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Abstract: This paper presents a new framework to classify floor plan elements and represent them
in a vector format. Unlike existing approaches using image-based learning frameworks as the first
step to segment the image pixels, we first convert the input floor plan image into vector data and
utilize a graph neural network. Our framework consists of three steps. (1) image pre-processing and
vectorization of the floor plan image; (2) region adjacency graph conversion; and (3) the graph neural
network on converted floor plan graphs. Our approach is able to capture different types of indoor
elements including basic elements, such as walls, doors, and symbols, as well as spatial elements,
such as rooms and corridors. In addition, the proposed method can also detect element shapes.
Experimental results show that our framework can classify indoor elements with an F1 score of 95%,
with scale and rotation invariance. Furthermore, we propose a new graph neural network model that
takes the distance between nodes into account, which is a valuable feature of spatial network data.

Keywords: floor plan analysis; vectorization; graph neural network; indoor spatial data

1. Introduction

A floor plan is a drawing that describes the overall layout of a specific level of a
building or a structure. There are different ways to format a floor plan, but all floor
plans have both structural indoor elements, such as walls, windows, doors, and stairs,
and spatial elements, like rooms and corridors, in common. Digitizing floor plans is
challenging, since, in most cases, they are basically images without explicit information
of any object. Therefore, feature extraction and analysis of indoor spatial data obtained
from floor plan images have been done by pre-processing the input image using image-
processing techniques and then applying statistical and analytical algorithms. Studies
with heuristic algorithms have resulted in high accuracy and precision; however, these
algorithms cannot be applied to different types of drawing styles due to the limitations
of being dependent on certain types of data [1–6]. To alleviate these limitations, various
machine learning-based approaches have been used in floor plan analysis. Among them,
Convolutional Neural Network-based approaches have been used the most, as they can be
applicable to many styles of floor-plan images. CNN-based approaches only require a basic
level of image pre-processing techniques and are robust to floor plan noise. In addition,
they can be applied to any style of drawing without the need for transformation, which
makes them efficient and versatile [7–10].

However, because these methods perform pixel-level segmentation, the exact shape
of indoor elements is hard to capture. To overcome this limitation, these approaches
have incorporated additional post-processing steps that abstract the output of the neural
network. This, however, results in feature loss of the original indoor elements, such as
how polygons are expressed as line vectors. For example, walls should have a thickness
and an area of their own; nonetheless, as the shapes get blurry as they pass through the
convolution layers, the walls are finally depicted as line vectors by the post-processing
algorithms [7,8]. Although abstracting a floor plan layout through machine learning-based
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models may be essential for specific user purposes, such as to express navigable areas in
IndoorGML format [11], vector outputs that keep the form of the original floor plan image
intact can be transformed into various objects depending on the user’s purpose, owing to
the high flexibility and deformation ability of the vector data type.

In this paper, we propose a framework that finds any kind of element in the floor
plan without losing the shape information. It first vectorizes the input floor plan image as
it is to maintain the shape of the original indoor elements and minimize the abstraction.
The polygon vector set is then converted into a region adjacency graph. The graph is
then fed to an inductive learning-based graph neural network (GNN), which is used
to compare multiple floor plan graphs and perform node classification by analyzing
inherent features and the relationships between the nodes. This allows the user to classify
basic indoor elements (e.g., walls, windows, doors, etc.) and symbols, together with
space elements (e.g., rooms, corridors, or outer spaces), without losing their shape and
arial features. Furthermore, a new GNN model, the Distance-Weighted Graph Neural
Network (DWGNN), is presented. In accordance with the first law of geography [12],
the neighboring nodes that are close to a target node should be given relatively high
attention values compared to the neighbors that are far apart from the target node. To do
so, we developed a GNN model that assigns attention values to the neighbors in a target
node’s neighboring subgraph. The DWGNN considers the distance information between
the nodes, expressed by edge features, in the spatial network (graph). To evaluate the
performance and expressiveness of the new proposed floor plan analysis framework, we
applied it to two floor plan datasets and one data-augmented dataset.

The remainder of the paper is structured as follows. In Section 2, we discuss the
limitations of previous researches related to floor plan analysis, particularly regarding
indoor element classification using rule-based methods and machine learning approaches.
In Section 3, based on the described limitations, we propose a framework for floor plan
element classification via GNN. Finally, we analyze the results on three datasets and discuss
issues and further research.

2. Related Works
2.1. Rule-Based Heuristic Methods and Machine Learning Algorithms in Floor Plan
Analysis Research

Detecting and classifying floor-plan basic elements or regions have been studied for
many years, with various approaches. Ruled-based heuristic approaches utilize methods
based on image processing, such as the morphological filtering [1,6], Hough transforma-
tion [2,4], text/graphic recognition [3,4], or using graph algorithms [5,13]. Although they
have showed meaningful outputs, rule-based heuristic approaches struggle to maintain
the shapes of elements, and can only be applied to specific drawing styles.

