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Abstract: People spend more than 80% of their time in indoor spaces, such as shopping malls and
office buildings. Indoor trajectories collected by indoor positioning devices, such as WiFi and Blue-
tooth devices, can reflect human movement behaviors in indoor spaces. Insightful indoor movement
patterns can be discovered from indoor trajectories using various clustering methods. These methods
are based on a measure that reflects the degree of similarity between indoor trajectories. Researchers
have proposed many trajectory similarity measures. However, existing trajectory similarity measures
ignore the indoor movement constraints imposed by the indoor space and the characteristics of
indoor positioning sensors, which leads to an inaccurate measure of indoor trajectory similarity. Ad-
ditionally, most of these works focus on the spatial and temporal dimensions of trajectories and pay
less attention to indoor semantic information. Integrating indoor semantic information such as the
indoor point of interest into the indoor trajectory similarity measurement is beneficial to discovering
pedestrians having similar intentions. In this paper, we propose an accurate and reasonable indoor
trajectory similarity measure called the indoor semantic trajectory similarity measure (ISTSM), which
considers the features of indoor trajectories and indoor semantic information simultaneously. The
ISTSM is modified from the edit distance that is a measure of the distance between string sequences.
The key component of the ISTSM is an indoor navigation graph that is transformed from an indoor
floor plan representing the indoor space for computing accurate indoor walking distances. The indoor
walking distances and indoor semantic information are fused into the edit distance seamlessly. The
ISTSM is evaluated using a synthetic dataset and real dataset for a shopping mall. The experiment
with the synthetic dataset reveals that the ISTSM is more accurate and reasonable than three other
popular trajectory similarities, namely the longest common subsequence (LCSS), edit distance on real
sequence (EDR), and the multidimensional similarity measure (MSM). The case study of a shopping
mall shows that the ISTSM effectively reveals customer movement patterns of indoor customers.

Keywords: indoor trajectory similarity; semantic similarity; edit distance; indoor positioning data;
indoor walking distance

1. Introduction

Indoor positioning devices, such as WiFi, Bluetooth, and RFID (radio frequency
identification) devices, generate an extensive number of indoor trajectories for objects
moving indoors. With indoor trajectories, insightful indoor movement patterns reflecting
complex human spatial behavior can be discovered by adopting various methods, such
as clustering analysis [1–4]. These methods are frequently based on an indoor trajectory
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similarity that measures the similarity degree of two indoor trajectories. Raw trajectories
embodying spatial and temporal information can be combined with semantic data to
constitute semantic trajectories [5]. Semantic trajectories can enhance our understanding of
the movement process, such as revealing the intention of movement. Therefore, semantic
trajectory similarity measures focus on the semantic similarity and have attracted the
attention of many researchers during the past few years [6–9]. However, little attention has
been paid to measures of the similarity of indoor semantic trajectories.

Indoor trajectories have two characteristics distinct from those of outdoor trajectories.
One characteristic is the mechanism of the positioning devices. Outdoor trajectories are
usually supposed to be generated by global positioning system (GPS)-type devices. GPS
devices track the positions of objects continuously. Unlike GPS devices, indoor positioning
devices, such as RFID and WiFi devices, report the positions of objects in the activation
range of the devices [10]. If an object leaves the activation range, its position is unknown.
It is costly and almost impossible to deploy indoor positioning devices everywhere in an
indoor space. Unlike outdoor objects, indoor objects cannot be tracked in some places.
The other characteristic is the space model. The space model accommodating outdoor
moving objects is free space, namely, unconstrained Euclidean space [11]. Migrating birds
equipped with GPS receivers move in free space. Indoor space (or constrained Euclidean
space [11]) comprises indoor entities (e.g., rooms, doors, and corridors), and these entities
constrain indoor movement.

Figure 1 shows an indoor trajectory. The green circles are the activation ranges of
indoor positioning devices. Suppose a person walks from point a to point b along an indoor
walking path. The path is a winding path owing to the movement constraints imposed by
the indoor space; however, only two points a and b are recorded by the positioning device
along the indoor walking path. Therefore, indoor trajectories may miss more trajectory
points than outdoor trajectories. Because of the indoor movement constraints and the
missing trajectory points, the path of two consecutive indoor trajectory points cannot be
seen as a straight line segment. The distance between the two points is not the Euclidean
distance but rather the indoor walking distance.
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Figure 1. Indoor trajectory in an indoor space.

There is a wealth of trajectory similarity measures [12]. Representative measures
include dynamic time warping (DTW) [13], longest common subsequence (LCSS) [14],
and edit distance on a real sequence (EDR) measures [15]. DTW was originally used
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for time series and then adapted to two-dimensional trajectories. The LCSS and EDR
extend similarity for string sequences to similarity for trajectories. Although these methods
measure the similarity of trajectories, their basis depends on the distance between two
trajectory points. The cited works neglect the movement constraints imposed by the
indoor space and the specialty of the indoor positioning device. They have an underlying
assumption that the path of two consecutive trajectory points is the Euclidean path and
the distance between the two points is the Euclidean distance. However, in a complicated
indoor environment, the distance between two points on a walking path is typically
appreciably longer than the Euclidean distance. This results in an inaccurate similarity
measure when these methods are applied to indoor trajectories.

Most of the above existing trajectory similarities are defined according to the spatial
aspect of trajectories. However, the spatial closeness of two trajectories does not necessarily
mean that the trajectories are similar, because the semantic similarity may be small; that is,
the categories of points of interest (POIs) that they pass may be different.

