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Abstract: To overcome the difficulties of quantitatively optimizing and evaluating evacuation guid-
ance systems, we proposed a perception model based on virtual reality (VR) experiments and the
social force model (SFM). We used VR and eye tracking devices to carry out experiments. The VR
experiment data was mainly used for three purposes: to determine the parameter values of the
perception model, to optimize the evacuation guidance system by quantitative analysis, and to
validate the perception model. Additionally, we compared the VR experimental and model sim-
ulation results before and after the optimization to quantitatively assess the improvement in the
optimized evacuation guidance system. The results showed that our model can effectively simulate
the perception behaviors of evacuees on the evacuation guidance system and it can quantitatively
evaluate different evacuation guidance system schemes. The model simulations showed that the
optimized evacuation guidance system improved the evacuation efficiency, with the average escape
time and distance of the two starting positions reduced by 37% and 28%, respectively.

Keywords: evacuation guidance systems; optimization and evaluation; virtual reality; social force
model; perception model

1. Introduction

An evacuation guidance system is a guidance system that can provide road and
exit information for evacuees during public emergencies [1,2]. The types of scenarios
and emergencies [3], sign designs [4], and layouts [5] are important factors affecting the
effectiveness of human evacuation behavior. The reasonable design of evacuation guidance
systems can improve evacuation efficiency and reduce the risk of casualties and property
losses [2,6]. Consequently, the evaluation and optimization of evacuation guidance systems
is important for improving evacuation efficiency [3,5].

Some researchers have used wireless sensor networks to modify static guidance
systems into dynamic intelligent systems [4,7]. These intelligent guidance systems can
adjust the directions of signs to show the current safest path. Some researchers have used
questionnaire surveys to explore the influence of sign information on the guidance effect of
the system [8] and evacuees’ perception and acceptance of it [9]. Many scholars have used
experimental methods, including real and virtual reality (VR) experiments, to deliberate
the effectiveness of evacuation guidance systems. Real experiments must be conducted
in real scenarios to observe the influence of environmental factors, such as smoke and
light [10], on path finding. However, real evacuation experiments have high risk and low
repeatability, making them difficult to implement in large application scenarios. Virtual
reality experiments can solve these problems. With the vigorous development of the VR
industry, many scholars have used VR devices to carry out escape experiments to study
the influence of the location [1,11], color [12], and layout [13] of an evacuation guidance
system on its guidance effect. In recent years, an increasing number of many scholars have
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employed crowd simulations, including agent-based models [2,14,15], cellular automata
(CA) [16], building information models (BIMs) [5,6,17,18], particle swarm optimization
(PSO) [19,20], genetic-algorithm-based model [6], and other models [21,22], to explore
evacuation guidance systems.

The social force model (SFM) is a classic emergency evacuation model [23] that can ef-
fectively simulate social behavior with psychological attributes, such as panic. The existing
research related to the SFM mainly focuses on qualitatively studying the influence of sign lo-
cations, colors, and text on the movement direction, speed, and evacuation efficiency [2,14].
Quantifying the interactions between evacuation signs and evacuees is a very important
premise for evaluating and optimizing evacuation guidance systems. Unfortunately, few
studies have done this. Khaled Nassar used the SFM to model pedestrian movement and
collected the data on sign visibility and legibility to determine the optimal locations for the
placement of signs [15]. However, the model parameters were artificially specified.

This study aimed to propose a perception model that can be used in practice instead
of VR experiments, to optimize and evaluate evacuation guidance systems. First, the
VR equipment and the eye tracker were used to conduct VR evacuation experiments.
Second, based on the VR experimental data, the parameters of the perception model were
determined, the evacuation guidance system was optimized, and the perception model was
validated. Finally, the optimized evacuation guidance system was quantitatively evaluated
by model simulations.

2. Data and Methods
2.1. Framework for Optimizing and Evaluating Evacuation Guidance Systems

A framework for optimizing and evaluating evacuation guidance systems was pro-
posed, which includes four layers: resource, data, analysis, and optimization and evaluation
as shown in (Figure 1). The resource layer includes a variety of data acquisition methods,
such as VR experiments and model simulations. The available data types are escape trajec-
tory data, head direction data, eye tracking data, and other related data. These data can
be used to direct model construction and optimize evacuation guidance systems, and the
validity of models can be verified by comparing the experimental results with the model
simulation results. Finally, the validated model can be used to evaluate the efficiency of
evacuation guidance systems.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 2 of 17 
 

 

system on its guidance effect. In recent years, an increasing number of many scholars have 
employed crowd simulations, including agent-based models [2,14,15], cellular automata 
(CA) [16], building information models (BIMs) [5,6,17,18], particle swarm optimization 
(PSO) [19,20], genetic-algorithm-based model [6], and other models [21,22], to explore 
evacuation guidance systems. 

