overall average rainfall in the Rudraprayag district is 1485 mm.
The Rudraprayag district receives most of the rainfall (70-80% of annual precipitation)
from June to September. The mean temperature in winter (December to February) varied
between 8.32 to 13.15 °C and in summer (May to July) 27.75 to 32.54 °C [117]. The upper
part of the study area is protected as a Kedarnath wildlife sanctuary covering a 975 km?
area (Figure 1). Mandakini, with a catchment area of 1641.64 km?, is the principal river.
In this study area, the elevation ranges from 546 m to 6840 m above mean sea level (msl),
and slopes vary from gentle to very steep. Agricultural practices are mostly developed
along the river and road and primary livelihood source for the local peoples [14]. Si-
multaneously, the study area has a significant pilgrimage site (Kedarnath Temple) where
millions of devotees visit to temple every year [14]. Therefore, the pilgrimage site offers
a substantial livelihood option to local people in the Rudraprayag district and its sur-
rounding areas [14,117]. According to the data of Uttarakhand tourism, approximately
300,000 and 572,454 Indian people visited the Kedarnath temple in 2001 and 2012, respec-
tively (https://uttarakhandtourism.gov.in/ (accessed on 17 January 2021)). Therefore,
the infrastructure-driven development is increasing due to increasing demand by locals
and visitors, which can affect land use and land cover [14]. Most of the population (92%)
lives in rural areas, and the majority of the villages are situated along the road and river
channel (Figure 1). The Rudraprayag district has a total population of 242,000, which is
low compared to another district of Uttarakhand. According to the Indian Census, the
population density was 115 persons per km? in 2001 and 119 persons per km? in 2011.

2.2. Data Preparation

The data preparation for landslide susceptibility mapping divided into two groups as:
(1) landslide inventory (polygon data); and (2) causative factors of landslide.

2.2.1. Landslide Inventory (Polygon Data of Landslides)

The multi-temporal landslide inventory is essential for understanding the relationship
between past landslide occurrences and their causative factors. In this study, we applied
the weights of evidence (WoE) method, which is based upon the assumption that the past is
key to the future; thus, the past landslide data are necessary [123,124]. The previous studies
emphasized that the point location data of landslides could ignore the size or magnitude
of landslides and might yield a biased result for landslide susceptibility mapping and
assessment [124]. Therefore, to reduce these uncertainties, the landslide as a polygon
was used in this study. The multi-temporal landslide inventory dating was prepared
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through multiple data sources, i.e., BHUVAN (Indian earth observation visualization),
a web-based geospatial platform developed by the Indian Space Research Organization
(ISRO), government reports, and Google Earth® imagery. Thus, taking advantage of web-
based platforms (BHUVAN and Google Earth®), the government reports, and previous
studies, we prepared multiple-temporal landslide inventory data from 2011 to 2013, along
with a ground truth survey [125]. These landslides were triggered by heavy rainfall,
flash flood, and cloudburst in the Rudraprayag district. At first, the landslide’s location
was extracted as a reference from the BHUVAN, and the government report [115-117].
Afterward, these landslide’s location data were imported into Google Earth®, and then
the landslides were delineated using high-resolution Google Earth® imagery to prepare
a multi-temporal landslide inventory in ArcGIS. Thus, we were able to use the Google
Earth® engine to extract 293 landslides as polygons from 2011 to 2013. Later, the landslide
polygons were converted to raster using the vector to raster conversion tool in ArcGIS.
Afterward, all landslide polygons were re-sampled in the same pixel size with the standard
UTM 44N zone. Figure 2 shows an example of landslides identification using the BHUVAN
and Google Earth® engine.

BHUVAN (SRO) G oogle Earth® in agery
2013/06/17 E H S

. ) £\Ei
A s

2013/11/19

[ gl N

2 v s
Sources:BHU VAN, a geospatialp latform Sources:G oogle Earth® archives 2011—2013)

Figure 2. An example of the landslide’s identification from BHUVAN (a geospatial platform) (http:
//bhuvan.nrsc.gov.in (accessed on 2 August 2020)) and digitization of landslides from Google
Earth® imagery.

2.2.2. Landslide Causative Factors

There are no fixed guidelines for selecting the parameters that influence landslides in
susceptibility mapping [126,127]. The causative factors were selected based on previous
landslide studies [91-120], the scale of analysis, data availability, and fieldwork in the
Rudraprayag district. At first, we reviewed the literature and government reports related
to landslide susceptibility mapping in the Rudraprayag district [95,126,127]. After that,
the most significant landslide-related spatial and attribute data, namely geology, geomor-
phology, soil type, soil depth, slope angle, slope aspect, relative relief, distance to faults,
distance to thrusts, distance to lineaments, distance to streams, distance to roads, land
use/cover, and altitude zones, were selected for this study area. We discuss the role of
causative factors for landslides in detail in Sections 3.4 and 4.1.