To avoid these style-dependent heuristics and take expressive generality among
various drawing styles, approaches using machine learning algorithms have emerged . De
las Heras et al. [7] utilized a machine learning algorithm to detect indoor elements, and
then converted the output into vector data. Citing the limitation that the existing rule-
based methods are ad hoc and only applicable to certain drawing styles, they presented an
automatic method that detected room boundaries in floor plans invariant to the style of
the drawings. They used a Support Vector Machine Bag of Visual Words (SVM-BOVW)
to detect the pixel boundaries of the structural elements, which included walls, doors,
and windows, and then created the vector data. In addition, the model recognizes room
boundaries in the floor plan by finding closed regions surrounded by vectors of structural
elements. Liu et al. [8] trained a CNN to detect the junctions, such as wall corners, in a floor
plan and applied integer programming to extract vector data by combining the junctions
to build simple primitives like walls and windows. In addition, they found spaces with
closed combinations of simple primitives. However, all of the elements were assumed
vertical and horizontal, thus failing to secure the shapes of the elements and resulting in
largely abstracted primitives, such as expressing the walls with line vectors. Dodge et al. [9]
used Fully Connected Networks (FCN) and Faster R-CNN to segment walls and detect
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objects, respectively, in floor plans with various drawing styles. They also used OCR to
be able to recognize the size of the rooms and to place furniture models scaled to the
scene. Zeng et al. [10] proposed a method that detects and classifies walls, doors, windows,
and rooms by training a VGG encoder-decoder. Unlike [8], their method is applicable to
non-rectangular shape elements and is able to obtain the shape features of indoor elements.
In addition, they used an attention mechanism for the decoder units. The two decoders
share the attention values to predict the boundary and the type of rooms. However, their
method is limited to only a few classes, which are used as a layout to help the decoder find
the room boundaries; these boundaries are ultimately placed under the same class.

Floor plan analysis using machine learning algorithms has shown great potential on
various floor plan datasets, but still, each approach has its own limitations and shortcom-
ings. Models trained on various input floor plan datasets may have great adaptability,
but their outputs may be blurry as they perform pixel-level segmentation. This creates
problems in the output, such as unconnected lines, which result in unclosed vectors. In
many cases, room detection and recognition depend heavily on structural elements in
the floor plan, such as walls, doors, and/or windows, and if these structural elements
have unclosed issues, they will considerably affect the room formation process. Because
elements may lose their shape information during the vectorization process [7,8], some
approaches omit this process in order to secure the shape features [9,10]. In addition, none
of the approaches that concentrated on detecting structural elements and space elements
considers symbolic elements, such as cabinets, baths, or toilets, among others.

2.2. Graph Neural Network (Gnn) and Floor Plan Analysis Using Gnn

A graph data structure consists of a finite set of nodes (vertices) and edges (links). A
node represents an entity, and an edge represents a relation between two nodes. Graphs
are often referred to as non-euclidean data structures, since they are not confined to
any particular dimension. Existing deep learning algorithms applied to euclidean data
structures have shown great performance. However, existing deep learning models are
unable to learn graphs because permutation between nodes can appear in various ways.
Accordingly, GNNs [14,15] have been devised to describe a way to express the order of the
nodes and allow the neural network to learn graph data structure.

In recent years, GNNs have undergone numerous variations of the basic definition.
Kipf et al. [16] introduced the graph convolution networks (GCN) to utilize the convolution
operation on graphs by updating the nodes’ latent vector using a normalized Laplacian
matrix as an adjacency matrix of the input graph. Hamilton et al. [17] proposed Graph-
SAGE and showed that the results of the latent vector of outcome differs with various
AGGREGATE functions, and applied this notion to perform inductive learning to train the
model with, not a single, but multiple graphs. Xu et al. [18] found that GNN models cannot
be properly trained, and introduced a new model, the graph isomorphism network (GIN),
that can perform as much as the WL test, which is an isomorphism test for graph structure.
They also classified graph-related tasks that can be appropriately applied according to the
AGGREGATE methods.

A GNN can analyze various real-world problems. Due to their inherent characteristics,
they can be represented as a graph, and GNN would take them as input to analyze and
predict. A floor plan can also be converted into a graph by treating cell regions as nodes
and constructing an adjacency matrix based on the adjacency among the regions of the
floor plan. Various graph algorithms and analyses have been applied to floor plan graphs.
In particular, floor plan graphs have been extensively used in the field of floor plan design
research, which has recently studied different methodologies using GNN. For example,
an automated generation framework for floor plan design using GNNs was proposed by
Hu et al. [19]. When it comes to detecting and classifying the indoor symbols or elements,
Renton et al. [20] applied GNN to classify symbols in the floor plan. They pre-processed
floor plan images and considered the centroids of regions surrounded by black pixels as
nodes. A region adjacency graph is then constructed by connecting the nodes that share a
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pixel line. Then, the floor plan graph is fed into a GNN model as the input graph and a
graph is obtained where the nodes were classified according to their local dependencies.
This study is the first to use GNN to classify symbols in floor plan images. However, it only
targeted symbols and objects, excluding walls and rooms, which are the most important
elements of floor plan images. In addition, the final output of the approach is limited to
graphs that represent only the symbol classes and are not converted into vector-format
output for utilization.

3. Materials and Methods

To overcome the limitations described in the previous studies on floor plan element
extraction and classification tasks, the following requirements were defined.

1. The framework must detect and classify space elements, such as rooms, together with
basic elements (walls, doors, etc.) and symbols.

2. The framework must start with raster data and output vector data maintaining shape
without abstraction.

3. The framework must perform inductive learning by separating a set of graphs of
various types and sizes into graph units, rather than transductive learning that deals
with a single large graph.

To meet these requirements, developing and extending the ideas used in [20], we
propose a new framework as follows. The raster floor plan image is fed to the framework
as the input data. The image is first pre-processed in order to obtain a binarized image to
be vectorized. The closed regions in the image become polygons after the vectorization
process. The polygons with shape features are then converted into a region adjacency
graph (RAG) according to their adjacent relationship with neighboring polygons. The
RAG is then fed into the neural network to train the GNN model. The final output of
the framework is a set of polygons with different classes. The overview of the proposed
framework is shown in Figure 1.