Previous studies were not accurate for indoor trajectories regarding the characteristics
of indoor trajectories and paid less attention to the semantic aspect of indoor trajectories.
The objective of the present study is to measure the similarity of indoor semantic trajectories
accurately. This paper presents a novel indoor trajectory similarity measure called the
indoor semantic trajectory similarity measure (ISTSM), to measure indoor trajectories
accurately. The ISTSM considers the characteristics and the semantic dimension of indoor
trajectories simultaneously. The ISTSM is modified from the edit distance for a string
sequence and each point of the indoor semantic trajectory is viewed as a character of a
string using indoor semantic information. Accurate indoor walking distances between
trajectory points are obtained by incorporating an indoor navigation graph representing the
complex indoor space. Indoor semantic information and indoor walking distances are fused
to compute the ISTSM. The advantage of the ISTSM is that indoor movement constraints
are considered, and it is a more accurate measure of the similarity of indoor semantic
trajectories. Experiments conducted with a synthetic dataset and a real indoor trajectory
dataset verify that the ISTSM is a more accurate and reasonable similarity measure for
indoor trajectories, and it facilitates the understanding of indoor movement. The ISTSM
can be applied in different indoor environments (shopping malls, railway stations and
airports) and is potentially useful for applications such as indoor evacuation [16].

The remainder of this paper is organized as follows. Section 2 reviews related work on
trajectory similarity. Section 3 presents our method in detail. Section 4 gives experimental
evaluation results. Section 5 concludes the paper and provides an outlook for future work.

2. Literature Review

A variety of trajectory similarity measures have been proposed over a period of
decades. These approaches can be classified into two categories according to whether the
semantic dimension of the trajectory is considered.

The first category focuses on either the spatial dimension or the temporal dimension,
or both. The Euclidean distance is the sum of Euclidean distances between corresponding
points of two trajectories. The discrete segment Hausdorff distance and discrete segment
Fréchet distance respectively extend the Hausdorff distance and the Fréchet distance for
the point distance to segment distance [17]. DTW is modified from one-dimensional
time series, but is sensitive to noise [13]. The LCSS is robust against noise, but ignores
possible non-matching gaps in the two trajectories [14]. Kang et al. extended the LCSS to
compute the indoor trajectory similarity [18]. Their method considers the common visit
time interval in which two indoor moving objects stay in the same indoor entity. However,
as inherited from the LCSS, the similarity ignores the spatial distance between mismatched
points. The EDR proposed by Chen et al. also reduces the effect of noise and avoids
the gap disadvantage of the LCSS [15]. Wang et al. proposed a distance called the edit
distance combined with Euclidean distance (EDEU) to measure the similarity of RFID
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trajectories [19]. However, the EDEU does not consider indoor movement constraints and
the Euclidean distance is not accurate for indoor moving objects.

In recent years, the study of trajectory has shifted from raw trajectories to semantic
trajectories embodying meaningful semantic information. Semantic trajectories are raw
trajectories combined with related contextual information, such as POIs, land use, and
weather. The second category of trajectory similarity takes into account the semantic aspect
of the trajectory and can help us understand trajectories well. Ying et al. proposed the max-
imal semantic trajectory pattern (MSTP) similarity [6]. Frequent semantic trajectories are
first mined from semantic trajectories, and a modified LCSS is then applied to calculate the
MSTP similarity. Wan et al. put forward a semantic–geographic similarity that considers
semantic similarity and geographic similarity simultaneously [20]. The semantic similarity
and geographic similarity are computed using the cosine and Hausdorff distances, respec-
tively. Furtado et al. introduced the multidimensional similarity measure (MSM), which
considers the spatial, temporal, and semantic dimensions altogether [7]. The cited studies
considered stops, where moving objects stay still for a certain amount of time. Lehmann
et al. recently proposed the stops and moves similarity measure, which considers both stops
and moves [8]. Petry et al. presented a multi-aspect trajectory similarity measure, which
considers the relationship between semantic attributes [9]. Jin et al. introduced an indoor
trajectory similarity based on spatial and hierarchical semantic similarity [2]. The spatial
similarity is measured using a distance in three-dimensional space and the hierarchical
semantic similarity is computed using a semantic classification tree. Neither outdoor nor
indoor trajectory similarities consider indoor movement constraints and indoor semantic
information simultaneously, and they are thus not accurate for indoor applications.

Raw indoor positioning data contain noise, and are inherently uncertain due to
the limitations of indoor positioning devices and the complicated indoor environment.
Plenty of methods have been proposed to clean indoor raw data. Most of these studies
consider the indoor constraints through various approaches, such as the graph model-based
approach [21], the hidden Markov model (HMM)-based approach [22], the particle filtering
approach [23], the probabilistic conditioning approach [24] and the Metropolis–Hastings
approach [25]. Data cleansing is the data preprocessing phrase, but our method differs
from these approaches in that ISTSM integrates indoor walking distance directly into the
indoor trajectory similarity measure.

The indoor walking distance considers the constraints imposed by the indoor space
and is more accurate than the Euclidean distance for an indoor space. An indoor navigation
graph is needed to compute the indoor walking distance. The indoor navigation graph
is a graph model supporting indoor navigation for indoor objects. A node of the graph
represents a location in the indoor space, while an edge of the graph represents a path
between nodes. Researchers have proposed a variety of indoor navigation graph models,
such as the generalized Voronoi diagram [26], Delaunay triangulation (DT) [27], the visibil-
ity graph model (VG) [28], straight medial axis transformation (S-MAT) [29], and the grid
graph [30], to name a few. These methods use various techniques to subdivide an indoor
space into a set of entities and then construct navigation graph models. Each model has its
own pros and cons. Hahmann et al. compared these models using four criteria: the number
of graph edges, graph creation time, route computation time, and route quality [31]. They
identified that the VG delivers the shortest possible routes and is a promising method;
however, the VG creates many redundant edges and requires optimization. DT produces
satisfying route results most times, but sometimes gives modest results. Nevertheless, the
divergence between DT and the VG is not large. DT is therefore employed to construct the
indoor navigation graph in the present study.

