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Abstract: Land use and land cover are continuously changing in today’s world. Both domains, 

therefore, have to rely on updates of external information sources from which the relevant land 

use/land cover (classification) is extracted. Satellite images are frequent candidates due to their tem-

poral and spatial resolution. On the contrary, the extraction of relevant land use/land cover infor-

mation is demanding in terms of knowledge base and time. The presented approach offers a proof-

of-concept machine-learning pipeline that takes care of the entire complex process in the following 

manner. The relevant Sentinel-2 images are obtained through the pipeline. Later, cloud masking is 

performed, including the linear interpolation of merged-feature time frames. Subsequently, four-

dimensional arrays are created with all potential training data to become a basis for estimators from 

the scikit-learn library; the LightGBM estimator is then used. Finally, the classified content is ap-

plied to the open land use and open land cover databases. The verification of the provided experi-

ment was conducted against detailed cadastral data, to which Shannon’s entropy was applied since 

the number of cadaster information classes was naturally consistent. The experiment showed a good 

overall accuracy (OA) of 85.9%. It yielded a classified land use/land cover map of the study area 

consisting of 7188 km2 in the southern part of the South Moravian Region in the Czech Republic. 

The developed proof-of-concept machine-learning pipeline is replicable to any other area of interest 

so far as the requirements for input data are met. 

Keywords: machine learning; land use; land cover; satellite imagery; Sentinel 2; image classification; 

cloud masking; LightGBM estimator 

 

1. Introduction 

Land use and land cover are commonly used as synonyms and are often merged into 

a single dataset. The abbreviation LULC (land use/land cover) is used for this concept. 

Nevertheless, land use and land cover refer to different phenomena. In part, we can view 

land use as an extension of land cover, considering that it describes human activities, most 

of which being firmly bound to a certain surface type (land cover type).  

Fisher, Comber, and Wadsworth [1] argued that the advent of remote sensing (RS) 

in the 1970s caused a shift in the perception of land use and land cover. Previously, there 

was a tendency to collect land use data as they were (and still are) primarily useful for 

practical applications (such as infrastructure building and territorial and urban planning). 

The ease of acquisition and the use of satellite imagery outweighed its disadvantage—the 

lack of implicit contextual information. It was thus impossible to derive many (high-level) 

land use classes, and that which we nowadays map and refer to as “land cover” might 

accommodate much land use information. It should be noted that in recent years, several 
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studies have yielded interesting results in deriving pure land use information, even from 

satellite imagery [2–5].  

Another source of confusion relates to institutional objectives [1]. The semantic mix-

ture of LULC is most apparently reflected in today’s major classification systems [6–8]. 

These have utilized both terms based on initial data and a concurrent discussion with 

users. They often need to associate local systems to perform on the national or interna-

tional levels. This has resulted in multi-tier classifications whose elements attempt to 

match many of the previous systems, and the reason for blending LULC classes is their 

even representation within a vast geographic space. If we strictly take land use as the main 

building block, its categorization often eliminates more sophisticated land cover differen-

tiation in natural space. That leads to its excessive homogenization across vast natural 

areas [1]. This conversely applies in the urban environment [9]. In reality, it is thus a com-

mon practice for global LULC datasets to be driven by land cover in areas with extensive 

use and by land use in areas with intensive use [10]. Nowadays, there are many land 

monitoring programs in the world that design LULC data in this way. The example elab-

orated in [1] was the USGS (United States Geological Survey) classification system, but 

the European CORINE Land Cover (CLC) [11], Urban Atlas (UA) [12], and HILUCS (Hi-

erarchical INSPIRE Land Use Classification System) [13] classifications were prepared in 

a similar fashion.  

Several open LULC databases have been produced within the last decade. Among 

others, the OSM (Open Street Map) Landuse Landcover database [14] was derived from 

the widely used Open Street Map. The map currently covers Europe, while other conti-

nents are being processed. GAP/LANDFIRE National Terrestrial Ecosystems 2011, which 

is available for the United States of America [15], comprises an example of data available 

for areas other than Europe. Globally available data sources such as Global Land Cover 

SHARE (GLC-SHARE) provided by the FAO (Food and Agriculture Organization of the 

United Nations) are characterized by a relatively lower spatial resolution (e.g., 1 km per 

pixel) [16] 

This paper describes the development of an Earth observation-based machine learn-

ing pipeline to update two related LULC products: the open land use (OLU) database and 

the open land cover (OLC) database. The presented approach can be understood as a 

proof-of-concept that derives LULC-relevant information from Sentinel-2 imagery 

through machine learning methods. The main goal of the presented paper is to provide a 

machine learning-based pipeline that: 

(1) Collects Sentinel-2 imagery. 

(2) Filters cloudiness through multitemporal vectors. 

(3) Examines the possibility of the pipeline to perform LULC classification over the im-

agery.  

(4) Semi-automatically updates OLU/OLC databases accordingly. 

The presented approach is intended to be replicable with respect to any other area of 

interest in the world if the requirements for input data are met. Inputs from satellite im-

agery to LULC databases can be provided in near real time. The presented approach meth-

odologically originated from and was based on the work achieved by Lubej [17,18]. 

2. Related Research 

The Landsat satellite missions have been a basis for LULC information for almost the 

last 50 years. More recently, Sentinel-2 data have provided a higher spatial resolution (see 

Section 3.1.1. Open Land Use and Open Land Coverfor details). Sentinel-2 data are un-

derstood as the most detailed open-access satellite data suitable for LULC derivations 

with global coverage. Sentinel-2 data are being used for many different purposes, such as 

forest monitoring, agriculture, natural hazards monitoring, urban development, local cli-

matology, and hydrological regime observation, i.e., [19–25].  
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Bruzzone et al. [26] stated LULC mapping to be one of the essential applications for 

Sentinel-2 data. The literature review made by Phiri et al. [27] showed that the usage of 

Sentinel-2 data can produce high accuracies (more than 80%) with appropriate machine-

learning classifiers such as random forest (RF) and support vector machine (SVM). On an 

implementation level, Cavur et al. [28] used an SVM for Sentinel-2 data processing to 

LULC mapping. Zheng et al. [4] applied RF to the classification of Sentinel-2 imagery, 

Weigand et al. [29] combined this method with LUCAS (Land Use and Coverage Area 

frame Survey) in-situ data. Nguyen et al. [30] also practically verified the applicability of 

Sentinel-2 data for LULC mapping in tropical regions. Sentinel-2 data can also be pro-

cessed for LULC mapping using deep learning methods [31]. 