Figure 1. Overview of the proposed framework. The input floor plan image is pre-processed to erase texts and get binarized.
The processed image is then vectorized depending on its closed regions and converted to an RAG. The floor plan graph is
input to a GNN module in order to classify each polygon according to its and the neighbors’ feature vectors.

3.1. Image Pre-Processing and Vectorization

The pre-processing phase may vary depending on the layout style of the floor plans,
but most consist of text removal and binarization. The three channels of the input floor
plan image (Red, Blue, and Green) are merged into a single channel and binarized. The text
information is removed using the OCR algorithm. The processed image is then vectorized.
De [6] assumed that only walls are depicted as thick black lines in a floor plan layout;
therefore, thick and thin lines can be distinguished using a morphological transformation,
and thick lines can be considered as walls. However, this approach can only be applied to
specific floor plan styles, as in many cases, walls could be represented as white areas. To
vectorize the image regardless of the floor plan drawing style, we chose to vectorize the
white and black areas separately.



ISPRS Int. J. Geo-Inf. 2021, 10, 97 5 of 17

The detailed process is described as follows. A closed area surrounded by black pixels
in the image becomes a polygon object. Likewise, a set of polygons is generated from all the
closed white areas in the plan (Figure 2c). If the floor plan layout contains black areas, the
empty polygon with the size of the floor plan (Figure 2b) does the difference operation on
the white polygon set. This creates a second set of polygons that represent the black areas
in the floor plan (Figure 2d). Since we binarized the image, there are only two colors in the
image, which make it possible to turn every area in the image into a polygon regardless
of the drawing or layout style. Lastly, the two polygon sets get merged, and the complete
set of polygons is generated (Figure 2e). During this process, the regions occupied by the
pixel lines that surround the polygons will not be included in the polygons. Therefore, the
polygons will be buffered by the thickness of the pixel line before executing the difference
operation (Figure 2f). Buffering the polygon is crucial because, if the polygons are separated
from one another, the adjacency operation will return false when constructing the adjacency
graph. Taking the thickness of the pixel line t, the buffering distance parameter is selected
as t/2, as each pixel line has to be covered by two polygons from two directions.

Figure 2. Overview of the vectorization process. The white areas in (a) are vectorized and buffered according to the thickness of the
pixel lines surrounding them (c). The black areas are converted into polygons (d), which are generated by the difference operation
between (b,c). Finally, the complete polygon set (e) is generated by merging the two polygon sets. (f) describes the detailed process of
polygon buffering (the frame color of each step shows the respective small square in the process in detail).

3.2. Region Adjacency Graph (Rag) Conversion and Feature Extraction

Algorithm 1 describes the RAG conversion process. First, an empty graph G is created,
and for each polygon element p in the polygon set P, the polygon centroid of p (vp) is
added as a node. To construct the edge set of G, p executes an INTERSECTS operation on
another polygon q ∈ P, q 6= p. With the rest of the polygon elements in P, p would need to
execute the INTERSECTS operation |P| − 1 times, and the number of iterations for P would
increase exponentially with the number of nodes. To reduce the number of iterations and
the complexity, instead of two nested loops, we used an STRtree [21], which is a spatial
indexing algorithm based on an R-tree. The tree returns a resulting polygon set Q when p
queries the INTERSECTS of the other spatial objects. If a polygon element q is in Q and q’s
area is bigger than the minimum area parameter m, the edge between vp and vq is added to
the edge set E. By using the STRtree, the time complexity of the RAG conversion process
is reduced from O(n2) to O(n logm n). n is the number of polygons (nodes) and m is the
number of entries in the tree.
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Algorithm 1: RAG conversion
input :A polygon set P, a minimum area parameter m
output :A floor plan graph G

// Create a graph with adding polygon nodes
1 G ← Graph()
2 for p ∈ P do
3 vp ← p.centroid
4 G.addNode(vp)

// Build STRtree with the polygon set
5 tree← STRtree(P)
6 for p ∈ P do

// Query intersects function with polygon p
7 Q← tree.INTERSECTS(p)
8 for q ∈ Q do
9 if q 6= p and q.area > m then

10 G.addEdge(vp, vq)

11 return G

The constructed graph G = (V , E) consists of the node set V and the edge set E , which
represent the adjacent relationship among nodes in the floor plan layout. A polygon node
vp is recognized as the centroid of p and has its own unique feature vector xvp ∈ Xv. Xv
is the feature matrix of G whose size is the number of V and the dimension of the node
feature vector dv. epq is an element of the edge set E, which represents how the polygon
nodes vp and vq are connected to each other. An edge also has its own feature vector
xepq ∈ Xe. Each edge feature vector has de features. If de = 1, we consider the edge feature
as the weight value between two nodes. The constructed RAG G is described as follows:

G = (V , E , Xv, Xe). (1)

In the framework, we used four features for Xv and a single feature for Xe (a weight
value). A node feature vector for node vp (xvp ∈ Xv) consists of the area of p, the degree of
the node, the normalized central moment of order 1 and 1 for the polygon, and the Zernike
moment [22] of order 4 and repetition 2 (xvp ∈ R4). The two used moments are scale- and
rotation-invariant. The edge feature vector xepq ∈ Xe consists of the euclidean distance
between its two nodes (vp, vq). Edge features are considered as weights of G since the edge
feature dimension parameter de = 1. The polygon set P and the RAG G are constructed for
each floor plan layout in the datasets. In the following section, we will describe various
GNN models to classify the classes of polygons in P using G.