3. Methodology

The overall flow of the ISTSM has three steps and is shown in Figure 2. Indoor raw
trajectories are converted into indoor semantic trajectories that comprise semantic labels.
The ISTSM is based on the edit distance between string sequences. We treat semantic
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labels as characters of a string sequence. The edit distance seeks the minimum cost of
transforming one sequence into another sequence, with insertion, deletion, and substitution
operations on the characters. To fuse accurate indoor distances into the ISTSM, the indoor
floor plan representing the indoor space is transformed into an indoor navigation graph.
With the navigation graph, indoor walking distances between semantic trajectory points
are calculated. The substitution costs of semantic trajectory points are calculated using the
indoor walking distances and semantic information of indoor entities. Finally, the ISTSM
of two trajectories is computed with a classic dynamic programming algorithm.
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3.1. Constructing Indoor Semantic Trajectories

Several related definitions of an indoor trajectory are first stated.
Definition 1. Indoor Trajectory. An indoor trajectory (ITr) is a sequence of space–time

points with time stamps when the indoor moving object moves in an indoor space.

ITr = {(p1, t1), . . . , (pi, ti), . . . , (pn, tn)} (1)

Point pi = (xi, yi) is the indoor position that is recorded by indoor positioning sensors
at time stamp ti(i = 1, . . . , n), xi and yi are the coordinates for the point position pi.

Definition 2. Indoor Semantic Trajectory. The indoor semantic trajectory (ISTr) of an
indoor moving object is a sequence of space–time points with semantic labels.

ISTr = {(p1, s1, t1), . . . , (pi, si, ti), . . . , (pn, sn, tn)} (2)
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Here, si is the indoor semantic label associated with the corresponding indoor entity
in which pi is located at time stamp ti(i = 1, . . . , n).

Constructing indoor semantic trajectories from raw indoor trajectories involves two
steps, as in Figure 3. The first step involves extracting stops from indoor trajectories. A tra-
jectory can be viewed as a sequence of alternating stops and moves [32]. Stops are trajectory
episodes where the moving object stays in a region for a while, and can be represented by
the centroid of the points of the trajectory episode. Moves are trajectory episodes in which
the moving object keeps moving. Stops are usually important or interesting places and
have semantic information. The second step is attaching indoor semantic labels to stops.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 6 of 20 

 

Constructing indoor semantic trajectories from raw indoor trajectories involves two 
steps, as in Figure 3. The first step involves extracting stops from indoor trajectories. A 
trajectory can be viewed as a sequence of alternating stops and moves [32]. Stops are tra-
jectory episodes where the moving object stays in a region for a while, and can be repre-
sented by the centroid of the points of the trajectory episode. Moves are trajectory episodes 
in which the moving object keeps moving. Stops are usually important or interesting 
places and have semantic information. The second step is attaching indoor semantic labels 
to stops.  

Stops can be extracted from raw indoor trajectories with the stop detection algorithm 
[33]. The stop detection algorithm relies on two parameters. One is the distance threshold ߠௗ that restricts the region size of the stop. In Figure 3, the radius of the circle is ߠௗ. The 
other is the time threshold ߠ௧ representing the minimal amount of time for which the 
moving object must stay. After all stops are extracted, a trajectory can be seen as a se-
quence of stops. 

Stops have semantic meanings and can reflect the goal and status of the moving ob-
ject. For an indoor space, each indoor entity can be represented by a polygon. If a stop is 
within the polygon of an entity, the semantic label of the entity is attached to the stop. In 
Figure 3, the green rectangle is a Starbucks coffee shop. As the stop is within the shop, the 
stop is attached to the coffee shop semantic label. After all stops are attached to semantic 
information, indoor trajectories are transformed into indoor semantic trajectories. 

 
Figure 3. Extracting indoor semantic trajectories. 

3.2. Extracting an Indoor Navigation Graph 
The accurate calculation of indoor walking distances relies on the indoor navigation 

graph. An indoor navigation graph represents an indoor space as a graph used for navi-
gation. The indoor space can be partitioned into various types of indoor entity, such as 
rooms, corridors, and stairs. Each indoor entity can be represented by a graph node and 
each graph edge represents connections between indoor entities. The indoor navigation 
graph extracted from an indoor floor plan can be used to calculate the indoor walking 
distances between entities. 

In this work, we employ DT to build the navigation graph. Figure 4 depicts the de-
tailed steps. Given a floor plan (a), the indoor space of the floor plan is extracted as a whole 
and converted into a polygon. The vertices of the polygon are used to generate the first 
triangulated irregular network (TIN). Afterward, the centroids of each triangle in the first 
TIN are extracted (b) and employed to generate the second TIN (c). Finally, the nodes and 
edges of the second TIN that are completely within the indoor space are extracted to gen-
erate the indoor navigation graph (d). 

Figure 4 (d) shows the computation of the indoor walking distance between any two 
points. To calculate the indoor walking distance between two points ݌ଵ  and ݌ଶ ,ଵ݌)ݐݏ݅ܦݎ݋݋݀݊ܫ , ଶ), we first search the nearest graph nodes ݊ଵ (denoted as ○1݌ ) and ݊ଶ 
(denoted as ○2 ) for ݌ଵ and ݌ଶ separately. After obtaining ݊ଵ and ݊ଶ, the shortest path 
between ݊ଵ and ݊ଶ is computed using the Dijkstra shortest path algorithm [34], and the 
path distance is denoted is ݀݅ݐݏ(݊ଵ, ݊ଶ). The Euclidean distance between ݌ଵ and ݊ଵ is de-
noted as ݀݅݌)ݐݏଵ, ݊ଵ), and the distance between ݌ଶ and ݊ଶ is denoted as ݀݅݌)ݐݏଶ, ݊ଶ). Fi-
nally, ݌)ݐݏ݅ܦݎ݋݋݀݊ܫଵ, (ଶ݌  is calculated as the sum of ݀݅݌)ݐݏଵ, ݊ଵ) ,ଵ݊)ݐݏ݅݀ , ݊ଶ), and ݀݅݌)ݐݏଶ, ݊ଶ), as in Equation (3). 