The social force model (SFM) is a classic emergency evacuation model [23] that can 
effectively simulate social behavior with psychological attributes, such as panic. The ex-
isting research related to the SFM mainly focuses on qualitatively studying the influence 
of sign locations, colors, and text on the movement direction, speed, and evacuation effi-
ciency [2,14]. Quantifying the interactions between evacuation signs and evacuees is a 
very important premise for evaluating and optimizing evacuation guidance systems. Un-
fortunately, few studies have done this. Khaled Nassar used the SFM to model pedestrian 
movement and collected the data on sign visibility and legibility to determine the optimal 
locations for the placement of signs [15]. However, the model parameters were artificially 
specified. 

This study aimed to propose a perception model that can be used in practice instead 
of VR experiments, to optimize and evaluate evacuation guidance systems. First, the VR 
equipment and the eye tracker were used to conduct VR evacuation experiments. Second, 
based on the VR experimental data, the parameters of the perception model were deter-
mined, the evacuation guidance system was optimized, and the perception model was 
validated. Finally, the optimized evacuation guidance system was quantitatively evalu-
ated by model simulations. 

2. Data and Methods 
2.1. Framework for Optimizing and Evaluating Evacuation Guidance Systems 

A framework for optimizing and evaluating evacuation guidance systems was pro-
posed, which includes four layers: resource, data, analysis, and optimization and evalua-
tion as shown in (Figure 1). The resource layer includes a variety of data acquisition meth-
ods, such as VR experiments and model simulations. The available data types are escape 
trajectory data, head direction data, eye tracking data, and other related data. These data 
can be used to direct model construction and optimize evacuation guidance systems, and 
the validity of models can be verified by comparing the experimental results with the 
model simulation results. Finally, the validated model can be used to evaluate the effi-
ciency of evacuation guidance systems. 

 
Figure 1. Framework for optimizing and evaluating evacuation guidance systems. Figure 1. Framework for optimizing and evaluating evacuation guidance systems.



ISPRS Int. J. Geo-Inf. 2021, 10, 54 3 of 17

2.2. Experimental Environment

We used an HTC VIVE, an aGlass DKII, and the game engine Unity3D to carry out
the VR experiments. The aGlass DKII was connected to the HTC VIVE through a USB
cable and fixed in the HTC VIVE. Trajectory data and head direction data were obtained
in the unity engine through the HTC VIVE develop API. The eye ray was obtained in
the unity engine through the aGlass DKII develop API. In the unity engine, a collider
component could be attached to obstacles such as walls. Then, the collision of the eye
ray with obstacles, which was referred to as the eye tracking data, could be collected by
using the ray cast API of the unity. All data were three-dimensional spatial coordinates.
With the HTC VIVE, the position and orientation were tracked by combining an IMU
and a lighthouse laser system with a refresh rate 90 Hz [24]. For the aGlass DKII, the
sampling error was less than 0.5 degrees, and the delay was less than 5 ms. The tracking
speed was 120–380 Hz. Considering the combination of the two devices and the accuracy
requirements, we collected the data at a frequency of 90 Hz. We used 3D Max to model an
indoor virtual environment consistent with a real environment, including the evacuation
guidance system. In this paper, we constructed our VR experimental environment based
on an office (Figure 2).
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2.3. Experimental Design

There were 25 evacuation signs in the research area, including 14 wall signs, 5 hanging
signs, and 6 exit signs. Each sign was 0.25 m long and 0.135 m wide, the height of each
wall sign was 0.6 m, and the hanging signs and exit signs were 3 m tall. For statistical
convenience, this paper divided the evacuation signs into two types: wall signs and
hanging signs. The exit signs are classified as hanging signs with single-sided direction
information. The location and quantity of the original evacuation signs were in line with
the condition of the real research area. In addition, the size and interval conformed to the
standard for fire safety evacuation signs installation [25]. However, the locations of the
signs were not perfect, and some signs indicated unreasonable directions. For example,
there was no sign on the south wall of P2, and sign 1 and sign 15 could confuse evacuees
(Figure 3).