Atmospheric correction is essential for accurate automated LULC classification be-

cause it can influence and change the final classification result [32]. A good understanding 

of LULC and their dynamics is one of the most efficient means to understand and manage 

land transformations [33,34]. Cloud masking is a crucial part of atmospheric correction, 

as clouds are not trivially distinguishable from other bright surfaces such as snow and 

water. Similarly, it is hard to detect thin clouds, such as cirrus, which alter spectral behav-

iors of underlying surfaces [35]. Several methods have been developed for cloud masking, 

adopting both spectral and object-based models [35–37]. Hollstein et al. [37], for instance, 

assessed cloud detection algorithms in the Python environment from the view of imple-

mentation complexity, speed, and portability. They concluded that classical Bayesian clas-

sifier and random forests are good candidates for advanced cloud masking in an estab-

lished workflow.  

Among other products, Fmask [38] and Sen2Cor processors have gained widespread 

popularity. Fmask is nowadays used primarily for Landsat imagery; however, its recent 

updates [39,40] showed promising detection results for Sentinel-2 data as well, with an 

overall accuracy (OA) of up to 94%. Due to omission errors of lower-altitude clouds, the 

authors have not implemented these updates for Sentinel-2 at the time of writing this pa-

per [41]. Sen2Cor, a native Sentinel-2 processor, introduced atmospheric and radiometric 

corrections (such as cirrus correction), which results in an image on the Level-2A (L2A) 

processing level. It produces a scene classification layer (SCL) at a 20-meter resolution 

with cloud probabilities and several terrestrial-surface classes [42]. Baetens et al. [43] val-

idated their own active learning cloud masking method against Fmask, Sen2Cor, and 

MAJA [44] processors. Sen2Cor performed 6% less accurately on average compared to the 

other two (with an OA of around 84%).  

Another issue for the subsequent processing of corrected data is the classification it-

self. A wide range of classifiers including both parametric classifiers (logistic regression) 

and non-parametric machine learning classifiers (k-nearest neighbors, RF, SVM, extreme 

gradient boosting, and deep learning) can be used for LULC classification [45,46]. A com-

parison of the effects of these classification algorithms is beyond the scope of this paper. 

The LightGBM estimator [47] was used for the classification in the scope of this paper. 

The LightGBM estimator is an algorithm based on the machine learning method of gradi-

ent boosting decision tree [47]. This algorithm was chosen because it is suitable for the 

processing of larger training datasets and because the obtained results can be compared 

with the work of Lubej [17,18] and eo-learn [48,49]. 

This paper builds on and enhances the contemporary approaches described above. 

Moreover, the presented machine learning-based pipeline development represents a 

proof-of-concept for an explicit data store consisting of OLU and OLC databases.  
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3. Materials and Methods 

3.1. Materials 

3.1.1. Open Land Use and Open Land Cover 

OLU [50] is an online spatial database and a geographic information system (GIS) 

that aims to provide fine-scale, harmonized LULC pan-European data from freely availa-

ble resources [51]. OLU was created and is maintained by Plan4All, a non-profit umbrella 

organization (https://www.plan4all.eu/). Since 2020, OLU also covers Africa [52]. As of 

the end of 2019, OLU’s principal result was a compiled, seamless LULC map (OLU base 

map) [53]. The data are downloadable in the ESRI shapefile format or accessible from 

Open Geospatial Consortium standard application user interfaces (APIs)—Web Map Ser-

vice [54] and Web Feature Service [55]. Interoperability is the main motivation to offer 

other options of data retrieval, enabling the retrieval of automation and the simplification 

of usage in other GIS.  

The backbone of the OLU base map consists of two European LULC datasets—

Corine Land Cover and Urban Atlas: 

 UA is a pan-European LULC dataset developed under the initiative of European 

Commission as a part of the ESA (European Space Agency) Copernicus program. The 

data cover only functional urban areas [56] of the EU (European Union), the EFTA 

(European Free Trade Association) countries, West Balkans, and Turkey. The most 

recent Urban Atlas dataset came from 2018. It distinguishes urban areas with a min-

imal mapping unit (MMU) of 0.25 ha and 17 urban classes and distinguishes rural 

areas with an MMU of 1 ha and 10 rural classes [57].  

 CLC is an EU LULC dataset provided by the European Environment Agency. It is 

produced from RS data: the most recent 2018 version was especially supplemented 

with Sentinel-2 satellite imagery. CLC 2018 covers EEA39 (European Environment 

Agency) countries and distinguishes 44 mixed land use and land cover classes with 

an MMU of 0.25 ha of polygon features and 100 m of linear features. CLC also fea-

tures observing LULC changes with an MMU of 5 ha [58]. 

Though these datasets are probably the most valuable LULC sources for OLU, four 

main issues have identified, and these are believed to be the objectives that OLU is trying 

to deal with:  

 The MMU of CLC is 0.25 ha (500 × 500m), and the MMU of UA in rural areas is 1 ha 

(100 ×100 m). 

 The MMU of UA goes down to 0.1 ha (approximately 31 ×31 m) in urban areas, but 

the dataset covers only functional urban areas and is not seamless.  

 The update period for both datasets is 6 years. 

 Even a combination of both datasets is insufficient to cover certain areas in Europe. 

The OLU/OLC development team has been collecting country-level datasets with 

LULC information in order to offer a higher precision and more frequent updates. The 

Registry of Territorial Identification, Addresses, and Real Estates [59] is an example of 

such a dataset for the area of the Czech Republic. The collection of local datasets is cur-

rently one of the major working processes. The remaining information gap is bridged by 

RS methods including automatic image classification in cases of insufficient or missing 

sources.  

The latest work aimed at deriving an OLC database. Such a derivation imports fea-

tures from the OLU/OLC databases and should add land cover features from satellite ma-

chinery. The pipeline described in this paper supports the OLC with relevant land cover 

input data. 
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3.1.2. Sentinel-2 Data  

Along with NASA (National Aeronautics and Space Administration) Landsat satel-

lites, European Space Agency’s (ESA) Sentinel satellites are the most significant providers 

of recent free earth observation data. Multispectral Sentinel-2 satellites, operating glob-

ally, are a part of the Copernicus program, whose main target is to monitor natural and 

human environments, as well as to provide added value to European citizens [57]. Senti-

nel-2 has been fully operating since 2015 as a single Sentinel-2A satellite. Since 2017, it has 

been complemented with the Sentinel-2B satellite, which decreased the revisit time from 

10 to 5 days in most places [60]. Sentinel-2 carries multispectral instrument (MSI) sensing 

in 13 bands from near-VIS to SWIR regions, in geometrical resolutions of 10 m at 4 bands, 

20 m at 6 bands, and 60 m at 3 bands; see Table 1 [61]. The radiometric resolution of all 

bands is 12 bits, which enables the distinguishing of 4096 light intensity values. The swath 

width of the sensor is 290 km. There are three processing levels of Sentinel-2 images, two 

of which are available for download: Level-1C (L1C) provides top-of-atmosphere reflec-

tance. L2A possesses additional radiometric corrections and provides bottom-of-atmos-

phere reflectance; however, it only covers Europe and has been available since 2018. Both 

levels are orthorectified [60]. There are minor differences in band placements within the 

spectrum between Sentinel-2A and Sentinel-2B. Sentinel-2 images can be obtained from 

various sources, the official is Copernicus Open Access Hub https://scihub.copernicus.eu/. 