Map layers depicting lithology, geomorphology, and major structures (thrust, fault,
and lineament) were derived from the geological maps prepared by Disaster Mitigation
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Management Centre (DMMC) [117]. Topography-related layers (slope angle, slope aspect,
altitude zone, relative relief, and streams network) were derived from stereoscopic Cartosat-
1 DEM at the 10-m resolution, which is freely available at BHUVAN (http://bhuvan.nrsc.
gov.in (accessed on 2 August 2020)). Roads data were extracted using a digitization tool
in the BHUVAN. A map layer depicting land use/cover map (2014) was prepared using
Landsat 8 Operational Land Imager (OLI) satellite data obtained from the United States
Geological Survey (USGC). Soil type and depth layers were derived from Uttarakhand
Soil Information.

A brief description of the preparation procedure of each data layer is provided here.
The slope angle and slope aspect derived from a 10-m DEM extracted using ArcGIS.
Relative relief was derived from the DEM using the zonal statistics tool of ArcGIS, wherein
DEM was used as zones. Distance to streams was produced from DEM by hydrology
tools in ArcGIS. Road data were digitized from the BHUVAN (http:/ /bhuvan.nrsc.gov.in
(accessed on 2 August 2020)) online geospatial platform. Landsat 8 OLI satellite image
was used for producing the land use/cover using a supervised classification method
with maximum likelihood technique in ArcGIS. The layers of distance to streams, faults,
thrusts, lineaments, and roads were calculated by the Euclidean distance system in spatial
analyst tools of ArcGIS. The altitude zone map was produced in accordance with the India
Meteorological Department (IMD). All data were converted to raster format with the same
pixels, and each raster map was divided into several classes. Figure 3 shows the final
outputs of causative factor maps.
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Figure 3. Landslide causative factors for the study area: (a) land-cover; (b) slope aspect; (c) distance to streams; and (d)
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relative relief; (k) slope angle; (1) altitude zone based on rainfall; (m) lithology; and (n) geomorphology.

2.3. Methods

The methods for landslide susceptibility mapping are divided into two groups as:
(1) weights of evidence; and (2) validation for landslide susceptibility.

2.3.1. WoE (Weights of Evidence) Method

In this present study, the weight of evidence (WoE) method was applied for the
landslide susceptibility mapping, a data-driven method that avoids weight’s subjectivity
to determine the causative factors. The WoE method was originally developed to identify
and explore mineral deposits [128,129]. The WoE method has recently been widely applied
for landslide susceptibility mapping [130,131]. A mathematical formulation of this model
is provided by [132] and described in detail by many researchers [64,66,68,87,100,110]. The
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WDoE method is based on the assumption that the “past is the key to the future”. Thus, it is
believed that future landslides will occur under conditions similar to those contributing to
previous landslides. We assume that the combination of causative factors is conditionally
independent of one another concerning the landslides [128,131]. It is also further presumed
that the combination of causative factors might have resulted in the triggering of past
landslides in the present study area. Therefore, the past landslides were used in weighting
the causative factors that mainly contribute to or cause landslides. The WoE method assigns
a weight to each class of causative factor of a landslide based upon the presence (W) or
absence (W™) of landslides within the area [132]. This method is a correlation between
positive weight (W) when the event occurs and negative weight (W~) when the event
does not occur, which are defined as:

+ _ 9o PABID}
W' =log, P{B‘E} @
_ P{B|D}

where P is the probability, B is the presence of a desired class of landslide causative factor, B
is the absence of a desired class of landslide causative factor, D is the presence of landslides,
and D is the absence of a landslides. Since the results are in log form. Therefore, the
difference between the two weights is known as the weight contrast, C (C = W* — W™).
The magnitude of the contract reflects the overall spatial association between the causative
factors and the landslides. The standardized value of C, calculated as the ratio of C to its
standard deviation, S(C) [64,66,68,87,110]. The value of Wy;; determines the importance
of the spatial relationship between factors affecting the occurrence of a landslide. It also
shows relative certainty of posterior probability [128,132].

The S(C) (standard deviation) of positive and negative weights is computed as follows:

S(C) = VSZW+ + S2W~ 3)

where S2W+ and S?W™ are the variances of (W) positive and (W ™) negative weights,
respectively. The variances of positive and negative weights can be estimated through the

following equations:
1 1

+ —
N{BNA}  BNA
I S
~ {BNA} BNA

SPWT = (4)

SPW™ (5)
The standardized weight contrast (W), i.e., the ratio of the contrast to its S(C)
(standard deviation), is used to calculate the confidence:

Wia = (C/5(C)) (6)

If the weight contrast is positive, the factor is favorable for the landslides, and if it
is negative, it is unfavorable for the landslides. If the weight contrast is close to zero, the
factor shows little relation to the landslides. The landslide susceptibility index (LSI) map
was constructed by summing the standardized (W) weight contrasts of each causative
factor as follows: LSI = ZWj;; (where Wy, = standardized weight contrast of each factor).
When the LSI value is high or positive, it means that the landslide’s susceptibility is high,
and if the LSI value is low or negative, it means that the susceptibility of landslides is low.