3.3. Graph Neural Network Models

A GNN performs a prediction on various tasks, such as node classification, edge
prediction, and graph classification. Like other deep learning models, it extracts a unique
embedding vector of each entity in the target dataset and compares its similarity to other
embedding vectors to predict a result as close as possible to the label data. The domain
of interest of GNN varies, including nodes, edges, graphs, and subgraphs [23]. The GNN
takes the adjacency matrix A and the feature matrix X of the target graph as input. A
represents the relationship between the nodes, and X holds the feature vector for each
node in the target graph. If features are found on the edges, they can be added to the value
for A or taken as a separate edge feature matrix.

GNN has multiple layers, and each layer consists of the AGGREGATE and UPDATE
functions. The AGGREGATE function aggregates information coming from the neigh-
boring nodes and returns a message. The UPDATE function combines the target node’s
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embedding vector and the message to update the new latent embedding vector of the
target node. This process is called message passing. The forward-propagation process of a
vanilla GNN model for generating the new embedding vector of node v at layer k can be as
follows [24]:

hk
N (v) = AGGREGATEk({hk−1

u , ∀u ∈N (v)}
)

hk
v = UPDATEk

(
hk−1

v , hk
N (v)

)
,

(2)

where N (v) is the set of neighboring nodes of v and hk−1
u is the latent embedding vector

of u ∈ N (v) at layer k− 1. AGGREGATEk aggregates the embedding vectors to return
the message mk

N (v). UPDATEk takes mk
N (v) with hk−1

v , which is the embedding vector
of node v at layer k− 1 as input and generates the embedding vector of node v at layer
k. Both AGGREGATEk and UPDATEk are arbitrary differentiable functions at layer k
(i.e., neural networks). These two functions can be defined in various ways depending
on the task the model wants to solve. The definition of the AGGREGATE function allows
neighboring nodes to determine how they will affect the target node, and the UPDATE
function determines how to combine the message and target node’s embedding vector of
the previous layer, and how the embedding vector is generated.

Our goal is to classify the polygon nodes by extracting the latent embedding vectors
for each node in the floor plan graph, which is categorized as a node classification task.
The performance of a GNN model for node classification highly depends on the structure
of its network, not only regarding the functions used for AGGREGATE and UPDATE, but
also regarding the number of layers. As the number of layers increases, the wider the
neighborhood node information is included. This is similar to the receptive field of a target
pixel in a CNN; as the number of layers increases, the receptive field widens.

3.3.1. A GNN Variant for Inductive Learning on Graphs

Most of the GNN models target one large graph, such as a social network, focused
on generating embedding nodes from a single fixed graph. However, from a real-world
application point of view, a GNN model that generates embedding vectors for unseen
nodes, or entirely new graphs, is needed [17]. Figure 3 explains the difference between
transductive learning and inductive learning in graphs. Our study also required the
inductive learning GNN model as the floor plan datasets mostly consist of various floor
plans, and each floor plan is converted into a unique graph. Inductive learning enables
prediction on these completely unseen graphs. We trained the inductive learning-based
GNN model on the floor plan graphs of the training set, and the model predicted the
classes of the nodes in the test-set floor-plan graphs.

Many existing spatial-based GNN models are transductive learning-based GNN
models [16,18], while GraphSAGE [17] is based on inductive learning. GraphSAGE is
a general inductive framework for generating latent embedding vectors of completely
unseen nodes. In the GraphSAGE model, which consists of K layers, the algorithm for
generating an embedding vector of node v at layer k is as follows:

hk
N (v) = AGGREGATEk({hk−1

u , ∀u ∈ N (v)}
)

hk
v = σ

(
Wk ·CONCAT(hk−1

v , hk
N (v))

)
,

(3)

where Wk is a weight parameter matrix to be trained and σ is a non-linear activation
function (e.g., sigmoid function). The UPDATE function in GraphSAGE is a concatenation
function multiplied with the weight matrix.

The initial vector for node v is the input node feature vector, and, as the number of
layers increase, the embedding vector of node v holds the information coming from farther
neighbors. This means that, if k = 0, h0

v is xv ∈ Xv, and hK
v aggregates all the information

of the neighbors within K-hops from v in the graph. Hamilton et al. [17] showed the
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difference of performance among various AGGREGATE functions. For the AGGREGATE
function, they used the MEAN operator (similar to GCN [16]), an LSTM layer, and a POOL
function based on the MAX operator with a weight matrix parameter. Unlike others, LSTM
is not permutation-invariant, but shows strong performance and expressiveness as it trains
additional neural networks [17].

Figure 3. Node classification on a transductive learning GNN method (a) and on an inductive
learning GNN method (b). In the transductive learning method, (a) the model is trained by accessing
all the nodes and edges in order to predict the class of nodes in the test set (denoted by question
marks). In the inductive learning method (b), on the other hand, the set of graphs is split into training
and test set, and the test set is predicted with a GNN model trained on a set of training graphs.

3.3.2. A GNN Model to Utilize Distance Weight Feature

A graph describing a real-world example may not only have node features, but also
edge features. In spatial networks, the distance between two nodes can be expressed as an
edge feature or the weight value of the graph [25]. The edge weight values are an important
feature in that they describe the relationship between nodes in a spatial graph. Under the
first law of geography, neighboring nodes that are close to a target node should be given
relatively high attention values compared to the other neighbors that are far apart from the
target node [12].