In the process of the experiment, we first chose proper shortsighted lenses for the
participants to ensure that they could see the signs clearly. Then, we told them how to
use the HTC VIVE and gave them some security considerations. Finally, we reminded
the participants that this experiment was an emergency evacuation experiment and that
they needed to find an exit as soon as possible, but the participants were not directly
informed to observe the evacuation signs. The participants used the controller to walk in
the virtual environment, and they could freely observe the environment throughout the
VR headsets. We set the escape speed to 1.5 m/s [23]. Only one participant could carry out
the VR experiment at a time. We encouraged the participants to conscientiously finish the
experiment by offering some rewards, and we increased their tension by setting off a fire
alarm. The process is shown in Figure 4.
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Figure 4. Experimental process. (a) The staff explained the experimental requirements and precau-
tions to the participants. (b) The participants independently completed the experiment.

We conducted two sets of VR experiments. The layout of the evacuation guidance
system was consistent with the real environment in experiment 1 but was optimized
during experiment 2. A total of 89 participants were invited to participate in experiment
1, including 49 males and 40 females. The ages of the participants were between 22 and
29 years old. In experiment 2, 78 participants between 22 and 32 years old were invited,
with 42 males and 36 females. A total of 115 valid data points were collected in experiment
1 and 82 were collected in experiment 2. All participants had basic knowledge of the
emergency escape process and normal or corrected vision. The participants in experiment
1 were different from those in experiment 2, but all participants escaped from P1 and P2
(Figure 3) in experiment 1 and experiment 2, respectively. If the evacuation paths did
not overlap, we considered both to be valid data. If the paths overlapped, and in the
questionnaire the participant confirmed he/she recognized the environment in the second
evacuation, we considered the second evacuation data invalid.

2.4. Formulation of the Perception Model

The social force model is a classic emergency evacuation model based on interesting
phenomena from reality. It combines real physical forces and virtual psychological forces to
simulate escape behavior. The SFM consists of three forces: a self-driving force, a repulsive
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force between pedestrians, and a repulsive force between pedestrians and obstacles such
as walls [23].

The process for controlling the SFM in the desired direction is very simple. People
always move toward a target exit or in a fixed direction. However, in an escape scene,
the desired direction of a given human depends on the information indicated by the local
environment. To solve this problem, this paper constructed a perception model based on
the SFM that enables evacuees to dynamically adjust their desired direction according to
the perceived direction information. This model allows agents to act autonomously in
complex scenarios. We hypothesized that an evacuee would take the initiative to look for
an evacuation sign in the process of escaping and follow the direction of the sign. Evacuees
should continue searching for signs and following signs until they find the exit. In this
study, we define two basic mathematical concepts regarding the decision point and the
evacuation sign. Then, we elaborate on the three algorithms used in the perception model:
the evacuation sign search algorithm, decision point search algorithm, and desired velocity
update algorithm (Figure 5).
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Figure 5 shows the framework of the perception model, which was constructed from
3 algorithms. According to the current position Pm and the velocity Vcur of agent m, we
use the evacuation sign search algorithm to find the nearest sign Sm that the agent can
perceive and obtain the sign direction e. At the same time, we use the decision point search
algorithm to find the nearest decision point Cm and obtain the position Pc, the radius
rc of the decision point, and the distance dmc between the agent and the decision point.
Combined with the above data and the desired velocity update algorithm, we propose the
perception model based on the social force model.

2.4.1. Decision Point Model

Behaviors at decision points are key issues related to the self-driving movements of
agents in an indoor environment, including the choice of which road to take and when
and how to change to the desired direction. Specifically, assuming that the agent is in
an unfamiliar environment, he or she will randomly choose a direction when coming to
a decision point without any prior information. The agent should have already made a
choice before he or she enters the area of the decision point. When he or she enters the
area, he or she smoothly changes from the desired direction to the chosen direction. After
the agent leaves the decision point, he or she should walk along the road until the next
decision point is reached.

Based on this idea, the decision point model was built. The center of a decision point i
is represented by the 2-D position Pi. The decision point has ni directions, of which ek

i is
the k’th direction. The area of the decision point is simplified as a round area with radius ri.
For example, a decision point with four directions (Figure 6).