2.3.2. Validation of Landslide Susceptibility Map

To prepare an accurate map of landslide susceptibility and find out the best suitable
model, the validation of the applied method is necessary. The validation of the land-
slide susceptibility map was evaluated by calculating the relative operative characteristic



ISPRS Int. ]. Geo-Inf. 2021, 10, 114

13 of 28

(ROC) method and the percentage of the observed landslide in various susceptibility cate-
gories [133,134]. The area under the curve (AUC) of the ROC represents the quality of the
probabilistic model (its ability to predict the occurrence or non-occurrence of an event) [135].
An AUC value close to 1 indicates high accuracy, and an AUC value close to 0.5 indicates
inaccuracy [135,136]. In this study, the success-rate curves were obtained using the IDRISI
SELVA17.0 software package. The AUC values obtained from the susceptibility maps and
testing landslides show that the model gave the highest success rate.

3. Results
3.1. Landslide Inventory Map

In order to apply the WoE method, 293 landslide polygons were identified from 2011 to
2013, which were based upon BHUVAN and high-resolution Google Earth® imagery.
Landslides cover an area of about 7.46 km? (total of 74,704 grid cells), which is 0.38% of
the total study area. The final output of the multi-temporal landslide inventory map of the
district is shown in Figure 4.
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Figure 4. The distribution map of landslide body in the Rudraprayag district (2011-2013).
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3.2. Landslide Susceptibility Map

The landslide susceptibility map was obtained using the WoE method. Figure 5a
shows the overall standardized weight contrast value, i.e., positive weight contrast and
negative weight contrast. Figure 5b shows the final landslide susceptibility maps of the
Rudraprayag district. The landslide susceptibility was divided into five classes by the
natural break method using ArcGIS. Figure 5b shows that 14.43% of the area falls under
the very high susceptibility class, 18.69% of the area falls under the high susceptibility
class, while 19.45%, 27.42%, and 20.01% of the area belong to medium, low, and very low
susceptibility classes, respectively.

& Landslides

" Susceptibility classes
(WoE method)

Very low (20.01 %)

Low (27.42 %)

Medium (19.45 %)

High (18.69 %)

0 510 EEE Low :-3.091 g2 10 M Very high (14.43 %)

mm— Km _—

& Landslides
Y Standardized

weight contrast value
] Hi gh :3.122

Figure 5. (a) Landslide susceptibility map showing the range of all standardized weight contract values, i.e., negative and
positive; (b) the distribution of the landslide susceptibility classes.

3.3. Validation of Landslide Susceptibility Map

The validation of the landslide susceptibility map was checked against randomly
selected landslides. The ROC (AUC) curve of model performance is shown in Figure 6.
The AUC value indicates that the WoE method gave a high success rate (AUC = 0.857). The
resulting map of areas susceptible to landslides has a prediction accuracy of 85.7%.

AUC =0.857 (85.7%)

True positive %
cERuBELSIBEE

0 10 20 3 40 5 6 70 8 9 100
False positive %

Figure 6. The graph showing validation of landslide susceptibility map under the ROC (AUC) curve
using the IDRISI Selva 17.0 software.
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3.4. Analysis of Landslide Susceptibility Map

Figure 7 shows the graphs of landslide susceptibility causative factors and their cor-
responding standardized weight contract value: positive weight contrast and negative
weight contrast. Regarding the land use/cover factor, the landslide susceptibility is high
in non-forest areas such as scrubland, pastureland, barren land, built-up area, and agri-
cultural land. This shows that there is a strong correlation between the non-forest area
and the landslide occurrence (Figure 7a). In the case of slope aspect factor, the most sus-
ceptible classes were southeast, south, and west-facing slopes (Figure 7b). In the case
of distance to streams and roads, the susceptibility of the landslide was reduced (i.e.,
>1000 m) with increasing distance. Therefore, the standardized weigh contract indicates a
strong correlation between landslide occurrences and distance from streams (Figure 7c)
and roads (Figure 7d). The standardized weight contract value indicates a strong correla-
tion between landslide occurrences and geological structures like Main Central Thrusts
(MCT) and faults (Figure 7e,g). A low correlation was observed near to lineaments
(Figure 7f). In this study, the most susceptible soil types are fine loamy and loamy skele-
tal (Figure 7h). In the case of soil depth, the majority of landslides were observed in
shallow and deep soil classes (Figure 7i). The frequency of landslide was observed on
the steep slopes (Figure 3k) in the upper catchment of the Mandakini river (Figure 3j),
where relative relief was high (1200-1500 m). This indicates that the high relative re-
lief influences the frequency of landslides (Figure 7j). The standardized weight contrast
values of the slope were high in steep slopes, except slope above 65 degrees (Figure 7j).
The rainfall is highly variable depending upon the altitude in this study area. The altitude
zone higher than 3000 m is the most susceptible to landslide occurrence (Figure 71). This
landslide occurrence may be due to lack of vegetation at high altitudes (>300 m), which can
further enhance landslides occurrence during heavy rainfall. In the order of importance,
the most susceptible classes of the lithology factor are (1) garnetiferous gneiss, schist, and
migmatite, (2) porphyritic gneiss and mica schist, and (3) granite gneiss, mica schist, cale
zones (Figure 7m). Regarding the geomorphology factor, the most susceptible classes are
the alluvium zone, alluvium terrace, and glacier terrace (Figure 7n). In conclusion, the
study results show that medium to very high landslide susceptibilities had occurred in the
non-forest areas, mainly scrubland, pastureland, and barren land. The results also show
that landslide susceptibility is high in high altitude zone, thrusts, faults, shallow soil, and
southeast, south, and west-facing steep slopes.
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Figure 7. The graphs of landslide causative factors and their corresponding standardized weight contract value: (a) land