While they are downloaded as zip files, their native format is a SAFE file, which has a 

formalized folder tree with single-image products [61]. Being pan-European, freely avail-

able, and disposing of some higher resolutions in comparison with the other free conven-

tional satellites (such as Landsat 8) [62], Sentinel-2 has a good data potential for enhancing 

OLU/OLC with classified LULC data. In this paper, multi-temporal Sentinel-2 imagery 

was used as a key data source for the processing pipeline in Section 3.2.1.  

Table 1. Sentinel-2 multispectral instrument (MSI) band parameters. 

Band 
Band Name/Spectral Re-

gion 

Central Wavelength (nm) Geometric 

Resolution 

(m) Sentinel-2A Sentinel-2B 

1 Coastal aerosol (NVIS) 443.9 442.3 60 

2 Blue (VIS) 496.6 492.1 10 

3 Green (VIS) 560.0 559.0 10 

4 Red (VIS) 664.5 665.0 10 

5 Vegetation red edge (NIR) 703.9 703.8 20 

6 Vegetation red edge (NIR) 740.2 739.1 20 

7 Vegetation red edge (NIR) 782.5 779.7 20 

8 NIR 835.1 833.0 10 

8a Narrow NIR 864.8 864.0 20 

9 Water vapor (SWIR) 945.0 943.2 60 

10 Cirrus (SWIR) 1373.5 1376.9 60 

11 SWIR 1613.7 2185.7 20 

12 SWIR 2202.4 2185.7  20 

3.2. Methods 

3.2.1. Development of the Processing Pipeline for the Supplementation of OLU/OLC 

with RS Data  

Land use and land cover information in OLU/OLC in some parts are unavailable, too 

coarse, or entirely missing. Earth observation data and the methods of spectral-oriented 

image classification have been proved reliable sources of acquiring relevant land cover 

and partly also land use information [63,64]. The backbone of the presented methodology 
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was inspired by Lubej [17,18]. Only the imagery classification was implemented based on 

the underlying methodology. Lubej’s methodology [17,18] also comprised a collection of 

Sentinel-2 imagery and cloudiness filtering; however, he utilized the paid Sentinel Hub 

infrastructure. The following features were, therefore, newly developed in an open way: 

the collection of Sentinel-2 imagery, cloudiness filtering, and semi-automatic updates of 

OLU/OLC databases. 

The designed processing pipeline utilized the eo-learn library [48,49] with custom 

functionalities to extract LULC data from multi-temporal Sentinel-2 imagery. Machine 

learning estimators (also referred to as classifiers) from the scikit-learn library [65,66] were 

used. A number of design elements were adapted from the implementation methods for 

land cover mapping of the library’s developers [17,18] and from the official eo-learn doc-

umentation [48,49]. While the overall setup of the pipeline could greatly affect the classi-

fication results, some image-processing tasks were predetermined (or omitted), consider-

ing this is a proof-of concept design. The Jupyter Hub platform on the server of the 

OLU/OLC development team was used to write the code and visualize the analytic re-

sults. The following subsections describe the eo-learn library first, followed by the design 

principles of the processing pipeline.  

3.2.2. Eo-Learn: Overview and Rationale of Choice  

Eo-learn is an open-source library developed in the Python programming language. 

It is an object-oriented environment almost exclusively targeted to process RS data. It ex-

ploits the features of several other non-native Python libraries, especially NumPy, Mat-

plotlib, Pandas, and Geopandas. Some important functions are provided by the semi-com-

mercial Sentinel Hub package [67]. There are several properties of eo-lean that give a 

strong rationale to utilize it for amending LULC information in OLU/OLC with RS data:  

 Using eo-learn would comply with the open licensing requirements of OLU/OLC, be-

cause OLU/OLC have been so far developed using open-source software to be finan-

cially sustainable. 

 It should be possible to manipulate and modify the code of the processing operations 

to integrate it into OLU/OLC. Considering the previous point, most open-source so-

lutions, including eo-learn, support such an approach.  

 eo-learn has been primarily developed for Sentinel-2 data; however, it can handle any 

imagery if it is adequately pre-processed. 

Eo-learn offers functional connectivity to the Sentinel Hub platform [68], providing 

processed satellite imagery. This greatly simplifies its acquisition and usage. This feature 

is subscription-based, which means several functionalities were recreated so that the pipe-

line can be operated for free. The description of eo-learn core features is presented in the 

Supplementary Material. 

3.2.3. Manipulating with the Area of Interest  

EOPatches (see the Supplementary Materials) possess data for rectangular bounding 

boxes, so a bounding box of an area of interest (AOI) is either a single EOPatch or can be 

split to smaller bounding boxes (EOPatches). The AOI is converted to a desired CRS (WGS 

84 UTM 33N was predetermined for the proof-of-concept presented in this paper) and 

provides its shape (as a shapely polygon format [69]) and dimensions as inputs to the 

Patcher class. Patcher uses the BBOxSplitter function from the Sentinel Hub library [68], 

which splits the AOI bounding box according to its approximate dimensions. The function 

automatically extracts only such bounding boxes that are contained or intersected by the 

AOI’s geometry. Furthermore, Patcher allows one to choose a patch factor, a multiplier of 

the default dimension-based split, thus enabling one to change the granularity of splitting 

the AOI. Split bounding boxes are parsed to a GeoPandas GeoDataFrame [70] that con-

tains their geometries, IDs, and information for visualization purposes.  
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3.2.4. Training Data Pre-Processing  

The training (or testing) data should best enter the pipeline in raster form, with LULC 

information as the pixel value. If they are in a vector format, it is possible to use the eo-

learn’s VectorToRaster EOTask. The data should be in the WGS 84 UTM CRS, in which 

Sentinel-2 imagery is projected. Because training data can have multiple forms, general-

ized processing is not implemented.  

3.2.5. Custom Acquisition of Sentinel-2 Imagery  

Some functions to retrieve the data, such as the CustomS2AL2AWCSInput EOTask, 

use the Sentinel Hub platform. The platform retrieves Sentinel-2 images from a pre-pro-

cessed mosaic of the Web Coverage Service (WCS) standard [71]. Such functions are there-

fore capable of acquiring data in the form of arbitrary bands, restricted by the selected 

bounding boxes and resampled to single resolution. The usage of Sentinel Hub platform 

is subscription-based. A custom pipeline for acquiring and processing Sentinel-2 images 

was therefore created by utilizing other Python libraries besides eo-learn.  

The S2L2AIMages class was created for retrieving Sentinel-2 imagery on the L2A 

processing level. It accepts a GeoDataFrame of bounding boxes from the Patcher class to 

abstract their total bounding box. It then utilizes the Sentinelsat library [72], which creates 

a Python API, exploiting the Copernicus Open Access Hub [73]. The S2L2AImages class 

wraps Sentinelsat’s functionalities to first show the available image metadata in a Pandas 

DataFrame [74] and allows for the selection of a subset to be downloaded (by image in-

gestion date). The selected Sentinel-2 images are then bulk-downloaded as zip files, and a 

DataFrame of downloaded images is returned for further work.  

