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Abstract: The given article focuses on the benefit of harvested Ambient Geographic Information
(AGI) as complementary data sources for severe weather events and provides methodical approaches
for the spatio-temporal analysis of such data. The perceptions and awareness of Twitter users posting
about severe weather patterns were explored as there were aspects not documented by official damage
reports or derived from official weather data. We analysed Tweets regarding the severe storm event
Friederike to map their spatio-temporal patterns. More than 50% of the retrieved >23.000 tweets
were geocoded by applying supervised information retrievals, text mining, and geospatial analysis
methods. Complementary, central topics were clustered and linked to official weather data for
cross-evaluation. The data confirmed (1) a scale-dependent relationship between the wind speed
and the societal echo. In addition, the study proved that (2) reporting activity is moderated by
population distribution. An in-depth analysis of the crowds’ central topic clusters in response to
the storm Friederike (3) revealed a plausible sequence of dominant communication contents during
the severe weather event. In particular, the merge of the studied AGI and other environmental
datasets at different spatio-temporal scales shows how such user-generated content can be a useful
complementary data source to study severe weather events and the ensuing societal echo.

Keywords: harvesting; Ambient Geospatial Information; crisis informatics; big data; Web 2.0;
user-generated content; mapping; severe weather events; GIScience; storm event

1. Introduction

The digital age offers individuals a wide variety of application to share and pub-
lish self-created content on social media, which are often attributed to Web 2.0. The term
“Web 2.0” refers primarily to a change in the way the Internet is used, whereby users are
simultaneously consumers and producers of data [1]. Crowdsourced data from microblog-
ging platforms reflect this trend. This user-generated content can lead to large amounts of
unstructured data that can be analysed as big data and then used as relevant climatological
information [2,3].

Information based on severe weather events from open data sources, such as the
microblogging platform Twitter, provide valuable insights on societal perceptions and
societal awareness and communications of such events. However, the extent to which per-
ceived weather phenomena are shaped by climate change is discussed controversially [4–6].
Shared data during an extreme weather event not only provide a wide range of informa-
tion in near real-time but also show how “Voluntweeters” [7] can organize themselves
in a virtual environment. In order to retrieve and analyse Ambient Geospatial Informa-
tion (AGI) systematically, crowdharvesting and text mining offer useful techniques. In
turn, data-driven investigations on hazard patterns can be carried out on these types of
information sources.
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1.1. Ambient Geospatial Information (AGI) in Crisis Informatics

In the broadest sense, Ambient Geospatial Information (AGI) is data that are created
using Web 2.0 technologies and that contain georeferences, which either includes explicitly
or implicitly geospatial information. AGI is a phenomenon of the digital age: individuals
create, share, and publish geospatial content on social media and microblogging platforms.
This content can create large amounts of unstructured information that accrues in real time.
This is also known as big data.

Similarly, Volunteered Geographic Information (VGI) also includes geospatial data
from non-professionals but explicitly collects it for further use [8–10]. VGI is often collected
within the framework of citizen science, whereas georeferences of AGI are merely a byprod-
uct of the actual content (e.g., when an image file is uploaded to a microblogging service).
Fischer [11] and Harvey [9] also emphasise the difference between data being intention-
ally or unintentionally generated and shared. Other authors [12] use the umbrella term
“Citizen Contributed Geographic Information” (CGI) for generated geospatial information,
regardless of the intended use. In summary, the context of data production (citizen science
vs. social media) and data collection (crowdsourcing vs. harvesting) differs between VGI
and AGI (Figure 1).

Volunteered
Geographic
Information

Ambient
Geospatial
Information

Social Media

Harvesting Crowdsourcing

Citizen Science

Figure 1. Contextualization of Volunteered Geographic Information (VGI) and Ambient Geospatial
Information (AGI) regarding data production (vertical axis) and data collection (horizontal axis).

Stefanidis et al. [13] discuss AGI being used in the context of harvesting social media
feeds. Geospatial information from other data sources is primarily used to analyse the
spatial dimension. In comparison, tweets can be used to reflect social behaviour [2,14]
whereby the data can provide an understanding of behavioural patterns in social systems
against the background of environmental phenomena [15–17].

The analysis of user-generated content reveals wide-ranging applications for a net-
worked world [18–22]. Although big data can be viewed sceptically and always requires a
classification of the specific datasets [23,24], the multidisciplinary field of Crisis Informat-
ics (or Disaster Informatics) is receiving increasing attention. The systematic analysis of
shared content via Web 2.0 data sources in the context of extreme weather events or natural
disasters can assist in supporting crisis response and communication [25–33].

Crisis Informatics often aims to create modern information environments that enable
multi-directional and interactive communication [34] as opposed to traditional one-way
communication models in crisis communication. Nowadays, AGI utilizes intelligent ser-
vices on dynamic web maps to study disasters in real-time [35]. In the context of text
mining [27] and machine learning [36], classifiers are needed for efficient information pro-
cessing. Since such AGI is rarely formalized and varies greatly depending on the medium
used, new forms of data standardization and appropriate approaches for evaluating the
quality and accuracy of AGIs must be found [37,38].
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1.2. Objectives and Research Questions

Although a number of studies demonstrate the benefits of georeferenced information
collected by laypersons for society and science [39,40], questions remain regarding how
society communicates about severe weather events on Web 2.0 platforms. This article
discusses how such data sources can be implemented alongside damage reports as a
form of geocommunication. The case study investigated spatio-temporal patterns using
unstructered AGI posted in German tweets and official wind datasets about the Central
European storm Friederike.