use/cover; (b) slope aspect; (c) distance to streams; (d) distance to roads; (e) distance to thrust; and (f) distance to lineaments;
(g) distance to faults; (h) soil type; (i) slope depth; (j) relative relief; (k) slope angle; and (1) altitude zone based on rainfall;
(m) lithology; and (n) geomorphology.

4. Discussion

4.1. Landslide Susceptibility Mapping (Present Study)

A quantitative approach was applied to prepare the landslide susceptibility map in the
GIS environment at the district level. Due to the data-scarce environment, the combined use
of the BHUVAN and Google Earth® web-based platforms provided a useful tool to prepare
spatio-temporal landslides inventory of the study area. The landslide susceptibility or



ISPRS Int. ]. Geo-Inf. 2021, 10, 114

18 of 28

hazard mapping and risk assessment are always hampered due to lack of multi-temporal
landslide inventory, expensive high-resolution satellite images, and limited landslide
historical records in India [14,96]. In addition, the low-optical remote sensing satellite
images may not be sufficient to identify the landslides in forested land due to shadow and
cloud cover issues in the Indian Himalayas [14]. Therefore, high-resolution satellite data
are needed for better hazard mapping and assessment. The previous studies used point
data of landslides to prepare the landslide susceptibility mapping [119]. However, the point
data of landslide occurrences do not consider the magnitude and volume of landslides
and can yield biased results regarding the degree of landslide susceptibility or hazard
zonation [65]. Therefore, the development of landslide polygon data is more helpful to
prepare effective landslide susceptibility or hazard map and for further assessment related
to landslide hazards.

In this study, fourteen factors causing landslides were selected based on data avail-
ability and previous studies conducted in the Rudraprayag district [95,126,127]. The WoE
method was applied to assign the weights to each class of all causative factors to obtain a
landslide susceptibility map. Later, the validation of the landslide susceptibility map was
checked against randomly selected landslides [127]. The WoE method achieved a predic-
tion accuracy of 85.7%, which indicates that the model gave good accuracy [65,68,100,110].
However, the previous studies suggested that the collinearity between causative factors
and landslide occurrence can affect the model performance. Therefore, the multicollinear-
ity analysis of causative factors should be performed for achieving better accuracy of the
model [80,87,100]. It is clear now that model performance depends on identifying the
significant factors related to landslides occurrences, quality of the spatial and attribute data,
landslides inventory data, scale and size of the study area, and uncertainties associated
with digitizing the data. The WoE method with accuracy assessment has been applied
before by [95] at the small watershed in the Rudraprayag district. However, the WoE
method has not been attempted at the district level. The previous studies conducted in
India suggested that the BIS method has some degree of uncertainty because of the fixed
ranking of geo-factors [93-95]. In addition, the APH method has uncertainty regarding the
selection of ranking of geo-factors, as discuss in detail in Section 4.2.1. Therefore, the WoE
method was applied to avoid the subjectivity existing in the BIS and APH methods.

The results clearly showed that medium to high landslide susceptibilities had oc-
curred in the non-forest areas, mainly scrubland, pastureland, and barren land. Our result
indicated that the landslide susceptibility is highest in the scrubland than other land cov-
ers (Figure 7a). The Forest Survey of India (FSI) and previous studies indicated that the
scrubland is degraded forest-cover [14]. Therefore, there is a possibility of an increase in
landslide occurrences in scrubland in the near future. The majority of the agricultural lands
and built-up areas are near the major roads and river channels in the study area [14]. Our
results showed that medium to very high landslide susceptibilities areas have occurred
near the major roads (National Highway 107 and 07) and the Mandakini river channels,
indicating high risk in agricultural land and built-up area (Figure 1). According to the
previous study, the study area covers 68% of forest areas and 32% non-forest areas, and the
majority of the non-forest areas are at higher altitudes and steep slopes [14]. The results
showed that landslide susceptibility is high in non-forest areas. Due to this, the landslide
susceptibility is high at higher altitudes (>3000 m) and steep slopes (3645 degrees). There-
fore, the landslide hazard risk is high on the upper catchment of the Mandakini river and
the steep slopes.