However, most of the existing GNN models do not leverage the edge feature in their
networks. Studies that have utilized the edge feature in node and graph classification tasks
have focused on multi-dimensional features, not single-dimension features like weight
values in spatial networks [26,27]. Glimmer et al. [26] proposed a model utilizing edge
features in the message-passing process. However, their model is too general, since the
message function Mt is not a specific method and could be any function. A GNN model that
can handle spatial networks consisting of nodes and distance weights is thereby needed.

We propose a new inductive learning-based GNN model named the Distance-Weighted
Graph Neural Network (DWGNN). DWGNN is a GraphSAGE-based model in which an
edge feature mechanism is applied in the message-passing process. Its target graph rep-
resents a spatial network where the distance between nodes is a one-dimensional weight
value. When DWGNN aggregates the neighbor’s information, it assigns the attention
values to neighboring nodes’ embedding vectors according to the relative distance from
the target node. The update process of DWGNN is as follows.

hk
N (v) = AGGREGATEk

(
Wk

0 · (hk−1
u � softmin(eN (v))u), ∀u ∈ N (v)

)
hk

v = σ
(

Wk
1 · (hk−1

v + hk
N (v))

)
,

(4)
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where eN (v) is the distance weight vector of node v and its neighboring node set N (v) and
� denotes element-wise multiplication. Softmin is a function that converts every element
of eN (v) into an attention value. It is defined as follows,

softmin(xi) =
exp(−xi)

∑j exp(−xj)
. (5)

Similar to the softmax function, which converts each element of the input vector to a
value between [0, 1] and the sum of all converted values is equal to 1 such as a probability
value, the softmin function returns a normalized vector where each element gets a larger
attention value if its weight value is relatively smaller than others. This assigns nearby
neighboring nodes a larger attention value compared to those far apart. In addition, similar
to GraphSAGE, the AGGREGATE function of DWGNN can be chosen between various
functions, such as SUM, MEAN, MAX, and LSTM. The update process of DWGNN is
shown in Figure 4. If the weights play a significant role in a spatial network, DWGNN can
be an appropriate GNN model to analyze such graphs.

Figure 4. Visual illustration of the update process of node v (a door segment). The softmin function assigns respective
attention values to each neighbor of v according to their distance to v (euiv). Each node’s embedding vector at layer k− 1
is element-wise multiplied with a respective attention value. They pass through a weight matrix W0 and aggregated to a
message. This message is added to v’s embedding vector at layer k− 1 and multiplied with the weight matrix W1. The
result is the embedding vector of node v at layer k. In the Figure, aN (v) is the converted attention vector and AGG is the
AGGREGATE function.

4. Results
4.1. Datasets

To test and evaluate the proposed framework, we conducted experiments on two
different floor plan benchmarks, together with one data-augmented dataset. We did not use
the floor plan datasets which had been used in previous works, since their raster images
had a lot of noise and/or the resolution was too low (e.g., R2V [8], RF-P [9]) or unable to be
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obtained (ILPIso [20]). We will discuss applicability issues in detail in Section 5. In what
follows, we will address two different floor plan datasets we used in the experiments. Both
datasets consist of basic structural classes and spatial element classes together with the
object class. Object class is comprised of various furniture and installations placed in an
indoor environment, such as cabinets, chairs, or toilets. Any other object not in a structural
or spatial category will be assigned to the object class.

The CubiCasa5K [28] (CubiCasa) dataset consists of 5000 different apartment floor
plans. The quality of the floor plan images varies from clean, noise-free ones to scribbled or
noisy ones. They are divided into three categories: high quality, architectural high quality,
and colorful. We used the SVG formatted labeled floor plan images hand-annotated by
experts as input data, by converting them into raster image data. After we vectorized the
polygons, we classified the polygons into eight classes: four structural element classes
(walls, windows, doors, and stairs), three spatial element classes (rooms, porches, and
outer-space), and the object class comprised of various symbols. We selected the 400
high-quality floor plan images and split them evenly into training and test sets.

The University of Seoul (UOS) dataset containing plans for seven floors of the 21st
century building at the University of Seoul, was used to evaluate whether the framework
is applicable to large-area floor plan data along with relatively small ones, such as Cubi-
Casa5K. We exported the CAD floor plan data into raster data. We classified the elements
of vector plans into nine classes: five structural element classes (including elevators), three
spatial element classes (rooms, corridors, and X-rooms), and the object class. Though the
number of plans is limited because of security issues, if the framework is able to generalize
and classify the indoor elements in UOS, we can say that the framework works well with a
smaller number of floor plans. We used a seven-fold cross-validation strategy. Each session
consisted of six training plans and one plan for the test. The final result was averaged by
all seven sessions.

4.2. GNN Models

We implemented four GNN models for performance comparison. We conducted
inductive learning experiments under the same conditions and settings. The following are
the used GNN models.

1. GCN [16]: Graph Convolution Networks aggregate the neighbor nodes of the target

node using a symmetric normalized graph Laplacian D̃−
1
2 ÃD̃−

1
2 made with a self-

loop adjacency graph Ã = A + I and a diagonal degree matrix D̃ = ∑j Ãij. The
embedding vectors of the target nodes are generated by summing the information
of neighboring nodes and projecting onto a weight matrix. The update process of
GCN is

hk
v = σ

(
Wk−1 · ∑

u∈N (v)

1
cvu

hk−1
u
)
, (6)

where cvu is a normalization constant for the edge (v, u) originating from D̃−
1
2 ÃD̃−

1
2 .