Figure 3. Extracting indoor semantic trajectories.

Stops can be extracted from raw indoor trajectories with the stop detection algo-
rithm [33]. The stop detection algorithm relies on two parameters. One is the distance
threshold θd that restricts the region size of the stop. In Figure 3, the radius of the circle is
θd. The other is the time threshold θt representing the minimal amount of time for which
the moving object must stay. After all stops are extracted, a trajectory can be seen as a
sequence of stops.

Stops have semantic meanings and can reflect the goal and status of the moving object.
For an indoor space, each indoor entity can be represented by a polygon. If a stop is
within the polygon of an entity, the semantic label of the entity is attached to the stop. In
Figure 3, the green rectangle is a Starbucks coffee shop. As the stop is within the shop, the
stop is attached to the coffee shop semantic label. After all stops are attached to semantic
information, indoor trajectories are transformed into indoor semantic trajectories.

3.2. Extracting an Indoor Navigation Graph

The accurate calculation of indoor walking distances relies on the indoor navigation
graph. An indoor navigation graph represents an indoor space as a graph used for nav-
igation. The indoor space can be partitioned into various types of indoor entity, such as
rooms, corridors, and stairs. Each indoor entity can be represented by a graph node and
each graph edge represents connections between indoor entities. The indoor navigation
graph extracted from an indoor floor plan can be used to calculate the indoor walking
distances between entities.

In this work, we employ DT to build the navigation graph. Figure 4 depicts the
detailed steps. Given a floor plan (a), the indoor space of the floor plan is extracted as a
whole and converted into a polygon. The vertices of the polygon are used to generate the
first triangulated irregular network (TIN). Afterward, the centroids of each triangle in the
first TIN are extracted (b) and employed to generate the second TIN (c). Finally, the nodes
and edges of the second TIN that are completely within the indoor space are extracted to
generate the indoor navigation graph (d).
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Figure 4. Construction of the indoor navigation graph and computation of indoor walking paths: (a)
the floor plan; (b) generation of the first triangulated irregular network (TIN) and the extraction of
the centroid of each triangle; (c) generation of the second TIN; and (d) final indoor navigation graph
and the computation of the indoor walking path.

Figure 4d shows the computation of the indoor walking distance between any two
points. To calculate the indoor walking distance between two points p1 and p2, IndoorDist(p1, p2),
we first search the nearest graph nodes n1 (denoted as 1©) and n2 (denoted as 2©) for p1
and p2 separately. After obtaining n1 and n2, the shortest path between n1 and n2 is
computed using the Dijkstra shortest path algorithm [34], and the path distance is denoted
is dist(n1, n2). The Euclidean distance between p1 and n1 is denoted as dist(p1, n1), and
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the distance between p2 and n2 is denoted as dist(p2, n2). Finally, IndoorDist(p1, p2) is
calculated as the sum of dist(p1, n1), dist(n1, n2), and dist(p2, n2), as in Equation (3).

IndoorDist(p1, p2) = dist(p1, n1) + dist(n1, n2) + dist(p2, n2) (3)

3.3. ISTSM Computation

The sequence of semantic labels representing indoor semantic trajectories is exploited
for determining similarity. The edit distance is extended as the ISTSM to compute the simi-
larity of indoor semantic trajectories. The edit distance was originally used for comparing
string sequences and has applications in information retrieval and computational biology.
As a classic edit distance, the Levenshtein distance is defined as the minimum number
of operations that transfer one string to another, where the operations include insertion,
deletion, and substitution [35]. Here, the costs of insertion, deletion, and substitution are
all 1. The ISTSM treats the semantic labels of an indoor semantic trajectory as a string
characters. Similar to the case for the Levenshtein distance, the insertion and deletion costs
of the ISTSM are defined as 1. However, the substitution cost is defined in terms of semantic
labels and indoor walking distances between stops. The contribution of the ISTSM is that
it integrates semantic information and accurate indoor walking distances into the edit
distance such that it provides an accurate measure of the similarity of semantic trajectories.

The substitution cost of semantic labels fuses indoor walking distances and indoor
semantic information. For two semantic labels of different semantic types, we consider that
the difference between the two semantic labels is large, while the substitution cost is defined
as 1, the same as the insertion and deletion costs. For two semantic labels of the same
semantic type, the difference between the two semantic labels relates to the indoor walking
distance between the indoor entities with which the two semantic labels are associated.
The substitution cost is defined as the ratio of the indoor walking distance between the
centroids of the two entities and the maximum indoor walking distance between indoor
entities both having the same semantic type. The substitution cost is thus between 0 and 1.
In this way, the substitution cost not only differentiates different semantic types, but also
reflects the relative distances of stops of the same semantic type.

An indoor entity can be represented by the centroid of the polygon of the indoor entity.
The indoor walking distance between any two indoor entities can be computed with the
indoor navigation graph built previously.