In this study area, the upper catchment areas of the Mandakini river are a protected
area as a wildlife sanctuary and famous tourist hotpot (Kedarnath and Tungnath tem-
ple) [14]. The relative relief can increase the size, magnitude of the landslide, which can
affect the overall landscape [117]. The result showed that landslide susceptibility is high in
higher relative relief at the upper catchment area of the Mandakini river. This indicates
the high risk on human activities and wildlife sanctuary due to landslide hazards, which
cannot be ignored. An increase in soil moisture and lack of vegetation can lead to landslide
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occurrences and further enhance the rainfall-induced shallow landslide. In this study, most
of the landslide occurrences were associated with lack of vegetation in fine loamy and
sandy skeletal areas at the upper catchment and along the Mandakini river (Figure 3a,h). In
addition, most of the landslide occurrences were observed in shallow and deep soil depth
(Figures 3i and 7i). Generally, the slope aspect was ignored for landslide susceptibility
or hazard zonation mapping in the previous studies [119]. However, the slope aspect
may influence the weathering processes due to the possibility of sunlight, which might
play a significant role in the breakdown of rock. In this study, the southeast, south, and
west-facing slopes have the highest landslide susceptibilities, indicating the risk on the
agricultural land and built-up areas facing this direction [117]. The Rudraprayag district is
under the high-risk earthquake zone because the Main Central Thrust (MCT) is passing
through this area [121]. Therefore, the results clearly indicated that landslide risk is high
near the Main Central Thrust (MCT) in this study area. However, the landslide mechanisms
in the Indian Himalayan Region are very complicated and mainly controlled by geologic
conditions [122] and also triggered by external factors [118]. Under the climatic conditions,
the rainfall intensity is likely to be more susceptible to landslide occurrences in this study
area [117], as summarized previously in Section 2.1. Therefore, human activities, material
damage, and life are at high risk due to landslides triggered by rainfall. That is why the
additional and detailed geologic information, high-resolution datasets, and external factors
related to spatial data such as rainfall intensity /duration and earthquake intensity should
be used for landslide susceptibility mapping and assessment in the future. There were no
landslides observed in snow/glacier areas and near to lineament (>1000 m). Moreover, we
could not evaluate the role of temperature, groundwater, and snowmelt influence on the
landslides hazard even though their potential influence may be significant. We think that
the result is satisfactory for a study at a regional scale (1936.06 km?) study.

The development of multi-temporal landslide inventory dating is needed to prepare
the more effective landslide susceptibility mapping and understand the short and long-term
effects of landslide occurrences on the natural environment [14,18,19,136]. The rainfall, flash
flood, cloudbursts triggered landslide occurrences are common in this study area [112-120].
Therefore, we prepared landslide inventory triggered by multiple events such as heavy
rainfall, cloudburst, and flash flood from 2011 to 2013, as reported in the government
reports, BHUVAN, and previous studies [99,106,112-120]. This landslide susceptibility
map might be helpful compared to the single event-based landslide susceptibility mapping
prepared by other researchers for this landslide-prone area [97,99,109]. In addition, the
landslide susceptibility map prepared by other researchers [119,120] showed that the higher
altitude and lower to middle catchment areas of the Mandakini river had less susceptibility
(low landslide hazard zone) to the landslide. However, our landslide susceptibility map
showed high landslide susceptibility in these areas, since many landslides were observed
in these areas from 2011 to 2013. Moreover, the Himalayan region and hilly areas in
India are facing different types of landslide occurrences due to both internal and external
factors [117]. The fragile nature of the Indian Himalayas, changes in climatic patterns,
and continuous human disturbance in land cover by development activities can lead to
more landslides in this landslide-prone area, which cannot be ignored [14]. The study
area gained importance due to the pilgrimage site (Kedarnath temple) and protected land
as a Kedarnath wildlife sanctuary in the upper catchment of the Mandakini river. Thus,
this landslide susceptibility map could help the local governments in landslide hazard
mitigation, land use planning, and landscape protection.

4.2. Landslide Susceptibility, Hazard Mapping, and Risk Assessment in India: Recent
Developments, Gaps, and Future Directions

The Himalayan Region and hilly areas in India are highly prone to natural disasters,
including landslides. The landslide susceptibility mapping and assessment are necessary
for the comprehensive understanding of the spatial and temporal occurrence of landslides,
which is a vital tool to identify the hazardous areas and to mitigate the landslide hazard
risk. However, the landslide related database and research are still inadequate in these
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landslide-prone areas. At first, we address the current progress and gaps related to land-
slide inventory, susceptibility, and risk assessment in the Indian context in Section 4.2.1.
After that, we discuss some opportunities for improvement related to landslide inventory,
susceptibility, and risk assessment in the Indian context in Section 4.2.2.