Some special decision point types exist. We define the road end as a decision point
with only one direction, which enables the agent to turn back at the end of the road. In a
corridor, a fake decision point with two directions could be defined to make the evacuation
sign take effect immediately. The indoor open area is divided into multiple decision points,



ISPRS Int. J. Geo-Inf. 2021, 10, 54 6 of 17

and each decision point is located in front of a road and points to the other roads. By using
all these decision point types, the behavior of the agent is smart and realistic.
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2.4.2. Evacuation Sign Model

The eye tracking data collected from the VR experiments show that pedestrians are
willing to find and follow evacuation signs when evacuating in unfamiliar environments.
Somehow, due to interference from environmental effects, prevailing panic, and other
semantic information, the agent cannot perceive all evacuation signs along his or her
evacuation path.

In model simulations, the modeling of evacuation signs is about how the agent
searches for them, when the agent can perceive them, and how the agent behaves in
terms of following their instructions. Specifically, the agent may continue searching for
evacuation signs during an evacuation and try to perceive the nearest evacuation sign. An
evacuation sign can be perceived only if it is in the line of sight of the agent, the distance
is not too long, and the angle between its normal direction and the agent is under some
constraints. The evacuation sign instructs the agents which direction to choose at the
nearest decision point.

Accordingly, the evacuation sign model is proposed. The indicated direction of the
j’th sign for the i’th decision point is called Si

j, for which Pj is the location, nj is the normal

direction, hj is the height, and ei
j is the evacuation direction (Figure 7). After the decision

point and sign models are built, we can mathematically define the behavior of the agent
under the effect of the evacuation sign system.
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2.4.3. Evacuation Sign Search Algorithm

The evacuation sign search algorithm describes the conditions under which an agent
can perceive an evacuation sign. Figure 8 shows that agent m perceives an evacuation
sign Si

j. Since there is no predetermined direction in the SFM, the direction of the current
velocity vcur is used as the heading direction. dmj is the vector from the eyes of m to the
center of Si

j. d′mj is the projection of dmj on the XOY plane (Figure 8). Agent m can perceive

evacuation sign Si
j when the following conditions are met:

(1) Si
j is not blocked by walls or other obstacles.

(2) ‖dmj‖ < dmax.
(3) The time to observe Si

j is longer than a threshold dtmin.
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(4) Si
j is in the sight of m. This means that the angle between dmj and vcur, which is

θmj = arccos
( dmj ·vcur
‖dmj‖‖vcur‖

)
, satisfies θmj ∈ (θmin, θmax).

(5) The horizontal angle between dmj and nj, which is αmj = arccos
(

d′mj ·nj

‖d′mj‖

)
, satisfies

αmj ∈ (αmin, αmax).

(6) The vertical angle between dmj and nj, which is βmj = arctan
(

hj ·hm
‖dmj‖

)
, satisfies βmj ∈

(βmin, βmax).
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Taking all the evacuation signs that satisfy the above conditions as a set S, the agent
will follow the instructions of the nearest sign Sm ∈ S.

2.4.4. Decision Point Search Algorithm

We assume that regardless of the condition, the agent can always perceive whether
he or she is at a decision point or not. Therefore, as long as conditions 1 and 4 in the
evacuation sign search algorithm are satisfied, that is, the decision point is not blocked by
obstacles, it is considered that the decision point can be perceived. If all decision points
that meet the conditions are taken as a set C, agent m will automatically select the nearest
decision point Cm ∈ C and adjust the direction of his or her desired velocity.

2.4.5. Desired Velocity Update Algorithm

After perceiving an evacuation sign, the agent will remember the information but
will not immediately adjust his or her desired velocity. When the agent enters the area
of a decision point, that is, when the distance d between the agent and the decision point
center is less than the decision point radius, the agent adjusts his or her desired velocity
according to the direction indicated by the sign. If the agent does not see the sign about the
decision point, he or she will randomly choose a non-coming direction in which to adjust
the desired velocity. One problem is that if the desired velocity is changed directly, the
agent will turn abruptly and be more likely to hit the wall than if the velocity is changed
indirectly. We hope that the agents can adjust their directions smoothly. Therefore, we
construct the following desired velocity update algorithm.