3.2.6. Processing Sentinel-2 Imagery for EOPatches  

The acquired imagery is multi-temporal in an inconvenient format (for EOPatches) 

that is not resampled and not scaled to an AOI. All these issues can be resolved by using 

the Sentinel Hub platform-based functions; nonetheless, a custom solution was devel-

oped. The CustomInput class was created as a custom EOTask, which forms EOPatches, 

processes Sentinel-2 L2A imagery, and stores it in the EOPatches. The inputs of this class 

are a path to downloaded images and their DataFrame, produced by the S2L2AImages 

class. Using the DataFrame, images are processed one by one for each EOPatch in the 

following way.  

A Sentinel-2 L2A zip file is accessed with the open class-object from the GDAL library 

[75]. Thanks to the GDAL’s virtual file system handlers [76], there is no need to unzip the 

image, and the open class-object can read any file within an archive. Because Sentinel-2 

imagery is automatically detected, the Sentinel-2 metadata (XML) file [61] is read by de-

fault, resulting in opening the image as a Sentinel-2 GDAL dataset [77]. Its sub-datasets 

represent groups of bands according to their geometric resolution (10, 20, or 60 m). They 

are forwarded for opening by the Rasterio library [78] as in-memory files [79], so that the 

intermediate processing results are stored temporarily and removed after the processing 

chain is completed.  

It was decided to process only 10 and 20 m bands (10 out of 13 bands); 20 m bands 

are first resampled to the 10 m pixel size, using the custom upscale method. The nearest 

neighbor interpolation was selected as a resampling algorithm because it does not create 

new pixel values. All bands are then clipped by the bounding box of a respective EOPatch. 

At the end, the bands are converted to a NumPy array and re-ordered by band number. 

When all images are processed, they are stacked time-wise and band-wise to a four-

dimensional array with the NumPy shape of time × width × height × band (Figure 1). This 

way, they are stored under the key BANDS as the DATA FeatureType to an EOPatch. 

Their ingestion dates are stored in the same order to the TIMESTAMP FeatureType. The 

band name and its in-array order number are added as (Python dictionary) key/value 
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pairs to the META_INFO FeatureType so a user can keep track of how bands are ordered 

in the nested single-image arrays. 

 

Figure 1. Visualization of how image bands stack in time, as stored in an EOPatch (as the DATA 

FeatureType). 

3.2.7. Cloud and No-Data Masking  

To use as many images as possible from the downloaded time range, cloud masking 

must be implemented. SCL (scene classification layer) is a ready-to-use raster in the Sen-

tinel-2 SAFE folder, and it was used as a preliminary cloud masking solution for the pro-

cessing pipeline. 

The adopted AddMask class abstracts SCL from a zip archive similarly to the case of 

bands. It resamples the bands to 10 m and clips them by a respective bounding box. SCL 

is then reclassified to a Boolean array of true (clear) and false (cloudy) pixels in a similar 

manner to that of the work of Baetens et al. [43]; however, the saturated or defective (pix-

els) class was counted as valid. SCL also contains a class with no data, representing places 

where the Sentinel-2 scene has not been captured [42]. Such pixels are also treated as false 

data. Masks are stored in EOPatches under an arbitrary key as the MASK FeatureType, a 

four-dimensional NumPy array. There is a single mask for each image (Figure 2 [80]), so 

the band dimension is always of size one.  
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Figure 2. Sample scene classification layer (SCL)-based mask applied on a Sentinel-2 image. Data 

source: Sentinel-2 image from 14.3.2019. 

An additional mechanism was implemented due to accuracy concerns of the Sen2Cor 

SCL cloud-masking capabilities, as some misclassified clouds in largely cloud-covered 

images might corrupt classification results. Because the initial download of the images is 

restricted by the cloud coverage of the whole scene, no attention was paid to the validation 

of individual EOPatches. The MaskValidation class, inspired by Lubej [17], assesses the 

SCL mask and returns a Boolean value that indicates whether the invalid (false) pixels 

have exceeded a user defined threshold. Booleans are forwarded as decision values to the 

native EOTask SimpleFilterTask, which individually removes undesired images from 

each EOPatch. Because of this mechanism, the temporal distribution of images may now 

be unbalanced among EOPatches.  

3.2.8. Sentinel-2 Multi-Image Features  

Adapting a method devised by Lubej [17], a new class was created for adding multi-

image features, such as ratio-images or normalized indices. The Index DataBase is a com-

prehensive database of formulas for computing some of these multi-image features, in-

cluding those for Sentinel-2 [81].  

The custom EOTask DerivateProduct accepts a user-defined multi-image feature 

name, bands to be used for the computation and a string formula. It then utilizes key/value 

pairs in the META_INFO FeatureType (see Section 3.2.6 ) to target the correct band-arrays 

within an EOPatch.  

3.2.9. Data Post-Processing and Sampling For The Classification Stage  

Once bands and multi-image features are stored in EOPatches, they need to be pre-

pared for the classification, which is a strong domain of eo-learn. Scikit-learn estimators 

contain the fit function, which trains the classification model. As a training material, it 

requires feature vectors of time-independent and band-independent (two-dimensional) 

pixels, where each such vector belongs to an information class the model should be fit 

onto [66]. This is a way of continuous reduction of the spectral feature space on the im-

plementation level. The data in EOPatches must first be reformatted before they are re-

duced in dimensions. The following process, applying for each EOPatch individually, was 

derived from the approach of Lubej [17,18].  
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Holding bands and multi-image features apart in EOPatches is ineffective at this 

point. The native MergeFeatureTask (see also Figure 3) is thus utilized to concatenate all 

DATA FeatureTypes timewise, along the band dimension. This creates a new four-dimen-

sional array with all potential training data.  

 

Figure 3. Merged features (three sample multi-image features on the top of bands) stacked in time 

as the result of the MergeFeatureTask. By this time, they are already filtered by thresholding re-

spective SCL masks (see Section 3.2.7). 

The native EOTask LinearInterpolation must then be introduced to interpolate the 

merged-feature time frames within a selected period and by selected step in days. It first 

burns respective SCL masks to all image features, converting false pixels to no-data val-

ues. New feature time frames are then selected according to the step days, and the closest 

real feature time frames are interpolated to these points in time. The TIMESTAMP Fea-

tureType of EOPatches is overwritten by new timestamps. This operation presents a great 

change of the information value because the results are arrays with artificial (interpolated) 

spectral values. It is nevertheless consistent for all image data in an EOPatch. For instance, 

if 5 step days are chosen, the resulting temporal series behaves as if each Sentinel-2 5-day-

revisit was used (Figure 4).  
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Figure 4. Linear interpolation of merged-feature time frames with five step days chosen. 