4.2.1. Landslide Susceptibility, Hazard Mapping, and Risk Assessment in India: Recent
Developments and Gaps

Since Disaster Risk Reduction (DRR) is a holistic approach, identifying hazard areas is
an essential component of disaster management and an essential basis for understanding
disaster risk. By this, the magnitude of disaster can be minimized, and the economic loss
may be lessened. In this regard, the national-level institutions and organizations that are
accountable for mapping, assessment, and risk analysis for natural hazards in India include
the National Remote Sensing Centre (NRSC), Indian Institute of Remote Sensing (IIRS)
under the Indian Space Research Organization (ISRO), Geological Survey of India (GSI)
under the Ministry of Mine, National Institute of Disaster Management (NIDM) under
the Ministry of Home Affairs, Building Materials and Technology Promotion Council
(BMTPC) under the Ministry of Housing and Urban Affairs, and National Atlas and
Thematic Mapping Organization (NATMO) under the Ministry of Science and Technology,
Government of India. We discuss their recent development, gaps related to landslides
inventory, susceptibility mapping, and risk assessment in the following paragraphs.

The GSI contributes a significant role to geology and geomorphology related research
in India and has been designated as the nodal agency for natural hazards, including land-
slide hazards. Thus, the GSI is accountable for landslide inventory, susceptibility, and
hazard assessment. Recently, the GSI has launched a national program called national
landslide susceptibility mapping (NLSM). This program aims to create a dynamic national
landslide susceptibility geodatabase for India, prepare GIS-based seamless landslide sus-
ceptibility maps of India on a 1:50,000 scale, and prepare a nation-wide repository on
GIS-based landslide inventory. The GSI also provides an online gateway called BHUKOSH
(https:/ /bhukosh.gsi.gov.in/ (accessed on 17 November 2020)) to all geoscientific related
geology and geomorphology data, where landslide inventory, susceptibility mapping,
and landslide-related geo-factors can visualize, download, and digitized using an online
tool. The methodology applied by GSI to obtain landslide susceptibility maps is based
on spatial association analysis between fixed geo-factors and landslides (point data of
landslide occurrences) using the analytical hierarchy process (APH) to determine the rating
of factors of each class and weights of geo-factors along with knowledge-driven estimation.
The APH method is a semi-quantitative decision using weights through the pair-wise
relative comparison without inconsistencies in the decision process. However, the APH
method is uncertain regarding the selection of ranking of geo-factors, as it may differ from
one expert to another. Therefore, other quantitative approaches and machine learning
(ML) techniques can be applied to compare or combine with APH to prepare the useful
landslide susceptibility mapping. Moreover, the landslide point data ignore the volume
and magnitude and might yield a biased result regarding the degree of landslide suscep-
tibility. Therefore, the GSI can prepare the multiple-temporal landslide (landslide as a
polygon) inventory to prepare the practical landslide susceptibility map and further assess
the landslide impact on the natural environment.

The NRSC, Department of Space (DOS) of the Indian Space Research Organization
(ISRO), Government of India has established a disaster management support program
(DMSP) and services including landslide hazard mapping, landslide inventory, and land-
slide early warning system for disaster monitoring, mitigation, relief, and management at lo-
cal/state /national level. The geospatial data can be visualized, digitized, and download via
web-based geo-portal like BHUVAN (https://bhuvan.nrsc.gov.in (accessed on 17 Novem-
ber 2020)), BHOONIDHI (https:/ /bhoonidhi.nrsc.gov.in (accessed on 17 November 2020)),
and National Database for Emergency Management (NDEM) (https://ndem.nrsc.gov.in
(accessed on 17 November 2020)). The NRSC plays a significant role in using the earth
observation data for landslide inventory and landslide hazards zones mapping. The NRSC
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has developed a semi-automatic image analysis algorithm approach for the preparation
of new and historical landslide inventories [95]. The NRSC also applied APH methods
to produce the landslide hazard zones. The landslide inventories (from 2011) are limited
and event-based (e.g., events like rainfall, cloudburst, and earthquakes). However, the
landslide types and non-event-based landslide inventories are still limited. The landslide
susceptibility or hazard zone mapping is also limited and based on triggering factors,
mainly rainfall and earthquake events, and limited to the major tourist and pilgrimage
routes of two states, namely Himachal and Uttarakhand in the Indian Himalayan region.
Therefore, multi spatial-temporal and non-event landslide inventory database are required
to prepare a significant landslide susceptibility or hazard mapping and risk assessment.