2. GIN [18]: A Graph Isomorphism Network was proposed to maximize the discrimina-
tive and representational power of each node in a graph. It shows almost the same
performance as the Weisfeiler–Lehman graph isomorphism test [29]. We used MAX,
MEAN, and SUM operations as the AGGREGATE function in our experiments. The
update process of GIN is

hk
v = σ

(
MLPk

(
(1 + εk) · hk−1

v + AGGREGATE
(
hk−1

u , u ∈ N (v)
)))

, (7)

where MLPk is a multi-layer perceptron placed at layer k to maximize the discrimi-
native power of the generated embedding vectors. Along with MLPs, εk is a scalar
parameter at layer k to be trained. We fixed εk = 0.
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3. GraphSAGE [17]: We used the same model as introduced in Section 3.3.1 MEAN was
excluded from the experiment because it does not differ much from the propagation
rule of GCN. When using the POOL aggregator, a weight matrix was added prior to
the MAX operation to increase the expressive power of the message function. The
POOL aggregator is defined as follows:

AGGREGATEpool
k = max

(
{σ(Wk

poolh
k
u + b), ∀u ∈ N (v)}

)
. (8)

4. DWGNN: The model developed by the authors and introduced in Section 3.3.2 was
implemented. MAX, MEAN, SUM, and LSTM were used for the AGGREGATE
function in our experiment.

4.3. Implementation Details

In our experiment, each floor plan image of the datasets was vectorized and labeled
according to the class conditions described earlier. The parameters used in the vectorization
process were the minimum area parameter m as 20 and t as 2. All the node and edge features
in the graphs were scaled using the standardization technique. To train the GNN models,
we used the Adam optimizer with an initial learning rate of 0.01. Batch normalization [30]
was applied to every hidden layer for CubiCasa. The number of hidden layers was six for
every GNN model, and the MLPs had two layers for the GIN [31]. The hyper-parameters
for experiments were: (1) The number of hidden dimensions for the hidden layers was
fixed to 128; (2) for CubiCasa, mini-batches of 10 graphs were set for each iteration and no
mini-batches were set for UOS, as we used cross-validation strategy for it; (3) the number
of epochs was set to 1000 for all GNN models except inductive learning-based models with
a LSTM aggregator (set to 300). Since the LSTM has more parameters to train, the epochs
of the inductive learning-based models with a LSTM aggregator was set lower than that of
other models.

The hardware characteristics used for the experiments were an Intel i7-9700KF CPU,
an NVIDIA GeForce GTX 1660 Ti GPU, and 64 Gb of RAM. For the code implementation,
we used the Rasterio package for vectorization and the Shapely, GeoPandas, NetworkX
packages for the creation and management of polygon vectors and graphs. GNN models
were built using the Deep Graph Library [32] with PyTorch backend. The code is available
at https://github.com/LymanSong/FP_GNN (accessed on 22 February 2021).

4.4. Experiment on the Cubicasa Dataset

Table 1 shows the results of the predicted classes of elements in the CubiCasa test set
using different GNN models and aggregate methods. Among the GNN models, Graph-
SAGE showed the highest accuracy. In addition, the LSTM aggregate method showed the
highest results.

The accuracy for stairs was relatively low in all models. This is because, given that
stairs are depicted as a set of rectangular polygons, rectangles often appear in different
elements’ classes. In addition, stair polygons with different shapes share one single class,
and the number of plans including stairs is significantly lower. On the other hand, windows
and doors have high accuracy rates, apparently because each of them share a highly defined
structure shape in the drawing style of CubiCasa.

We can find that, compared to the transductive learning-based models (GCN and
GIN), the inductive learning-based models (GraphSAGE and DWGNN) performed well
on recognizing spatial elements. In Table 1, DWGNN with the SUM method slightly
underperformed compared to GIN with the SUM method, but in the case of spatial elements
(rooms, porches, and outer spaces) it classified better than GIN with SUM. If we divide
the element classes into two classes (spatial and non-spatial) the inductive learning-based
models found the spatial classes much better than the transductive learning-based models
did. This means that inductive models can generalize the characteristics of classes well and

https://github.com/LymanSong/FP_GNN
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easily find the dominant features on unseen data, such as predicting whether it is spatial or
non-spatial by looking at the area attribute.

Table 1. Class-wise accuracy comparison by different GNN models on the CubiCasa dataset (micro-averaged F1 score).
AGG stands for the AGGREGATE method.

GNN Model AGG Objects Wall Window Door Stair Room Porch Outer Space Overall

GIN MEAN 0.9001 0.8009 0.9176 0.8029 0.5453 0.8092 0.6719 0.7879 0.8577
GCN · 0.9113 0.8118 0.9142 0.8154 0.5398 0.8325 0.54 0.7453 0.8658
GIN MAX 0.9241 0.8842 0.9454 0.8816 0.5968 0.8833 0.75 0.7849 0.9025

DWGNN MEAN 0.9392 0.8485 0.9367 0.8942 0.7653 0.903 0.6982 0.9038 0.9137
DWGNN MAX 0.9429 0.8571 0.9456 0.898 0.7854 0.9133 0.7215 0.9048 0.9201
DWGNN SUM 0.9441 0.8648 0.9428 0.9054 0.7612 0.9164 0.7268 0.9119 0.9214

GIN SUM 0.9445 0.8991 0.9783 0.9063 0.6572 0.9067 0.7352 0.8664 0.9283
DWGNN LSTM 0.9597 0.9224 0.971 0.94 0.7913 0.9313 0.7849 0.9233 0.9471

GraphSAGE POOL 0.9586 0.9157 0.9765 0.941 0.7675 0.9377 0.8449 0.9289 0.9478
GraphSAGE LSTM 0.9708 0.9466 0.9896 0.9557 0.8341 0.9617 0.8832 0.9625 0.9651

Figure 5 shows the results of visualizing examples of floor plans analyzed through
the proposed framework. The framework first vectorizes the input images and converts
them into RAGs. The trained GNN models then take these graphs as inputs and extract
features to predict the classes of polygons. Compared to the ground truths, inductive
learning-based models can classify the basic classes and spatial elements well. On the other
hand, the transductive learning-based models fail to predict some basic and spatial element
classes. In particular, GCN and GIN were unable to find the doors and walls correctly. As
stated earlier, all models classified the stairs incorrectly.