One reason for interpolation is a potential temporal imbalance of real feature time 

frames among EOPatches, caused by the additional filtering mechanism (see Section 

3.2.7). More importantly, the interpolation is related to the further feature space reduction 

and feeding such data to a Scikit-learn estimator (see Section 3.2.10). The native 

PointSamplingTask is used to sample a user-defined number of pixels from interpolated 

data. This can be imagined as a pan-pixel feature space reduction – the result is a three-

dimensional array where each pixel “possesses” temporal stack of features (bands and 

multi-image features combined).  

Finally, the EstimatorParser class reduces the temporal and band dimensions from 

sampled features and thus returns the required feature vector. It accepts EOPatch IDs to 

choose only selected patches. All sampled features are merged into a single array, which 

is then reshaped to a two-dimensional matrix. The rows are the pixels, and the columns 

are the features stacked temporally. If the interpolation was not introduced, there would 

be a possibility that for one class and the estimator would train from unequally arranged 

time frames within several feature vectors. The temporal information would thus corrupt 

the classification accuracy.  

LULC data in the MASK_TIMELESS FeatureType are merged as well. Since they are 

already a three dimensional array (there is no temporal information), they are reshaped 

to match the sequence of feature vectors, constituting training class labels. Testing data 

are obtained similarly, but it is nonetheless meaningful to choose different EOPatches.  

3.2.10. Estimator Choice, Model Training, and Prediction 

At this point, Sentinel-2 data are prepared for the scikit-learn estimators. It was there-

fore decided not to implement any wrapper functionalities for interfaces of the scikit-learn 

library, as they are considered self-contained and have the functionalities for the classifi-

cation accuracy assessment as well. Moreover, the estimators require different settings for 

their parameters, which is another complex topic. An example estimator is used in Section 

3.3. Some estimators cannot handle no-data values, which can be present in EOPatches. 

This concerns two cases in particular: 

1.  If multi-image features are included in the classification process, depending on the 

formula, division by zero can occur. eo-learn handles this problem by substituting a 

no-data value for the erroneous result. 

2.  If some pixels are masked throughout the whole time series by the SCL mask, they 

remain unknown and there is nothing to interpolate them from. 

The processing pipeline does not solve the problem of no-data values yet; however, 

the scikit-learn multivariate imputation of missing values [82] can be used to impute the 

EstimatorParser results. However, to mitigate the decrease in classification quality, the 

custom NanRemover EOTask was introduced to remove no-data values from sampled 
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pixels of both Sentinel-2 imagery and training data. Once the model is trained, its predic-

tion needs to be adjusted to the format of data in EOPatches. The eo-learn’s PredictPatch 

repeats a similar process of the EstimatorParser with all data in each EOPatch. The esti-

mator’s predict function is applied to respective feature vectors. These LULC predictions 

are then reshaped back to a three-dimensional array and stored into EOPatch. Later, they 

can be exported as GeoTIFF (EOTask ExportToTiff). Accuracy assessment has not been 

implemented to the pipeline, but it was manually conducted in the example usage exper-

iment.  

3.3. Pipeline Demonstration  

An area of the South Moravian Region in the Czech Republic was selected to examine 

the pipeline as a proof-of-concept feasibility demonstration. Open reference cadastral 

data, besides CLC and UA, at a scale of 1:2000 were obtained from the Registry of Terri-

torial Identification, Addresses, and Real Estates. The cadastral data contain land use in-

formation originally in ten classes; however, only eight of them were used. The classes 

designated Other Surfaces and Hop Field were neither desirable nor applicable within the 

study area.  

The input cadastral map was rasterized with the pixel value of a land-cover infor-

mation class number and the cell size of 10 m (corresponding to the Sentinel-2 geometric 

resolution). Because some cadastral parcels were still not in a digital form (thus missing) 

in the study area, they were handled as no-data in the resulting raster. The 56 Sentinel-2 

images were scaled to nine EOPatches, the SCL-based mask was retrieved and scaled 

alike. The processing operations, described in Sections 3.2.6–3.2.9, were then carried out 

on the data. The cloud coverage threshold for additional image filtering was set as low as 

10% to avoid large areas with no-data values, once the mask is burnt to the merged fea-

tures at the interpolation. When following Figure 5, the interpolation period was set from 

30 March to 16 October 2019, representing a 200-day span. The interpolation step was set 

to 10 days (virtually two Sentinel- revisits), resulting in 21 interpolated time frames.  
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Figure 5. The filtered and interpolated Sentinel-2 time series from 30.3.2019 to 16.10.2019 of feature 

time frames on the example of EOPatch with ID 7. 

In total, 100,000 multi-temporal pixels (feature vectors) were randomly sampled from 

EOPatches, which were divided in a 5:4 ratio of training patches to test patches. The in-

formation class balance in cadaster was chosen as the criterion of selecting EOPatches for 

the train/test split of the data. Because the number of cadaster information classes was 

naturally consistent within all EOPatches, Shannon's entropy (H) was computed for the 

sampled data [83]. See Table 2, which is an index of diversity among (LULC classes in a 

single EOPatch) ranging from zero to the logarithm (with any base) of the number of as-

sessed classes, for the results. It was computed as depicted in Equation (1) 

� =�∗ �� ∗ log ��

�

���

 (1)

where q is number of information classes, i is a class, and p is a ratio of class frequency and 

the sum of class values of pixels sampled within an EOPatch. 

In the conducted proof-of-concept, the range of values of H was from 0 to log(8), as 

there were eight information classes in this experiment. From a high H value, it can be 

assumed the classes were diverse and thus balanced in an EOPatch. The EOPatches for 

training and testing were chosen alternately with decreasing H, starting with the choice 

for training. At the end, there were 500,000 unique samples for both training and testing.  
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Table 2. Shannon’s entropy as an inter-class balance criterion for each EOPatch used to select 

training and test sets from the sampled data. Note: H stands for Shannon’s entropy, which is a 

dimensionless number. 

EOPatch ID H H rank Selected for 

0 1.110 8 Testing 

1 0.895 9 Training 

2 1.281 7 Training 

3 1.476 4 Testing 

4 1.575 3 Training 

5 1.424 5 Training 

6 1.584 2 Testing 

7 1.679 1 Training 

8 1.287 6 Testing 

The feature space of sampled features was then reduced to feature vectors and as-

signed with the respective LULC information class number for both training and test sets.  

The LightGBM estimator [47] was selected for the classification to become at least 

partly available to compare the results with the example in the work of Lubej [17,18] and 

eo-learn [48,49]. The LightGBM estimator is an effective algorithm based on the machine 

learning method of gradient boosting decision tree (GBDT) that should be used for larger 

training datasets (which the cadaster data certainly were). Discussing and setting up var-

ious parameters for the best classification results have been left for future research; there-

fore, the same parameters as in [17,49] were used. 

An analysis should have been made prior to setting the LightGBM estimator. How-

ever, more than a hundred set up parameters were identified. The amount of required 

work would have considerably exceeded the possibilities of this limited feasibility study. 