To achieve a global agreement of disaster risk reduction set by the Hyogo framework
(2005-2015) and Sendai framework (2015-2030), the BMTPC plays a significant role in
promoting disaster mitigation measures through preparedness. The BMTPC published
the 3rd edition of the vulnerability atlas of India in March 2019. The vulnerability atlas
includes different existing hazard scenarios for the entire country and presents hazard
maps in the digitized form at state/union territory-level separately. The vulnerability atlas
also presents district-wise identification of vulnerable areas concerning earthquakes, winds,
floods, thunderstorms, cyclones, and landslides. The database to prepare the vulnerability
atlas of India was acquired from existing data from government nodal agencies of India,
such as the Indian Survey of India (SOI), Geological Survey of India (GSI), Census of
India, Central Water Commission (CWC), Meteorological Department (IMD), and Bureau
of Indian Standards (BIS). The natural hazards maps given in this vulnerability atlas,
including landslide hazard zonation and landslide incidence map (https://bmtpc.org/
(accessed on 17 November 2020)), were prepared up to the district level, and given maps
are available in the digital form and hard copy. The thematic map needs permission for
commercial use by BMTPC. The atlas also presents district-wise housing vulnerability risk
in tabular form based on wall and roof types as per 2011 Indian census housing data.

However, the available historic landslide data presented in this vulnerability atlas
have been mapped through field validation till 2016 by geoscientists. The point location
(9883) of landslides was mapped based on field-based eyes-estimation only at the accessible
locations. Therefore, there is a possibility that many more landslides might occur in remote
and inaccessible locations. Therefore, provided landslide inventory data might yield biased
results for the risk assessment without proper landslide distribution data. The vulnerability
atlas provided details of the house types, risk of damage to house types, damage risk
levels in tables form caused by earthquakes, windstorms, and floods. However, the risk-
related table provided by BMPTC can be more user-friendly if the provided table can
enter into the GIS software for further assessment. Moreover, the 3rd addition of the
vulnerability atlas mainly focuses on vulnerability and risk to human activities, and less
consideration was made to the natural environment. It should be noted that the frequency
and magnitude of landslides can affect the natural landscape, which cannot be ignored in
rich biodiversity regions like Indian Himalayas. Therefore, a holistic approach is needed
to address multiple hazards and risk analysis for promoting safe human occupations,
infrastructure development, and landscape protection in landslide-prone areas.

The NATMO under the Department of Science and Technology, Government of India,
is assigned with responsibility regarding the atlas services of different thematic cartography,
including natural hazards such as landslides, earthquakes at local, regional, national
levels. The features of thematic data can be drawn and visualized by geoportal (http:
//geoportal.natmo.gov.in/ (accessed on 17 November 2020)). However, the thematic data
related to natural hazards are too general on the given map, and all-natural hazard themes
are provided in a single map, which is also not up to date. In addition, the data sources to
prepare natural hazards maps are not mentioned by NATMO. Therefore, further detailed
information on input data and analysis methods is needed.

Since the Disaster Management Act of 2005, the NIDM contributes a significant
role in disaster management and disaster risk reduction at the local/regional /national
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level. It is assigned as a nodal agency in policy advocacy, capacity building, human
resource development, training, research, and guideline and documentation related to
disaster management. The NIDM supports various national and state-level agencies and
plays a vital role in disaster prevention and preparedness. The NIDM published many
significant case studies/research, including disaster and annual reports every year, which
are very useful and available freely (https://nidm.gov.in/ (accessed on 17 November
2020)). However, the case study/research done by NIDM is goal-oriented and mainly
focused on event-based hazards (e.g., earthquake, flood, cyclone, and heatwave) in specific
areas. Since the number of tourists is increasing at many religious and tourist sites in the
Indian Himalayas, the government must enhance landslide early warning systems and
devices on a large scale beyond the pilgrim sites to keep its citizens informed and mitigate
damage from landslide hazards.

4.2.2. Landslide Susceptibility, Hazard Mapping, and Risk Assessment in India: Future
Directions

Based on the above-mentioned landslide hazards related to recent developments and
gaps in the Indian context, we discuss some opportunities for improvement related to
landslide inventory, susceptibility, hazard mapping, and risk assessment in the Indian
context, which are the following:

To improve landslide susceptibility or hazard mapping and risk assessment, the
multi-temporal landslide inventory and their accurate spatial distribution is necessary for
effective hazards mapping. The uses of low-resolution optical satellite images might be
challenging for the detection of landslide and types due to shadow and cloud cover prob-
lems in the high mountainous terrains like the Himalayas. In addition, the low-resolution
optical satellite image can lead to misclassification for the landslide identification, which
can yield biased results for landslide susceptibility or hazard mapping and risk assessment.
Therefore, the government organizations/institutions may use high-resolution Light Detec-
tion and Ranging (LiDAR) and Radio Detection and Ranging (RADAR) remote sensing
data to prepare the multi-temporal landslides inventory that occurred in non-forest and
forested land. Despite the fact that the long-term landslide inventory and types of landslide
data are still lacking in India, today there are useful machine learning techniques and
web-based geospatial platforms available to identify landslides, which can significantly
help to prepare the multi-temporal landslide inventory in high mountainous terrain due to
often limited access areas and in the data-scarce environment. Thus, landslide inventory
data can be derived through newly available machine learning techniques and web-based
geospatial platforms such as Google Earth®, BHUVAN, etc., where a low-resolution satellite
image might not be helpful due to cloud cover and shadow problems in high mountainous
terrain. Moreover, multi-temporal landslide inventory and type of landslide are impor-
tant to understand the short and long-term effects on natural environment by landslide
occurrence.