Formally, the substitution cost subCost is defined by Equation (4).

subCost
(
si, sj

)
=

 1 i f si.SType 6= sj.SType
IndoorDist(si ,sj)
IndoorDist

si .SType
max

otherwise
(4)

Here, si and sj are two semantic labels (i.e., indoor entities), SType is their semantic
type information, IndoorDist

(
si, sj

)
is the indoor walking distance between the indoor

entities si and sj, and IndoorDistsi .SType
max is the maximum indoor walking distance between

two indoor entities that are both of the same semantic type as si.SType.
When si and sj are of different semantic types (si.SType = sj.SType), the substitution

cost is directly assigned the maximum value of 1. When they are of the same semantic type,
the substitution cost is between 0 and 1. The substitution cost is zero only when si and sj
refer to an identical indoor entity (i = j). The substitution cost is 1 when si and sj refer to
two indoor entities that have a maximum indoor walking distance of the same semantic
type. After the substitution cost of all indoor entity pairs is computed, the result is stored
in the substitution cost matrix subCostMat.

Dynamic programming is a common and efficient method for computing the edit
distance. Using subCostMat, the edit distance matrix D0...n,0...m for two indoor semantic
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trajectories P[1 . . . n] (|P| = n) and Q[1 . . . n] (|Q| = m) is computed element by element,
adopting the dynamic programming method expressed as Equation (5).

Di,j =



j i f i = 0
i i f j = 0

Di−1,j−1 i f i, j > 0, and Pi = Qj

min


Di,j−1 + 1
Di−1,j + 1

Di−1,j−1 + subCostMat
(

Pi, Qj
) otherwise

(5)

When D0...n,0...m has been computed, Dn,m is the distance for the two indoor semantic
trajectories. Dn,m is related to the lengths of the two trajectories. Dn,m is normalized using
the trajectory lengths n and m in Equation (6) to eliminate the effect of the trajectory length.
Liu et al. showed that the result of normalization is a metric distance that can be used with
indexing technology to accelerate the trajectory distance query [36].

Dnorm =
2× Dn,m

Dn,m + n + m
(6)

The value of distance Dn,m ranges from 0 to 1. The ISTSM is therefore the opposite of
Dn,m and is defined by Equation (7).

ISTSM = 1− Dnorm = 1− 2× Dn,m

Dn,m + n + m
(7)

4. Experimental Evaluation

The ISTSM was evaluated with two datasets: a synthetic dataset and a real dataset. The
effectiveness of the ISTSM was evaluated in comparison with popular trajectory similarities
in the synthetic dataset. Customer movement patterns can reflect similar movement
characteristics for a group of shopping customers in shopping malls. The study of customer
movement patterns is valuable in understanding customer shopping behaviors, thus
supporting applications such as sales promotion and friend recommendation. Customer
movement patterns can be discovered from indoor customer trajectories. A real dataset
from a shopping mall was used to perform clustering analysis with the ISTSM and thus
determine customer movement patterns in a case study.

4.1. Experimental Analysis of the Synthetic Dataset
4.1.1. Data Transformation Methodology

The synthetic dataset was generated using a data transformation method to evaluate
the effectiveness of the ISTSM. The idea is borrowed from Refs. [7,37]. The advantage of
the method is that the ISTSM can be evaluated and compared for different conditions in a
controlled manner.

First, assuming a floor plan was given as an indoor space, an indoor semantic seed
trajectory ISTr = {S1, . . . , Sn} (where point locations and time stamps are omitted) was
generated within the indoor space. Two different types of trajectory transformation were
then applied to the seed trajectory to generate new trajectories. The trajectory transforma-
tion method had a varying rate that controlled the amount of transformation. For trajectory
transformation type K with varying rate r, a set of η transformed indoor semantic trajec-
tories WK

r =
{

ISTR1, . . . , ISTRη

}
was generated. Afterwards, we computed the average

ISTSM between ISTr and each transformed trajectory set WK
r for a different varying rate r,

and we then compared the result with representative trajectory similarities, namely the
EDR, LCSS, and MSM. While DTW is also a classic trajectory similarity, it is sensitive to
noise, and previous work has revealed that the EDR and LCSS are superior to DTW [15].
Therefore, the ISTSM was not compared with DTW. The two trajectory transformation
methods are as follows.
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1. Change in order of stops. A number of stops controlled by varying rate r were
randomly selected and the positions of these stops were changed. Figure 5 presents the
order change of one stop labeled Lab 1. Note that the varying rate r may affect more stops.
In Figure 5, one stop order change (r = 20%) affects two stops for the seed trajectory.
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2. Replacement of stops. This transformation randomly generated a number of stops
controlled by varying the rate r, and replaced the stops to generate transformed trajectories.
Figure 6 presents the replacement of one stop labeled Lab 1 with another stop labeled
Professor Office 2.
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The floor plan of Figure 4 was used as the indoor space in this experiment. The seed
indoor semantic trajectory had 10 stops. Although a raw trajectory may have hundreds
or thousands of points, there are far fewer stops on the transformed semantic trajectory.
The length of 10 for a seed indoor semantic trajectory is thus appropriate. The number of
transformed trajectories η was set to 1000 for each type of transformation. The varying rate
r was the proportion of transformed stops and ranged from 0.1 to 1 in steps of 0.1. The
experiments were performed on a laptop personal computer with an i5-5200U 2.20-Hz
CPU and 16 GB memory.

The ISTSM was compared with the EDR, LCSS, and MSM. The ISTSM has no input
parameter, whereas the EDR, LCSS, and MSM had at least one input parameter. The EDR
had a parameter ε as the space-matching threshold. The value of ε was set to 3 (where the
unit is meters in our indoor space), because the room width was 6 for the input indoor
space and half of the width is a proper value for ε. The LCSS method has two parameters:
ε is the same as for the EDR and δ is the translation threshold in the time dimension. ε
was set to 3, the same as for the EDR. δ was set to 2 to match nearby points in the time
dimension. The MSM is a multidimensional similarity where each dimension has its own
weight, distance function, and threshold. To compare with the ISTSM that focuses on space
and semantic dimensions, the weights for space and semantic dimensions were both set
at 0.5. The spatial distance function is the Euclidean distance. For the semantic distance
function, the distance is zero when the semantics match, and is 1 otherwise. The spatial



ISPRS Int. J. Geo-Inf. 2021, 10, 90 11 of 19

threshold ε1 was set at 3, the same as for the EDR and LCSS, and the semantic threshold ε2
was set at 0.5.