Setting up all the required parameters accordingly remains a possibility in terms of future 

work. The labelled feature vectors were trained and predicted, the prediction was tested 

on the generated test data from the remaining patches, and the best result was chosen. 

The confusion matrix, a commonly used classification accuracy assessment tool [84], was 

obtained to review the results. 

4. Results 

4.1. Processing Pipeline, Experimental Output,s and Integration to OLU/OLC  

The processing pipeline for LULC classification using Sentinel-2 imagery is divided 

into two custom Python modules (see Supplementary Materials) and a Jupyter Notebook 

with the implementation applied to the example usage experiment (also in the Supple-

mentary Materials). Each file is described with explanatory comments, and the classes and 

their methods contain docstrings to understand their meaning.  

4.2. Experimental Outputs  

The usage experiment showed a good OA of 85.9% and yielded a classified LULC 

map of the study area in the southern part of the South Moravian Region (Appendix A). 

The confusion matrix in Table 3 suggests that there were both very well and very 

poorly predicted LULC classes (considering provider accuracy, i.e., the ratio between well 

predicted pixels and testing pixels). The most accurately predicted were forests (91.5%), 

arable land (87.9%), and water (87.2%). On the other hand, the classification performed 

very poorly on permanent grasslands (45.2%), which are very diverse surfaces. They were 

most often misclassified as arable land and forests. A similarly low accuracy was seen in 

the prediction of gardens, which also appear in various forms. Built-up areas were pre-

dicted fairly well (accuracy of 75%); they were most often misclassified as arable land, 

having similar spectral behavior after harvest, and gardens, which are in close proximity. 
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Surprising results were achieved in predicting vineyards, with an accuracy of 67.5%, 

which can be attributed to common spectral behavior of most vineyard samples. A more 

detailed explanation on the classification process is provided in the discussion section. 

Table 3. Confusion matrix of the LULC (land use/land cover) classification experiment in the southern part of the South 

Moravian region. The achieved overall accuracy (OA) was 85.9%. 

P 
Arable 

Land 
Vine-Yard Garden Orchard 

Permanent 

Grassland 
Forest Water 

Built-up 

Areas 

Sum of 

Pixels 

Arable land 312,481 4853 1522 725 1170 1865 1236 1705 325,557 

Vineyard 10,235 15,518 162 306 110 286 102 95 26,814 

Garden 5727 581 2387 328 217 298 22 1459 11,019 

Orchard 5427 902 79 3485 500 268 27 48 10,736 

Permanent 

grassland 
7892 355 90 77 2436 1642 469 120 13,081 

Forest 6824 409 206 66 671 60,947 967 226 70,316 

Water 3084 39 139 483 177 1140 20,328 278 25,668 

Built-up areas 

and roads 
3644 319 562 40 111 189 165 11,779 16,809 

Sum of pixels 355,314 22,976 5147 5510 5392 66,635 23,316 15,710 500,000 

Omission error 12.1% 31.1% 42.7% 36.8% 54.8% 8.5% 12.8% 25.0%  

Commission 

error 
4.0% 42.1% 78.3% 67.5% 81.4% 13.3% 20.8% 29.9%  

Provider accu-

racy 
87.9% 67.5% 46.4% 63.2% 45.2% 91.5% 87.2% 75.0%  

In Figure 6, the prediction and the original cadaster training data can be compared. 

The prediction favored built-up areas and forests and extended them slightly over the 

surrounding classes. Some paths and roads were interrupted as the 10 m resolution was 

not sufficient to facilitate identification of continuous pixels of linear features. The predic-

tion was also affected by a common salt-and-pepper effect, which is a data noise caused 

by individual pixels being misclassified within a large body of a different class. This can 

be resolved by various noise removal techniques [84]; however, this was not conducted 

in this experiment in order to compare the raw data. Some places (shown in grey) in the 

original cadastral data did not contain land cover information. Considering that Sentinel-

2 data cover the whole study area, such places were naturally predicted. It can thus be 

concluded that even within the comprehensive Czech cadastral data, some new infor-

mation was supplied.  
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Figure 6. Comparison of original cadaster data and the LightGBM prediction. Sources: Sentinel-2 imagery from 30.3 to 

16.10 [80], Czech cadastral map [85]. 

A single-map comparison is provided in Figure 7, where the original cadaster data 

and the LightGBM prediction were erased and the result was reclassified to a binary raster 

of class change/no change. If substitution of original no-data with new values is not con-

sidered, the most misclassified LULC class was that of permanent grasslands, which cor-

responded to the overall results of the classification. Class mismatch was found to increase 

in more fragmented places, especially in the built-up areas, which are often spatially in-

tertwined with poorly classified gardens. 
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Figure 7. Monitoring class mismatch between the original cadaster data and the LightGBM predic-

tion to visually assess the results of the classification. Sources: Sentinel-2 imagery from 30.3 to 

16.10.2019 [80], Czech cadastral map [85]. 

4.3. Integration of Pipeline to OLU/OLC 

The integration of the processing pipeline and its results to OLU/OLC has to be put 

in a context with the new OLU/OLC data models (not publicly available as of December 

2020). The model is designed to handle contributing data apart from the processed data 

to ensure smooth update and to avoid compatibility issues. The results from the pro-

cessing pipelines are primarily in a raster format (GeoTiff in the usage experiment). It is 

suggested that once that LULC dataset is predicted over an area, EOPatches could be uti-

lized as the basis for map tiles. Stored outside of the processed OLU/OLC map, they can 

still be updated by repeated predictions. Nonetheless, the tiles have to be vectorized and 

forwarded to the OLU/OLC compilation process (as an LULC layer). If classification post-

processing is thoroughly examined, the vectorized geometries can constitute OLU/OLC 

objects. The integration of the developed proof-of-concept pipeline to OLU/OLC is being 

prepared as a follow-up paper, with emphasis on data modelling aspects. 

5. Discussion 

Table 4 provides an overview on the results presented in this paper alongside com-

parison with related work. 
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Table 4. Summary of the discussion points to the main goals of the presented paper (1–4) with 

respect to related work. 

Discussion Points To Defined Goals Related Work 

(1) Collects Sentinel-2 Imagery 

A collection of Sentinel-2 imagery is pub-

licly available at Sentinel Hub 

(https://www.sentinel-hub.com/). This paper 

presents an open and free-of-charge solution 

contrasting with the paid Sentinel Hub. Moreo-

ver, the presented research is modular. The Sen-

tinel-2 imagery collection module (see Supple-

mentary Materials) can be deployed to any open 

Sentinel-2 based solution. 

The following features needed to be newly 

developed or re-created:  

(a) Semi-automatic satellite data download.  

(b) Batch input of Sentinel-2 imagery and raw 

file handling. 

(c) Image preprocessing: selection of desired 

bands and resampling to 20 m (or 

arbitrary) resolution. 