As Figure 9 shows, the current position of an agent is P, v is his or her desired velocity,
P0 is the decision point center, and e is the evacuation direction of the decision point. We
expect the agent to move along arc l to achieve a natural turn. The desired velocity at the
next moment vt+1 = f (P, P0, e, vt) is related to the current position of the agent, the central
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position and direction of the decision point, and the desired velocity at the last moment. To
obtain the form of the function f, the following calculations are carried out.
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The relationship between angular speed ω and linear velocity v is as follows:

ω =
‖v‖

d · tan θ
2

(1)

If we calculate tan θ
2 and α, we can obtain ω. Because θ = π − α:

tan
θ

2
=

1 + cosα

sinα
(2)

According to the cross product and dot product of v and e, we have:

sinα =
v× e
‖v‖‖e‖ (3)

cosα =
v · e
‖v‖‖e‖ (4)

Let the equation of the line e be Ax + By + C = 0, and −A/B is the slope of the line e,
which equals ye/xe, then:

A = ye (5)

B = −xe (6)

The equation of the line can be written as yεx− xεy + C = 0, and P0 is a point on the
line, so:

C = xey0 − yex0 (7)

The distance d from P to the line is:

d =

∣∣∣∣Ax + By + C√
A2 + B2

∣∣∣∣ (8)

Therefore, we can calculate ω. Since there is a reaction time ∆t between the desired
velocity and the current velocity in the SFM, the direction of the desired velocity turns
ω · ∆t after the reaction time. Therefore, the new formula of the desired velocity is as
follows:

vt+1 = R · vt (9)
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The rotation matrix is:

R =

[
cos(ω · ∆t) −sin(ω · ∆t)
sin(ω · ∆t) cos(ω · ∆t)

]
(10)

In addition, there are two situations for which the desired velocity is updated. For a
dead end (a decision point with only one direction), if the distance between the agent and
the center of the decision point is less than a threshold dreturn, the direction of the agent is
reversed immediately so that the agent can turn around autonomously. In other cases, the
desired velocity remains constant.

Considering all the cases above, we can construct a model to adjust the desired velocity
of the agent. If the distance between the agent and the nearest decision point is dmi, then:

vt+1 =


f (P, P0, rand

n
(en), vt),

f (P, P0, e, vt),
−vt,
vt,

dmi < ri, sm not exists
dmi < ri, sm exists

dmi < dreturn, ni = 1
others

(11)

In conclusion, whether the evacuee can perceive an evacuation sign depends on
some parameters, including the maximum perception distance dmax, perception time dtmin,
viewing angles of the agent θmin and θmax, horizontal angles of the sign αmin and αmax, and
vertical angles of the sign βmin and βmax. However, these parameters are unknown. We
believe that a sign perception process starts from noticing the sign to fully understanding
the sign information. From the perspective of eye tracking data, the process starts from
the first eye tracking point to the last eye tracking point. Therefore, the sign perception
time is the time span between these two points. Based on the relative position between
evacuees and evacuation signs at the time the last eye tracking point was obtained, we can
calculate the perception distance and perception angle range. Assuming uniform linear
motion between two timestamps of the trajectory data, we use linear interpolation on the
trajectory data to align the eye tracking data. In the next section, the trajectory data and the
eye tracking data are combined to calculate these parameters.

3. Results
3.1. Emergency Sign Perception Parameter

In this section, the eye tracking data and the trajectory data are quantitatively analyzed
to obtain the parameter thresholds mentioned above.

Figure 10 shows the perception times and frequencies of all evacuation signs. Except
for sign 11 and sign 12, which no one perceived, the remaining 12 wall signs were all
perceived, and 4 of the 5 hanging signs and 1 of the 6 exit signs were perceived. From the
statistical analysis, we found that the average perception time for the evacuation signs was
291 ms, and most signs’ perception times were less than 500 ms (Figure 10a). Comparing
the perception times of wall signs and hanging signs, we found that the average perception
time of hanging signs was relatively low. Most likely, this was because the hanging signs
were perpendicular to the escape directions, so they were easier to see clearly. Figure
10b shows the number of times each sign was perceived, the wall signs were perceived
345 times and the hanging signs were perceived 39 times. This demonstrates that wall
signs had a higher perception rate than hanging signs during the simulated emergency.
This result is consistent with [2]. The two peaks in Figure 10b are signs leading to the best
escape routes from P1 and P2.
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Figure 10. Perception times (a) and frequencies (b) of evacuation signs.