4.1.2. Experimental Results

1. Change in order of stops. The average similarity scores computed for the seed
trajectory and the transformed trajectories with a varying rate of change in the order of
stops are shown in Figure 7. The value of the MSM was always 1 for different rates because
it did not depend on the stop order. The ISTSM was between the LCSS and EDR. We see
that the ISTSM was a little larger than the EDR. This was because the ISTSM considered
the semantic dimension and indoor walking distances between stops, whereas the EDR
did not. That is to say, two stops of the same semantic type were more similar than two
stops having different semantic types.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 20 
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Figure 7. Result of changing the stop order, where the x axis is the trajectory transformation rate r
and the y axis is the similarity score of the original trajectory and transformed trajectory.

2. Replacement of stops. The average similarity scores computed for the seed trajectory
and transformed trajectories with a varying rate of replaced stops are illustrated in Figure 8.
All four similarities decreased as the varying rate increased. The (ascending) order of
the four similarities was LCSS, EDR, ISTSM, and MSM, at a given varying rate. The
LCSS was the lowest among them, as it ignored the similarity between the original stops
and the replaced stops when they were of the same semantic type. The MSM was the
highest because it did not consider the stop order and searched for the best matching stops.
The LCSS thus tends to underestimate similarity, while the MSM tends to overestimate
similarity. The ISTSM and EDR were between the LCSS and MSM. The reason for the
ISTSM being slightly higher than the EDR is the same as described above.

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 11 of 20 

 

 
Figure 7. Result of changing the stop order, where the x axis is the trajectory transformation rate r and the y axis is the 
similarity score of the original trajectory and transformed trajectory. 

2. Replacement of stops. The average similarity scores computed for the seed trajec-
tory and transformed trajectories with a varying rate of replaced stops are illustrated in 
Figure 8. All four similarities decreased as the varying rate increased. The (ascending) 
order of the four similarities was LCSS, EDR, ISTSM, and MSM, at a given varying rate. 
The LCSS was the lowest among them, as it ignored the similarity between the original 
stops and the replaced stops when they were of the same semantic type. The MSM was 
the highest because it did not consider the stop order and searched for the best matching 
stops. The LCSS thus tends to underestimate similarity, while the MSM tends to overesti-
mate similarity. The ISTSM and EDR were between the LCSS and MSM. The reason for 
the ISTSM being slightly higher than the EDR is the same as described above. 

 
Figure 8. Result of replacing stops, where the x axis is the trajectory transformation rate r, while the y axis is the similarity 
score of the original trajectory and transformed trajectory. 

The above two figures reveal that the ISTSM considers the semantic information and 
is able to detect the small difference in stops with the same semantic type. We will later 
show that the difference relates to corresponding indoor walking distances between stops. 
With the consideration of the indoor semantic information and the complex indoor envi-
ronment, high-level knowledge may be discovered from trajectories using the ISTSM. 

4.2. Case Study—Determining Customer Movement Patterns 
A real dataset of a shopping mall was used to perform clustering analysis with the 

ISTSM in determining customer movement patterns. The real dataset contains customer 
indoor trajectories for 1 day in a shopping mall. The shopping mall is a six-floor building 
in Chongqing, China. For brief and clear presentation, we selected the fourth floor as the 
indoor space and extracted customer indoor trajectories passing through the fourth floor, 

Figure 8. Result of replacing stops, where the x axis is the trajectory transformation rate r, while the
y axis is the similarity score of the original trajectory and transformed trajectory.



ISPRS Int. J. Geo-Inf. 2021, 10, 90 12 of 19

The above two figures reveal that the ISTSM considers the semantic information and is
able to detect the small difference in stops with the same semantic type. We will later show
that the difference relates to corresponding indoor walking distances between stops. With
the consideration of the indoor semantic information and the complex indoor environment,
high-level knowledge may be discovered from trajectories using the ISTSM.

4.2. Case Study—Determining Customer Movement Patterns

A real dataset of a shopping mall was used to perform clustering analysis with the
ISTSM in determining customer movement patterns. The real dataset contains customer
indoor trajectories for 1 day in a shopping mall. The shopping mall is a six-floor building
in Chongqing, China. For brief and clear presentation, we selected the fourth floor as
the indoor space and extracted customer indoor trajectories passing through the fourth
floor, as shown in Figure 9. There are 102 indoor entities on the fourth floor that can be
classified into nine semantic types: elevator, clothing, restaurant, general merchandise,
coffee, shoe/bag, toy, home furnishing, and massage entities. The ISTSM values of six
sample customer trajectories were first computed for trajectory comparison to demonstrate
the advantages of the ISTSM. Clustering analysis was then performed for all customer
trajectories to determine customer movement patterns.
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4.2.1. Trajectory Comparison

Raw indoor trajectories were first preprocessed to extract indoor semantic trajectories.
The number of raw indoor trajectories was 799. The distance threshold parameter θd and
the time threshold parameter θt of the stop detection algorithm were respectively set at 5
m and 180 s. After the stops were detected, all stops were attached to semantic labels of
corresponding indoor entities. We then filtered those indoor semantic trajectories that had
only one stop. Finally, 301 indoor semantic trajectories remained.