Figure 5. Examples of input image (a) and ground truth (b), and visual comparison of indoor element classification results
by GNN models for transductive learning (c,d) and inductive learning models (e,f). The element class “outer space” is
erased for visibility.

4.5. Experiment on Large and Complicated Floor Plans: Uos and Uos-Aug

Small-area floor plans have fewer polygons and their RAGs have a relatively simple
structure compared to large and complex buildings. We conducted experiments on large
and complicated floor plans to test our framework. The floor plans of the UOS dataset
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were large and complicated, thus resulting in many polygons with complex relationships.
The number of floor plans in the UOS dataset was seven, so we used a seven-fold cross-
validation strategy. Each session consisted of six plans for training and one for testing.
Table 2 shows the results of the experiment on the UOS dataset.

Table 2. Class-wise accuracy comparison on different GNN models on the UOS data set.

GNN Model AGG Objects Wall Window Door Stair Lift Room Hallway X-Room Overall

GCN · 0.7286 0.6829 0.6286 0.6314 0.7643 0.8043 0.56 0.4143 0.4357 0.6843
GIN MEAN 0.7014 0.7614 0.5629 0.67 0.7957 0.7071 0.4886 0.3643 0.4729 0.71
GIN MAX 0.7529 0.7857 0.7114 0.73 0.7186 0.4686 0.5671 0.49 0.4743 0.7457
GIN SUM 0.8014 0.87 0.84 0.7914 0.7786 0.7414 0.6757 0.65 0.5086 0.8329

GraphSAGE POOL 0.8371 0.87 0.8357 0.7971 0.8514 0.6714 0.7571 0.6214 0.5614 0.8429
DWGNN MEAN 0.8626 0.8879 0.8526 0.8256 0.8857 0.6525 0.8382 0.7712 0.6686 0.8658
DWGNN SUM 0.8633 0.8916 0.8684 0.8274 0.9103 0.8454 0.8067 0.8087 0.7142 0.8764
DWGNN MAX 0.8644 0.8943 0.861 0.8165 0.9191 0.7323 0.8293 0.8155 0.7353 0.8765
DWGNN LSTM 0.8665 0.9178 0.923 0.8661 0.9457 0.7875 0.8406 0.8385 0.7765 0.9072

GraphSAGE LSTM 0.908 0.9308 0.9152 0.8847 0.9318 0.9206 0.8599 0.7951 0.8255 0.9184

The overall accuracy score was lower than that of the CubiCasa dataset. The spatial
element class underperformed compared to the CubiCasa dataset since non-spatial classes
in the UOS dataset had large doors and lifts, whose area was large and could be added to
the spatial class. Like the CubiCasa dataset, transductive learning-based models underper-
formed compared to the inductive learning-based models. Unlike the previous experiment,
GraphSAGE with the LSTM aggregator was not ranked first place in every element class,
and for stairs and hallways, DWGNN did better than GraphSAGE with LSTM (see Table 2).
This is because the shapes of stair elements are more defined compared to that of CubiCasa,
and DWGNN could generalize the structured set of polygons and find the patterns of their
formation better than GraphSAGE. For the hallways, they tend to be linked to many other
elements with respective distances, and thus make DWGNN easy to generalize regarding the
characteristics of hallways by taking the attention values into account (shown in Figure 6).

Figure 6. Visualized results of classification on UOS dataset.

As the number of plans in the UOS dataset was limited, the generalization of the
characteristics of classes was difficult. If a GNN model has a node that has never been seen
before, the node will not only affect itself, but also the neighboring nodes up to K hops
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away. This occurs because GNN aggregates the feature of a much wider range of nodes
as the number of layers increases. In addition, the GNN model may simply memorize
the training dataset as the number of plans is limited. To alleviate these problems, we
augmented the UOS dataset using an affine transformation. For all points in the set of
floor plan polygons, a point was scaled about the origin with a scale factor of 0.7, then
flipped over the y-axis. After that, we rotated the polygons 90 degrees counterclockwise
(see Figure 7). The transformation formula is as follows.x′

y′

1

 =

cos 90◦ − sin 90◦ 0
sin 90◦ cos 90◦ 0

0 0 1

0.7 0 0
0 −0.7 0
0 0 1

x
y
1

 (9)

Figure 7. Example of data augmentation. The original plan (a) gets transformed by Equation (9), and
returns an augmented plan (b).

We formed a new dataset UOS-aug consisting of the seven augmented plans with the
original plans from UOS. Because classification performance was improved through data
augmentation, we can derive that the results of the GNN model are invariant to scale and
rotation. In addition, this proves that the GNN model learns a pattern of updating the
embedding vectors of that node in relationship with the neighbors of each node, rather
than memorizing the structure of the drawing. The results are shown in Table 3.

Table 3. Class-wise accuracy comparison on different GNN models on the UOS-aug data set.