Figure 11 takes 5 degrees as an interval for calculating the horizontal and vertical
angles between evacuees and evacuation signs when the signs are perceived. Figure 11a
shows a statistical histogram of the horizontal angles. We assumed that the horizontal
angle meant no difference no matter the people on the left of the sign (negative angle) or
on the right of the sign (positive angle). Thus, the absolute values are shown in Figure 11.
In general, the perception frequency decreased with increasing horizontal angle. However,
two peaks appeared near 45◦ and 75◦. The data of the two peaks occurred mostly on signs
2, 4, and 5. On the one hand, these signs were near decision points, which means that
the participants could observe the sign across the decision point from the other road at
certain angles. On the other hand, these signs were on the major evacuation path starting
from P1, which means that the observation frequency was high. Thus, these certain angles
became two peaks. Note that the wall signs were perceived in a wide angle range, while the
hanging signs were perceived at a low angle. This could indicate that wall signs are easier to
observe from different angles than hanging signs. Figure 11b shows a statistical histogram
of the vertical angles. Because hanging signs are usually higher than eye level, while wall
signs are usually lower than eye level, and the vertical angles of the two types of signs
were distributed in two completely different regions. We believed that the intervals with
too few observations were not statistically significant. Therefore, all intervals with fewer
than five perceptions were excluded. According to statistics, the range of the horizontal
angle was [0◦, 85◦], the vertical angle range of the hanging signs was [15◦, 30◦], and the
vertical angle range of the wall signs was [−50◦, −10◦].
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Figure 12 shows the distances at which evacuees observed the signs, and the vertical
axis is the probability density of different distances. The data basically conformed to the
normal distribution, with a mean of 3.22 m and a variance of 0.93 m2. Taking the 95%
confidence interval, we obtained a maximum perception distance of approximately 5.15 m.
We considered that under critical situations, evacuees can perceive evacuation signs when
the distances were less than the maximum threshold.
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3.2. Optimization of Evacuation Guidance Systems

By analyzing the hotspot chart of escape trajectories and eye tracking data, we found
the deficiencies in the existing evacuation guidance systems and conducted optimization.
Figure 13a shows a hotspot chart of the escape trajectories, and the participants started
from P1 or P2. By analyzing the escape trajectories, we found detour behavior and then
optimized the corresponding areas. Figure 13c shows the eye tracking data. Participants
started from P1 and P2, respectively, and the two starting positions had different paths
to the nearest exits. So, the red area on the left was mainly the hot path starting from P2,
while the red area on the right was mainly the hot path starting from P1. However, the
two hot paths were not contiguous. Compared with Figure 13b, the frequencies of the
eye tracking data at locations with signs were higher than those at other locations. On the
other hand, adding signs in some areas with high-frequency eye tracking data but without
evacuation signs could optimize the guidance system. Theoretically, the nearest exit to P1
was E1 and that of P2 was E4. However, we could see that some evacuees did not follow
the best path to the nearest exit. A few evacuees did not see exit E4 and ultimately escaped
from exit E5, which wasted time. Therefore, we added sign 30 pointing to exit E4 in area
of interest G. Figure 13a shows, there were some evacuees in area A that started from P1
because sign 1 was bidirectional. Therefore, we changed sign 1 to a single-direction sign
pointing to the right. Area B was a dead end, so we added sign 27, hoping that evacuees
entering area B could see the sign and turn around as soon as possible. Area D was also
a dead end but sign 23 was a hanging sign. From the previous analysis, the perception
rate of the hanging sign was low. Therefore, we added a wall sign 31 pointing to exit E5 in
area of interest F, hoping that evacuees could see this sign and move directly to the exit to
avoid entering area D. The lack of a sign in area C caused confusion when evacuees passed
through the corridor, so we added sign 28 and sign 29 in the area of interest. Area E was a
long corridor, and some evacuees entered the corridor when they missed exit E2, which
increased the escape time. Therefore, we added sign 26 and moved sign 10 to the areas of
interest according to the eye tracking data. Finally, there was no exit sign on the door at E5,
so we added sign 32.
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Figure 14 shows the comparison of the trajectory hotspot charts before and after opti-
mization of the evacuation guidance system. Participants escaped from P1 in Figure 14a,b
and escaped from P2 in Figure 14c,d. Comparing Figure 14a,b, we found that after the
optimization procedure, almost all evacuees starting from P1 escaped from the nearest exit
E1. Evacuees did not take a detour to area A. Comparing Figures 14c and 14d, we can see
that evacuees starting from P2 avoided detouring in area C. In the optimized evacuation
guidance system, evacuees from P2 (Figure 14d) were divided into left and right routes.
Most evacuees chose the left route and escaped from E4, and a small number of evacuees
missed E4 and ultimately escaped from E5. All evacuees who chose the right route escaped
from E1. Interestingly, some evacuees did not find the nearest exit E1 and escaped from
E2 (Figure 14b,c), while no evacuees escaped from E2 in Figure 14d. We believe this is
related to the influence of ignorance of signs during emergencies as illustrated in [26]. This
phenomenon has been proven with eye tracking experiments, showing that the normal
sign detection probability is approximately 79% with no surrounding people.
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3.3. Model Simulation of an Emergency Evacuation