(d) Cloud masking using SCL. 

(e) Setting up a workflow for regular updates 

of a specific dataset. 

The methodology of Lubej 

[17,18] avoided the functionality of 

the developed module by direct 

connection to the (paid) Web Cov-

erage Service (WCS) interface of the 

Sentinel Hub. 

Similar parts (from the paid 

Sentinel Hub) were also used by 

Lubej [17,18], especially in the 

preparation of ground data (rasteri-

zation, sampling to patches, and se-

lecting train/test samples), imagery 

interpolation, and sampling.  

(2) Filters Cloudiness through Multitemporal 

Vectors 

In this case, too, a paid module named 

‘Sen2Cloudless’ is provided as a functionality of 

the Sentinel Hub. The presented approach offers 

a newly developed open and free-of-charge al-

ternative. 

In contrast to the work of 

Lubej [17,18], masking was newly 

developed with the functionality 

equivalent to the subscription-

based features of the Sentinel Hub 

platform. The used cloudiness fil-

tering originated from the Sen2Cor 

product [42]. 

A more advanced cloudiness 

filtering is available under the des-

ignation ‘Fmask’ [38]. Nevertheless, 

this filter has not been imple-

mented in the Python language at 

the time when this study was being 

prepared due to certain issues in 

‘Fmask’ implementation. 

(3) Examines the Possibility of the Pipeline 

to Perform LULC Classification over the Im-

agery 

Throughout the study, the main emphasis 

was to populate the data gaps within the open 

land use/open land cover (OLU/OLC) datasets. 

Such gaps appeared commonly, typically due to 

missing information in input data: cadastral 

Schultz et al. [86] populated an 

LULC dataset through another ap-

proach. They attempted to fill in 

the gaps by remote sensing (RS) of 

classified land cover data from 

OpenStreetMap tags. However, the 

achieved results do not seem con-

vincing [86]. 
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maps, Urban Atlas (UA), and Corinne Land 

Cover (CLC). 

A feasibility study on classification perfor-

mance over the imagery was conducted on an 

area larger than 7000 km2. 

The presented OA (85.9%) arose as a conse-

quence of the high percentage (71.1%) of arable 

land class in the conducted experiment. It seems 

that the ‘learning effect’ favored the most repre-

sented class, arable land. 

The lowest OA values were achieved in 

gardens (46.4%) and permanent grasslands 

(45.2%). Gardens were a priori expected to be-

come the class with the worst results due to its 

heterogeneity. Some pixels containing gardens 

were mainly misclassified as arable land (in a 

half of the cases) and less commonly as built-up 

areas, vineyards, orchards, and forests. Perma-

nent grasslands were mainly misclassified as ar-

able land (in about 60% of the cases). This result 

seemed to originate from the time span of the 

satellite images series. 

Verifications were performed on pseudo-

continuous (vector) 'ground truth' data, repre-

sented by the cadastral maps at a scale of 1:2000, 

reclassified to spatial resolution equal to 10 me-

ters. 

Accuracy assessment followed the method-

ology of ‘random stratified sampling design.’ 

Shannon’s entropy helped to expose hidden er-

rors that could be caused by favoring un-

derrepresented classes. Using Shannon’s en-

tropy was a novel approach in comparison to 

the state-of-the-art. 

In the future, the accuracy of heterogene-

ous classes, such as gardens and orchards, could 

be assessed using a cluster sampling design to 

mitigate outsourcing their pixels to different 

classes. The grey level co-occurrence matrix 

(GLCM) should be used to improve the classifi-

cation matrix (see Section 5.1 for details). 

The related research takes dis-

crete information from field meas-

urements, which usually comprise 

tens or hundreds of discrete points, 

into account [87]. Using a large test 

sample could lead to an over-pow-

ered testing, as suggested by Foody 

[87].  

The accuracy assessment 

methodology of ‘random stratified 

sampling design’ was recom-

mended in [88,89]. Foody [87] 

noted that using Shannon’s entropy 

exposes the false negatives. 

(4) Semi-Automatically Updates OLU/OLC Da-

tabases Accordingly 

The presented approach was found to be 

feasible. The full potential of the developed 

pipeline appears when combining the pipeline 

with the open data model of the OLU/OLC da-

tasets (currently being prepared as a follow-up 

paper). 

The need for semi-automatic 

updates of LULC is emphasized in 

similar research, as presented by 

Weigand et al. [27], with an OA of 

80–93.1%, and Malinowski et al. 

[90], with an OA of 89%. Both were 

considerably larger studies, thus 

proving that such a workflow can 
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The discussion regarding this point is pro-

vided in Section 5.1 due to its complexity and 

extent. 

have a large-scale LU/LC deriva-

tion potential. 

Selected points are described in more detail in Sections 5.1 and 5.2 as an extension of 

Table 4. 

5.1. Processing Pipeline Prospects And Its Significance for OLU/OLC  

The processing pipeline is an open proof-of-concept solution for refining OLU/OLC. 

Its principle lies in processing Sentinel-2 imagery for spectral-based supervised classifica-

tion while the training data can be selected freely. The pipeline prepares the data for scikit-

learn machine learning estimators. Some design aspects were adapted from the LULC 

mapping methodology of the eo-learn library’s developers [17,49], who performed the 

land cover classification of Slovenia on the basis of the Slovenian Land Parcel Identifica-

tion System (LPIS) and achieved a good OA of 91.2%. The proposed processing pipeline 

was inspired by their approach; nevertheless, it came up with custom solutions (see Table 

4 for details). 

The main contributing resources of OLU/OLC at the time of writing this paper were 

CLC and UA. These datasets were guaranteed within the whole spatial extent of 

OLU/OLC, i.e., in areas where finer LULC information is unavailable or it is entirely miss-

ing. The processing pipeline laid grounds to relieve OLU/OLC from dependency on these 

datasets. It particularly attempted to increase the spatial resolution, diminish the dataset 

creation periodicity, and provide LULC information in regions where CLC and UA data 

are absent. 

It is to be noted that the processing pipeline has not yet achieved the ability to classify 

land use in the true sense of word. Land use information is often retrieved using image 

classification techniques that accommodate contextual information, particularly object-

based methods [5,90]. These should be further examined with regard to the processing 

pipeline, preferably in synergy with spectral information for the best performance [45]. 

Ma et al. [3] nonetheless concluded that object-based methods have been practiced over 

small territories (with a mean area of only 300 ha), and their application over larger areas 

is a subject for future research. Many studies dealing with land use information retrieval 

also follow commercial, very fine resolution imagery that cannot be freely utilized in 

OLU/OLC. It is clear that the pixel-wise approach along with the 10–20 m resolution of 

Sentinel-2 imagery, used in the pipeline, is too coarse for retrieving subtle semantic vari-

ations of land uses (like the approach of Palma [8]). Adopting advanced techniques is a 

proposed future improvement of the pipeline.  