The efforts made towards landslide inventory, susceptibility, or hazard zonation and
risk assessment by government institutions/organizations are considerable. However, the
susceptibility or hazard mapping and risk assessment related methods, techniques, scale,
area of interest are varied from one another. In addition, the various input datasets related
to available methods are still limited, challenging, and restricted to acquire to some extent.
Taking into account the needs of different categories of users, the government needs to
develop more user-friendly landslide database and platform like BHUVAN. Moreover, it
should be noted that above all, mentioned organizations/institutions focus on different
types of hazards and their methodology approaches separately to tackle the disaster risk
in the Himalaya region and hilly areas in India. However, one hazard influences other
hazards. As a result, multiple hazards are affecting the same natural landscape with serious
environmental problems in the Himalayan region and hilly areas in India. Therefore, a
holistic approach through multiple hazards mapping and risk assessment could help for
disaster risk reduction in a more effective way. Although very few suggestions were made
so far by researchers.
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The development of an administrative level or small-scale mapping of landslide
susceptibility, hazard zonation, and risk assessment is required to implement risk man-
agement plans and effectively mitigate landslide hazards risk. However, most of the
landslide susceptibility, hazard zonation map is lacking at the administrative level such
as district, tehsil, block, and village level. Therefore, the researchers and government
organizations/institutions need an integrated interdisciplinary approach for disaster risk
reductions to understand the short and long-term effects of landslide occurrences and
to promote safe human activities, infrastructure development, and protect the natural
environment in landslide prone areas at different level.

Identifying hazard areas and risk assessment is vital to disaster risk reduction. A useful
tool/technique for monitoring landslide occurrences, mapping landslide susceptibility,
or hazards and risk assessment could help local governments to mitigate the associated
economic losses and protect the natural landscape. Therefore, it is critically important to
compare and determine the appropriate model for landslide inventory, susceptibility, or
hazard zonation mapping at the local/regional/national level.

Moreover, India is also committed to making all efforts by improving the entire disaster
management cycle to contribute to the global agreement towards disaster risk reduction by
following the Sendai Framework’s recommendations. In this regard, the National Disaster
Management Authority (NDMA) is the highest level of a government body for disaster
management in India. The NDMA plays a significant role by implementing disaster risk
mitigation and management-related policies, plans, and guidelines. There is no doubt
that significant progress has been made or under progress towards disaster risk reduction,
including landslide by the NDMA. However, many actions still need to consider and their
implementation on global, national, regional, and local levels based on four priorities
according to Sendai Framework (2015-2030).

5. Conclusions

The Himalayan region and hilly areas in India face severe challenges due to land-
slide occurrences. Therefore, landslide susceptibility mapping is a vital tool to identify
hazardous areas and an essential basis for promoting safe human occupations, infras-
tructure development, and landscape protection in this landslide-prone area. This study
demonstrated the significant combined use of BHUVAN and Google Earth® to prepare
multi-temporal landslides inventory (polygon data) to access landslide susceptibility map
in the data-scarce environment in the Rudraprayag district. Fourteen landslide causative
factors were considered based upon previous studies and ancillary information, fieldwork.
Then, we applied quantitative approach (bivariate statistical method), i.e., the WoE method
to avoid weight’s subjectivity to determine the causative factors that exist in the BIS and
APH methods. The WoE method achieved a prediction accuracy of 85.7%, indicating
good accuracy of the model. The study area gained importance due to the pilgrimage
site (Kedarnath temple) and wildlife sanctuary. Therefore, this landslide susceptibility
map of the Rudraprayag district could help the local authorities in land use planning,
landscape protection, and mitigate the risk from landslide hazards. The landslide related
database and research are still inadequate in rich biodiversity region like the Himalayas.
This hampers the further analysis of landslide hazard related assessment due to the lack of
multi-temporal landslide inventory, expensive high-resolution satellite images, and limited
landslide historical records in the Indian Himalayan region. Therefore, we provided a com-
prehensive review of recent developments, gaps, and future directions related to landslide
inventory, susceptibility mapping, and risk assessment in the Indian context. Thus, this
present research fulfills the research gaps taking the example of the Rudraprayag district, a
landslide-prone area in the Indian Himalayan Region.
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