We simulated the evacuation process using the perception model in a virtual envi-
ronment with an original guidance system and an optimized guidance system. Similar
to the VR experiments, we performed the model simulation using P1 and P2 as starting
points 50 times each. Figure 15 shows the hotspot charts of the simulated trajectories. A
comparison with Figure 14 shows that the model simulation results were basically the
same as the results of the VR experiments, whether for the original guidance system or the
optimized guidance system. Specifically, approximately half of the agents chose the left
route, and half of the agents chose the right route since sign 1 was a bidirectional evacuation
sign (Figure 15a). Most evacuees on the left escaped from E4, some escaped from E5, and a
few escaped from E1 and E2 after detouring in area A. After optimization of the evacuation
guidance system (Figure 15b), evacuees starting from P1 almost all escaped from E1, and a
few escaped from E2, and this was consistent with the verified VR experiment 2 results.
The agents starting from P2 in the original guidance system were also divided into two
routes (Figure 15c), where more agents chose the left route than the right route. In area C,
some agents turned around after perceiving sign 1, lengthening the escape route. Note that
some agents turned around at a certain distance from the dead end in area B, which was
consistent with the VR experiments. After optimization (Figure 15d), most agents escaped
from E4, and a few agents escaped from E1 and E2 on the right. The turn-around behavior
in area C disappeared after the optimization of sign 1.

To quantitatively evaluate the difference between the spatial distributions of the
trajectory data of the VR experiments and the model simulations, the frequency values of
eight hotspot charts in Figures 14 and 15 were extracted. After the areas with no data were
excluded, the data were grouped into four paired data, and each pair was the value of the
same pixel from the VR experiment and the model simulation, respectively. The Pearson
correlation coefficient test was employed on these data. The results (Table 1) show that the
Pearson correlation coefficient were all positive, meaning that the four paired datasets were
positively correlated. The values of 0.47–0.67 could be regarded as very high considering
that the trajectories were affected by complicating factors. The p-values indicate that the
results were statistically significant. Thus, we consider the spatial distribution of the
trajectory of the perception model and the VR experiment to be basically the same.
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result with the original sign system, and participants starting from P1; (b) Simulation result with the optimized sign system,
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Table 1. Pearson correlation coefficient test of the trajectory spatial distribution between the VR
experiments and the model simulations.

Position Pearson Correlation Coefficient p-Value

P1 of the original sign system 0.479 <0.05
P2 of the original sign system 0.526 <0.05
P1 of the optimized sign system 0.639 <0.05
P2 of the optimized sign system 0.676 <0.05

The average escape time and distance of the VR experimental results and model
simulation results are listed in Table 2. By comparing the results, we can see that the escape
times and distances in P1 were consistent, while in P2, there were some differences. We
believed this was related to random behavior. For example, some evacuee detour behaviors
were not reflected in the model simulation results, as seen by comparing Figures 14 and 15.
T-tests and F-tests were performed on these results, and only 5 p-values (most were P2
in the original sign system) out of 16 were statistically significant, which rejected the null
hypothesis that the two samples were same. The difference was mainly produced by a few
participants wandering in the office building, which prolonged the average length of the
trajectory and the average time of evacuation. We believed it was affected by behaviors
(such as panic, etc.) that we cannot model in the perception model. However, the ratio of
wandering participants was low, which means this was probably not a common pattern and
the difference was acceptable. Thus, in terms of evacuation time and distance, we think that
the VR experiment results and model simulation results were basically the same. Besides,
although the absolute values of the results were different, the trends of the escape times
and distances for the model simulations fit the results of the VR experiments well. Thus,
we can quantitatively evaluate the improvement achieved by the optimized evacuation
guidance system through model simulation. Comparing the results before and after the
optimization procedure, the average escape time and distance of the optimized guidance
system were obviously better than those of the original guidance system. The average
escape time and distance of P1 and P2 were reduced by 37% and 28%, respectively.
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Table 2. Comparison of the time and distance of the VR experiments and the model simulations.