To simplify the trajectory comparison, from the 301 indoor semantic trajectories, we
selected six sample trajectories and extracted a trajectory episode as a sub-trajectory from
each of the six trajectories. The six sub-trajectories are shown in Figure 9. In the figure,
the nine semantic types of different indoor entities are shown according to the legend
and represented by the nine capital letters A–I. The subscript of semantic labels refers to
different indoor entities. As examples, A1 and A2 are two different semantic labels (indoor
entities), both of semantic type A.

With the six indoor semantic sub-trajectories ISTr1, ISTr2, . . . , ISTr6, we calculated
ISTSM values for ISTr1 and ISTr2, . . . , ISTr6. The result is shown in Figure 10. We see that
ISTSM (ISTr1, ISTr2) is the largest, having a value of 0.61, while ISTSM (ISTr1, ISTr6) is the
second largest at 0.57, and ISTSM (ISTr1, ISTr3) is the third largest at 0.36.
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The semantic types ([H,H,I] and [C,A,A]) of the semantic labels of the trajectories ISTr4
and ISTr5 are different from that of ISTr1 ([B,B,F]), and ISTSM (ISTr1, ISTr4) and ISTSM
(ISTr1, ISTr5) are thus both equal to 0.33 without considering the indoor walking distance
according to Equation (5). The result illustrates the effect of the semantic dimension on
the ISTSM.

ISTSM (ISTr1, ISTr2) is larger than ISTSM (ISTr1, ISTr3). The reason for this is that
all three indoor semantic trajectories (ISTr1, ISTr2, and ISTr3) had the same semantic type
([B,B,F]) of semantic labels, and these ISTSM values thus depended on the indoor walking
distances of these semantic labels according to Equation (4). Note that in Figure 9, the
central area is empty and not walkable. Thus, if a customer would like to walk from B1 to
B5, he or she has to walk around the central area. As a result, IndoorDist (B1, B5) is larger
than IndoorDist (B1, B3). By the same token, IndoorDist (B2, B6) is larger than IndoorDist (B2,
B4), while IndoorDist (F1, F3) is larger than IndoorDist (F1, F2). Therefore, for ISTr1 and ISTr3,
the indoor walking distances between all the corresponding semantic labels are larger than
those of ISTr1 and ISTr2. Consequently, ISTSM (ISTr1, ISTr2) is larger than ISTSM (ISTr1,
ISTr3). The result shows the effect of the indoor walking distance on the value of the ISTSM.

Interestingly, ISTSM (ISTr1, ISTr6) is larger than ISTSM (ISTr1, ISTr3) but is smaller than
ISTSM (ISTr1, ISTr2). For ISTr6, the semantic type ([B,B,B,F]) of semantic labels is similar
to that of ISTr2 ([B,B,F]). The indoor walking distances between all the corresponding
semantic labels of ISTr1 and ISTr2 are larger than those between ISTr1 and ISTr6, but ISTr6
(4) is longer than ISTr2 (3). As such, ISTSM (ISTr1, ISTr6) (0.57) is a little smaller than ISTSM
(ISTr1, ISTr2) (0.61). For ISTr6 and ISTr3, the indoor walking distances between all the
corresponding semantic labels of ISTr1 and ISTr3 are much larger than those of ISTr1 and
ISTr6. ISTr6 (4) is also longer than ISTr3 (3), and ISTSM (ISTr1, ISTr6) (0.57) is thus larger
than ISTSM (ISTr1, ISTr3) (0.36). This demonstrates the effect of the trajectory length on
the ISTSM.

The ISTSM can be integrated with a clustering algorithm to discover different groups
of trajectories. Figure 11 illustrates the ISTSM matrix of the six indoor semantic trajectories
and the dendrogram resulting from the agglomerative hierarchical clustering with the
ISTSM. In Figure 11, the cell value of the grid is the ISTSM value, and the numbers (3, 6, 1,
2, 4, 5) on the left and top of the grid are the IDs of the six trajectories. The dendrogram is
on top of the grid. The agglomerative hierarchical clustering algorithm begins with each
trajectory as a cluster, and then, at each step, combines two clusters with the largest ISTSM
(least distance) as a new cluster until only one cluster remains. The clustering algorithm
first clustered ISTr1 and ISTr2 to form the combined cluster p, as these have the largest
ISTSM value (0.61), and cluster p is then clustered with ISTr6 to form cluster q. The process
is iterated until the root cluster t is formed. We see from the dendrogram that the clustering
result is reasonable. ISTr4 and ISTr5 in the clusters are different in the semantic dimension
from the trajectories in cluster r. The trajectory clustering order of cluster r reflects the
effect of indoor walking distances on the ISTSM.
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In summary, the above results show that the ISTSM is effective, accurate, and reason-
able for indoor semantic trajectories, with the consideration of indoor walking distances
and the semantic information of stops.

4.2.2. Precision Evaluation of ISTSM

In this section, the precision of ISTSM is evaluated with the information retrieval
approach [38,39]. Indoor trajectories were grouped into different groups and were used as
the ground truth trajectories. All trajectories in the same group are considered to be relevant
and trajectories in different groups are considered to be non-relevant. The relevance of
trajectories was measured with different trajectory similarity measures. The most similar
trajectory is considered to be the most relevant one. Thus, the precision evaluation task
of trajectory similarity measurement is turned into an information retrieval task. The
precision of ISTSM can be evaluated with mean average precision (MAP) and precision at
recall. ISTSM was compared with EDR, LCSS and MSM.

From 301 indoor semantic trajectories, two trajectory groups were selected as the
ground truth trajectories based on the different semantic types of stops. One group is
composed of trajectories having at least two stops of clothes semantic type, and the other
group is composed of trajectories having at least two stops of canteen semantic type. There
are 76 trajectories in the first group and 43 trajectories in the second group. The trajectories
in one group were assumed to be more similar than the trajectories in the other group.