One of the biggest advantages of the pipeline is that it can naturally handle multi-

temporal imagery. Temporal information is a carrier structure for the feature vectors as 

utilized in this paper. The validation of multi-temporal classification can also be problem-

atic as training or test data (ground truth data) remain static while the real earth-features 

can change through time. 

To preserve the 10 m geometric resolution of the final classification result, only 10 

and 20 m Sentinel-2 bands were used in the pipeline. This corresponded with the ap-

proach of Lubej [18], who achieved high overall classification accuracies even with fewer 

bands used in the process. The decision to upscale 20 m bands to a 10 m resolution was 

made, although it reduced spectral information reliability to some extent. Zheng et al. [4] 

similarly used nearest neighbor interpolation to assess the effects of upscaling and 

downscaling of Sentinel-2 data and proved that classification accuracies diminished when 

upscaling 10 and 20 m bands. Surprisingly, the straightforward nearest neighbor 

downscaling was the most beneficial for LULC classification purposes. For future devel-
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opment of the pipeline, downscaling should thus be exercised for better classification ac-

curacies because the geometric resolution of 20 × 20 m still outperforms the MMU of CLC 

in general and the MMU of UA in rural areas. 

Thanks to the Sentinelsat API [72], the pipeline has a continuous access to the Coper-

nicus Open Access Hub [73] and, thus, to the full time series of Sentinel imagery. Their 

automated processing outsources several tasks, such as downloading and unzipping im-

ages, file format handling, image resampling, subsetting, and masking from the operator, 

who can then devote more time to the classification process itself. 

The character of the pipeline allows for LULC prediction over a vast area of interest 

while avoiding high computational demands thanks to the concept of EOPatches. This is 

a key to the rapid extension of OLU/OLC LULC information to areas out of the extent of 

CLC or UA. For mass LULC classification, it is critical for the pipeline to be able to auto-

matically mosaic and reproject imagery in the future. The incorporation of multi-image 

features in the pipeline is still a basic solution, so not all such features can be obtained 

(e.g., pan-sharpening or image principal component analysis). On the other hand, even 

simple vegetation and other spectral indices have been reliably used for change detection 

(i.e., [24]), which is another potential development direction for OLU/OLC, emphasized 

especially by the umbrella organization Plan4All. In its current version, eo-learn further 

contains EOTasks for grey level co-occurrence matrix (GLCM) computation and the ex-

traction of various textural variables, which could be further added among training fea-

tures in the pipeline. According to the review of Khatami, Mountrakis, and Stehman [9] 

(2016), textural information has been the most effective accuracy-improving feature for 

spectral-based classification (improving OA by 12.1% on average). 

5.2. Conducted Experiment Discussion 

The example usage experiment should have primarily demonstrated the usage of the 

processing pipeline without primary attention paid to the classification parameters setup. 

The LightGBM estimator, using the 200-day time series of Sentinel-2 images and the LULC 

information from the Czech cadaster, offered an OA of 85.9%. Some LULC classes, such 

as permanent grasslands and gardens, were nonetheless poorly classified. A comparison 

should be made with the work of Lubej [17,18] and eo-learn [48,49], from which the pipe-

line adapted some of its design aspects. In their eo-learn showcase example, they classified 

land cover on the basis of the Slovenian LPIS. They had three more classes (snow, tundra, 

and shrubland), but the classification was otherwise similar to that in the experiment pre-

sented in this paper. With an equally set up estimator, they achieved a much better OA 

(91.2%). They nonetheless had access to the pre-processed data of the Sentinel Hub plat-

form with machine learning-based cloud masking algorithm and had the “developer 

knowledge” of the eo-learn library. 

The proposed pipeline usage faced several challenges when being deployed to 

OLU/OLC. Eight information classes are not sufficient to populate the fine HILUCS clas-

sification accordingly. The number and identification of information classes stems from 

the used underlying datasets, primarily the structure of the Czech cadaster. To use the 

pipeline in other regions, the model will have to be re-trained on a more typical landscape 

of those regions, and a custom training dataset will probably have to be used. As sug-

gested by Nguyen et al. [30], the extension of merged-feature time frames for cloud-filter-

ing could be required for tropical regions due to the complexity of biophysical environ-

ment (clouds and haze). In terms of future research, it is nonetheless interesting to exam-

ine how LULC predictions will behave if trained by other international, national, or re-

gional datasets. This can help assess the trade-off for putting less effort into training data 

collection. 
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6. Conclusions 

The main result of the research described in this paper is an open proof-of-concept 

machine learning-based processing pipeline for automatic Sentinel-2 imagery collection, 

cloudiness filtering, LULC classifications, and updates of OLU/OLC. The pipeline was 

developed in the Python environment, especially using the eo-learn library and some 

other Python libraries. It can process multitemporal Sentinel-2 imagery to a form that can 

be forwarded to various scikit-learn estimators. 

In comparison with the current OLU/OLC background datasets, its latest design, as 

followed within the conducted experiment, provides more spatially precise results that 

can be retrieved in near real time. That opens a possibility for OLU/OLC to amend its own 

LULC data and reduce dependence on primarily assumed input datasets (e.g., CORINE 

Land Cover, and Urban Atlas). Though experimentally tested with a fair result (OA of 

85.9%), the classification results are not yet ideal, and more research needs to be done to 

provide reliable land-use-like data with a higher accuracy and a number of information 

classes. During the process, the software engineering tasks turned out to be a significant 

means of understanding OLU/OLC as a system and choosing the design decisions for the 

processing pipeline.  

Despite the progress achieved in the conducted experiments, more work is needed 

to amend intrinsic OLU/OLC LULC information, especially by improving the classifica-

tion process itself. Similarly, the possibilities of verifying LULC information in OLU/OLC 

must be further investigated. Special attention should also be paid to clarifying the licens-

ing model of OLU/OLC and to analyzing the negative implications of fusing various 

LULC and other, often semantically different, data. 

Supplementary Materials: The following are available online at www.mdpi.com/2220-

9964/10/2/102/s1: Figure S1: A sample EOPatch object with some of its FeatureTypes (e.g., data and 

mask) and the required value after the colon (i.e., Python dictionaries with multi-dimensional 

NumPy arrays) [91,92]. Figure S2: A sample EOTask that calculates a multi-image feature, such as 

normalized difference indices. Its components are explained in Python comments. Figure S3: A sam-

ple EOWorkflow and EOExecutor as used to pipeline EOTasks. Components are explained in Py-

thon comments. Figure S4: The aoi.py module source code. Figure S5: The pipeline.py source code. 

Figure S6: Jupyter Notebook with the implementation applied to the example usage experiment. 
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Appendix A. Prediction of Land Use and Land Cover in Southern Part of Sout Mora-

vian Region, Czech Republic, 2019 

Prediction with LightGBM estimator using multi-temporal Sentinel-2 imagery (from 

30.3.2019 to16.10. 2019 and training data of the Czech cadaster (from November 2019)- 

Achieved overall accuracy 85.9 % 
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