Position Resource Time (s) p-Value of
t-Test

p-Value of
F-Test Distance (m) p-Value

of t-Test
p-Value
of F-Test

P1

Original VR 41.2
0.48 0.73

57.51
0.89 0.47Original Model 38.78 56.85

Optimized VR 28.67
0.12 0.16

38.89
0.24 0.79Optimized Model 24.5 35.92

P2

Original VR 59.91
<0.05 * <0.05 *

78.57
<0.05 * <0.05 *Original Model 40.8 59.69

Optimized VR 33.95
0.09 0.04 *

43.71
0.87 0.2Optimized Model 29.57 43.16

* Statistically significant at 95% confidence interval.

Single agent model simulations were conducted for comparison with the VR exper-
iment, which was limited by the hardware condition. However, the model proposed in
the paper was also able to simulate the multi-agent scenarios, which were more common
in reality. Thus, a simulation of 100 agents was performed to show this capability. The
simulation results showed that the evacuation efficiency with the optimized sign system
was greatly improved. It took 54 s for all the 100 agents to escape with the original sign
system, while it only took 34 s in the optimized sign system. The time reduction was 37%,
which was identified with the result of the single agent model simulation. Note that the
trajectories of the agents showed great diversity under the joint driving force of SFM and
the perception model. Especially in the open area, the agents can move around to avoid
others instead of sticking to the course shown in the single agent simulation (Figure 15).

4. Discussion and Conclusions

Evacuation guidance systems are important in building evacuation. Limited work
has been conducted on models for quantitatively optimizing and evaluating evacuation
guidance systems. This paper proposed a perception model to be used in practice instead of
the VR experiments, to optimize and evaluate evacuation guidance systems. A framework
of optimizing and evaluating processes was provided. VR experiments were conducted to
determine the parameter values of the perception model, to improve the evacuation guid-
ance system by qualitative analysis, and to validate the perception model. The simulation
results showed that the agents in the perception model had the ability to perceive signs
in virtual environments and escape from the scene according to the evacuation guidance
system. The main findings of this paper are as follows:

(a) The average perception time for the evacuation signs was 291 ms, and most sign
perception times were less than 500 ms in emergency evacuations. The horizontal
angle range of the signs was [0◦, 85◦], the vertical angle range of the hanging signs
was [15◦, 30◦], and the vertical angle range of the wall signs was [−50◦, −10◦]. The
maximum perception distance was approximately 5.15 m.

(b) The wall signs had a higher perception rate than the hanging signs, but the average
perception time of the hanging signs was lower.

(c) We optimized the evacuation guidance system in the research area, by adding seven
signs, changing a sign’s direction, and moving a sign’s location.

(d) The perception model proposed in this paper can quantitatively evaluate an evacua-
tion guidance system before and after optimization, with the average escape time and
distance of P1 and P2 reduced by 37% and 28%, respectively.

In this study, we found that evacuees moved according to the information of the
perceived signs. This behavior was in line with that presented by Libi Fu et al. [27]. Besides,
people tended to evacuate via the nearest exit as pointed out by Kobes et al. [28]. In the
escape process, evacuees would follow the sign information if they perceived the sign.
However, a perception rate existed, which indicated that the evacuee may ignore the sign
within the visual range [9,26]. It was found in this paper that the wall signs yielded a
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higher perceptual rate than the hanging signs just as the result in [2,29]. Ding studied
the effectiveness of evacuation signs based on eye tracking experiments and analyzed the
perception time of different signs. The results showed that the perception time of hanging
signs was less than that of wall signs [30]. This was consistent with our result. Filippidis
stated that a horizontal angle >85◦ would make a sign invisible similar to the horizontal
angle presented in this paper [30]. Wong performed experiments in a corridor to determine
the perception distance [31], which was longer than that in this paper. There were two
reasons that may account for this difference: First, the participants were directly informed
to perceive the sign in their experiment but not in this paper. Second, the participants
were concentrating on observing the sign in their experiment but were distracted by
interior factors, such as panic, and external factors, such as decoration in the scene in
our experiments.

Note that the research background of this paper is emergency evacuations. We believe
that the perception parameters of escape behaviors during emergencies are different from
those in normal situations. Therefore, the perception parameters proposed in this paper
are for emergency situations. In addition, this paper only studies the optimization and
evaluation method of evacuation sign systems but cannot propose setting schemes. The
heterogeneity of pedestrians is not considered in this paper. In future research, the refined
expressions of observation parameters, group behaviors, and interactions between people
and environmental factors (such as light and smoke) should be thoroughly studied, as
these factors are of great significance for improving the effectiveness of the model.
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