The parameters of ISTSM, EDR, LCSS and MSM were set as in Section 4.1.1. Table 1
shows the MAP for the four trajectory similarities. ISTSM (0.80) has the largest MAP. This
is because other trajectory similarities do not consider the semantic information and the
indoor constraints at the same time. MSM considers the semantic aspect but not the indoor
walking distances, and has the second largest MAP (0.75). LCSS takes into account the
stops with the same semantic types, so its MAP can reach 0.71. EDR has the lowest MAP
(0.68), as it cannot deal with semantic information. Figure 12 demonstrates the precision at
recall. ISTSM outperformed the other trajectory similarities at all recall levels. When the
recall level is between 0 and 0.5, the precision of ISTSM shows a significant improvement
compared with the other three other trajectory similarities.

Table 1. MAP evaluation result.

ISTSM MSM LCSS EDR

MAP 0.80 0.75 0.71 0.68
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4.2.3. Determining Customer Movement Patterns

The agglomerative hierarchical clustering algorithm was applied to the overall shop-
ping mall dataset to determine customer movement patterns. Determining the number of
clusters is a nontrivial task. To find the number of clusters, the knee-point detection method
was adopted, and a graph that has the number of clusters on the x axis and the merge
distance on the y axis is shown in Figure 13. The number of clusters that we tried ranged
from 1 to 20. The merge distance is the sum of squared distances from each trajectory to
its assigned cluster center. The knee-point detection method is a popular method that can
identify the correct number of clusters with a mathematical approach [38]. First, a straight
line is drawn from the first point to the last point. Euclidean distances between each point
to the straight line are then computed. The point of the largest distance is the knee-point. In
Figure 13, the point of three clusters is the knee-point, and the dataset is thus clustered into
three clusters. Each cluster reveals the spatial and semantic characteristics of the customer
movement patterns. The spatial and semantic patterns of the clusters are thus described in
the following.
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The spatial patterns of the three trajectory clusters are presented in Figure 14. For
an indoor semantic trajectory, we split the trajectory into consecutive semantic origin–
destination (OD) flows. As an example, an indoor semantic trajectory {s1, s2, s3} is split
into two OD flows, {s1, s2} and {s2, s3}. The centroid of an indoor entity is used to represent
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the corresponding semantic label of the indoor entity. For all OD flows of one trajectory
cluster, we count the number of distinct semantic label pairs and show them with graduated
symbols. The three clusters have obvious differences in their spatial patterns. For cluster 1,
the OD flows of {A1, B1}, {A1, B2}, {B1, B3}, {C1, B3}, and {C2, B5} are strong compared
with the other flows. All these OD flows except {C2, B5} are located in the central right
part of the shopping mall. Owing to the small trajectory number of cluster 2, {B1, C1} is the
only strong OD flow. For cluster 3, {A1, B1}, {A1, B2}, and {A2, B4} are strong OD flows,
and {A2, B4} is the OD flow that cluster 1 does not have. The next largest flows with a flow
count of 6–10 also have clear differences from cluster 1.
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Figure 14. Spatial patterns of indoor semantic trajectory clusters: (a) cluster 1; (b) cluster 2; and (c)
cluster 3.

A chord diagram is adopted to show the relationship of the semantic labels, and thus
reveal the semantic pattern of one cluster, in Figure 15. The nine semantic types of semantic
label are represented by nine fragments of the outer circle of the diagram, and arcs are
drawn between them. The size of the arc is proportional to the number of semantic label
pairs. We see that {catering, elevator} and {clothing, elevator} are strong semantic flows for
cluster 1, while {catering, clothing} and {clothing, clothing} are strong semantic flows for
cluster 2. Cluster 3 is similar to cluster 1, but the flows of {catering, catering}, {catering,
massage}, and {catering, shoe/bag} are stronger than those of cluster 1. Interestingly, {catering,
catering} is a relatively strong flow for cluster 3. A possible reason for this is that wandering
customers do not have an appointed restaurant beforehand. When they encounter a
restaurant, they spend some time browsing the menu and if they do not like the menu,
they move on to the next restaurant.
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5. Conclusions and Future Work

The indoor trajectory similarity measure is important to indoor trajectory analysis.
However, most existing trajectory similarities do not account for indoor movement con-
straints imposed by the indoor space and the characteristics of indoor positioning sensors.
Furthermore, indoor semantic information is often neglected. In this paper, we propose a
new indoor trajectory similarity measure called the ISTSM, which considers the constraints
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and semantic information of the indoor space simultaneously. The ISTSM extends the
classic edit distance. When computing the substitution cost of the edit distance, the ISTSM
integrates accurate indoor walking distances with an indoor navigation graph and the
semantic information of stops. The ISTSM is more accurate and reasonable because it fuses
accurate indoor walking distances between trajectory stops. Experiments revealed that the
ISTSM is more accurate and reasonable than the state of the art, and it can unveil customer
movement patterns for customers with trajectory clustering analysis. Other trajectory
similarities usually need two weights, namely, the spatial weight and the semantic weight,
whereas the ISTSM has no weights and is thus convenient for use.

One limitation of our approach is that the construction of the indoor navigation
graph model is a non-trivial and time-consuming task. Additionally, the ISTSM does not
consider indoor positioning error. We plan to integrate the ISTSM with various indoor
data-cleansing approaches, and assess it in more challenging scenarios where there are
noises and more ambiguities in the readings of indoor positioning devices. We also plan to
evaluate ISTSM with user survey data for other indoor scenarios, such as railway stations
and airports, in future work.
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