GNN Model AGG Objects Wall Window Door Stair Lift Room Hallway X-Room Overall

GCN · 0.8812 0.7898 0.7295 0.7565 0.8516 0.9243 0.6508 0.6619 0.6255 0.7822
GIN MEAN 0.886 0.8865 0.8656 0.8208 0.95 0.8406 0.7603 0.5446 0.8215 0.8752
GIN MAX 0.9014 0.9373 0.9094 0.906 0.9706 0.9348 0.9026 0.8734 0.8822 0.925

DWGNN MEAN 0.9334 0.9516 0.9472 0.9092 0.9705 0.9405 0.9289 0.8598 0.8862 0.9446
DWGNN SUM 0.9602 0.9608 0.9511 0.9301 0.9728 0.9311 0.9469 0.9088 0.8966 0.955
DWGNN MAX 0.9612 0.9683 0.9588 0.9398 0.9803 0.9659 0.9531 0.9208 0.9189 0.9628

GIN SUM 0.964 0.9731 0.9679 0.9286 0.9766 0.9531 0.9661 0.9358 0.9004 0.9658
GraphSAGE POOL 0.9696 0.9727 0.9689 0.9485 0.974 0.9617 0.9459 0.8946 0.933 0.9681

DWGNN LSTM 0.9627 0.978 0.9733 0.9474 0.9848 0.9507 0.9488 0.9401 0.9478 0.9716
GraphSAGE LSTM 0.9762 0.9827 0.9802 0.9646 0.9796 0.9869 0.9553 0.9124 0.9747 0.9788

The results improved compared to Table 2. Though the augmented plans have gone
through many changes, they worked in a complementary manner with the original plans,
which means that the GNN models are invariant to scale and rotation. This proves that the
GNN models classify their nodes using the relationship and patterns among nodes and
features within each graph, not the formation and arrangement of nodes.
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5. Discussion

The contributions of our work are as follows. First, we developed a raster to vector-
ization process for floor plan images independent of the drawing style. With appropriate
image pre-processing methods, it can convert any type of floor plan image into polygon
vector data. By vectorizing the floor plan image before pixel segmentation, we were able
to capture not only structural elements, but symbols and spatial elements without losing
shape information. Second, to classify the polygons, we employed the Graph Neural
Network approach. The GNN models are invariant to scale and rotation since GNN takes
input as a graph, and the graph data structure has no fixed permutation of nodes. Utilizing
GNN makes the framework robust and easy to generalize floor plan datasets of any style.
Third, we defined the need for inductive learning GNN models for floor plan element
classification tasks and, among many GNN models, we chose an appropriate one (Graph-
SAGE). Further, we developed a new GNN model taking the distance weight value into
account in the message passing process using the softmin function.

While the results showed that our framework can detect and classify multi-labeled
floor plan elements, a few limitations were derived as follows. The features currently
used in the feature matrix of polygons are significant, but if we use additional feature
information that fully describes individual polygons among different types of floor plan
elements, it would be possible to do additional classification. The proposed framework
outputs the result in a vector format, which facilitates its use in additional research or
real-world applications. For example, Zeng et al. [10] demonstrated the 3D models of the
results from their method, and the output of the proposed framework is already vector-type
data, making it even easier for 3D modeling.

Unlike CNN-based models, which are robust to noisy images, the application of the
proposed framework to noisy or low-resolution images is difficult. Especially in the image
pre-processing phase, the output is highly dependent on the noise and the resolution.
For example, if the pixel values of the symbol are uneven due to low resolution, doors
tend to lose the exact arc line and fail to get converted into a polygon. To overcome these
limitations, an image generation model can be applied and used in the pre-processing
step. However, due to the nature of the generative model, it is difficult to expect detailed
improvement at the pixel level. In addition, our framework does not utilize text information
in the image, thus rendering impossible the use of semantic information, that explicitly
indicates the nature of each object.

In most experiments, the DWGNN showed slightly lower accuracy than GraphSAGE.
It is because, on the RAG conversion stage, the node of the graph corresponds to the
centroids of the polygons and the weight value is calculated between the coordinates of the
pair of nodes, thus preventing them from holding the shape information of the polygons.
Especially for walls or outer space, most of the node coordinates that represent polygons
are often situated where the actual polygon is not located. To alleviate this, DWGNN uses
the softmin function to assign the attention values; however, the meaningless edge features
still prevent the model from being trained and predicting the classes correctly. With the
nature of DWGNN, we think that it can be an appropriate model for solving combinatorial
optimization problems in spatial networks, such as the traveling salesman problem or
vehicular routing problems, rather than for graphs with polygon nodes.

6. Conclusions

This paper presents a new framework for extracting and classifying the elements in a
floor plan. Unlike previous approaches that first segment the floor plan image, our method
vectorizes the floor plan images and converts the polygon set into an RAG. The model then
employs a GNN to classify the nodes in the graph according to their unique features and
neighborhood relationship. Inductive learning was conducted on the floor plan graphs
in order to predict completely unseen graphs. Our framework classifies not only basic
element and symbol classes but also spatial elements such as rooms, with resulting vector
format outputs to minimize the abstraction and loss of shape information. To evaluate the
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performance of the proposed framework, we performed experiments on two floor plan
datasets with different areas and distributions and one data augmented dataset. Results
showed high accuracy rate on the classification task with the expressive power of the final
output. By comparing various GNN models, we also found that inductive learning-based
GNN models outperform transductive learning-based models. As further research, we
will find a way to handle low-resolution floor plan images and improve the classification
performance by extracting additional features.
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