The study answered the following research questions for the study area (Figure 2)
of Germany: (1) To what extent is the studied severe weather event reflected in short
messages on the microblogging service Twitter? (2) To what extent can such an echo be
linked to official weather data such as wind and speed? (3) How does population density
influence the frequency of AGI in the study area? The overall object of this study was to
demonstrate how official weather data and AGI can be combined to provide insights into
societal perceptions and awareness of severe weather phenomena.

Figure 2. The study area of Germany and its population density. Small light yellow dots represent a
low population density, whereas large dark brown dots show areas with high population densities.
The population data were aggregated according to hexagons 20 km-wide derived from the GHSL
Data Package 2019 [41].

2. Materials and Methods

Official weather data of a severe storm event and the AGI gathered from a microblog-
ging platform assist in analysing the societal echo of specific weather events. The microblog-
ging platform that was used as the data source was Twitter. Twitter data can be retrieved
with an application programming interface (API). The API allows to mine through large
amounts of data using specific keywords in a more efficient way. Thus, relevant tweets
can be retrieved within specific periods of time by using particular keywords. In addition,
spatial filters and/or the language can be specified. However, spatial filters are only useful
if users explicitly store this information with the metadata of their user profiles. Despite
this slight shortfall, Twitter can be a very useful data source, because of its high number of
active users and the available API [42].

2.1. The Harvested Dataset

Between 17–19 January 2019, the severe storm Friederike moved across the Atlantic
Ocean and Central Europe. The storm produced high winds, with gusts up to 203 km/h,
and caused widespread damage in parts of the Harz National Park and Saxony-Anhalt in
Germany. Frederike destroyed buildings and vehicles, halted train services, cancelled flights,
limited road traffic, and caused power outages. There were also eight direct fatalities and
numerous injuries.
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To extract relevant data from this severe weather event, the authors derived a list of
keywords by doing a qualitative content analysis on reports of past storm events. This
specialised keyword list was used to retrieve tweets with matching hashtags (# labelled
words) via Twitter’s API (Figure 3).

Data set

Twitter‘s API

A prori defined
keywords

Initial request

Co-occurences
of terms

A posteriori
identified keywords

Latent semantic
analysis

Document-
term matrix

Next requestReturn

Figure 3. Request model for Information Retrieval (IR) of relevant tweets. The request was initially
started with keywords derived qualitatively from past storm events. The loop request was stopped
as soon as the top 5% of co-occurring terms were identical with the previously harvested terms.

Users often use similar relevant terms as hashtags to emphasize their semantic mean-
ing. Thereby, the primary Information Retrieval (IR) approach was based on hashtags. This
is consistent with Zappavigna’s [43] linguistic interpretation. Zappavigna concludes that
the # sign integrates metadata directly into the post. In that sense, it serves as a well-flagged
label to make it more efficient to study the data generated from tweets.

High- and low-pressure systems in Central Europe are named by the Institute of
Meteorology of the Free University of Berlin. The Institute attributed the name Friederike to
the aforementioned storm in January 2018. Thus, mining for this term is an appropriate
anchor term. Other hashtags include: severe weather (Unwetter), storm (Sturm), and
hurricane (Orkan). In summary, the initial request was based only on the following four
a priori defined keywords (translated into English): Friederike, severe weather, storm,
and hurricane. Thus, the request was initially based on a restricted search, which was
implemented using functions of the R package: “rtweet” [44]. Subsequently, for the next
request, a latent semantic analysis (LSA) was conducted to expand the search space with
additional keywords. Iteratively, the terms of the query vector were supplemented using
a term ranking derived from a weighted document–term matrix and a singular value
decomposition [45]. The derived query vector consisted of keywords that were frequently
combined in tweets and that occurred in the previous dataset.

With this procedure, the semantic space of the retrieval could be extended, so that
the initial problem of a narrowed retrieval based on only a priori defined keywords was
reduced. Since it would not be expedient to use all the combinations that have occurred,
only the most frequent 5% that overlapped with the initial terms were ranked and passed
to the next request using a document–term matrix according to Zipf’s law [46] using the R
package “zipfR” [47].

The authors expanded the query to include the following hashtags: flood (Flut),
snow (Schnee), storm depression (Sturmtief ), stormFriederike (SturmFriederike), flooding
(Überflutung), doomsday (Weltuntergangsstimmung), weather (Wetter), weather warning
(Wetterwarnung), train (Bahn), fire department (Feuerwehr), danger (Gefahr), thunderstorm
(Gewitter), slippery (Glätte), hurricaneFriederike (OrkanFriederike), gale (Orkantief ), storm
warning (Sturmwarnung), severe weather warning (Unwetterwarnung), warning (Warnung),
weather forecast (Wettervorhersage), wind (Wind), and long-distance traffic (Fernverkehr).
The query was ordered according to the frequency with which it was mentioned in the
previous collected tweets.
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Only the term “rain” (Regen) was added as a search term to the last request, because
other terms did not provide any further potential for implementation according to Zipf’s
law. Accordingly, it can be assumed that all further relevant search terms were applied for
the executed IR.

The authors harvested a raw dataset of ~58.000 unstructured tweets in German.
Excluding retweets and duplicate entries, there were still >23.000 unique tweets. The
authors defined the AGI period between the 15th and the 21st of January 2018 to cover
the period before and after the actual storm event. The period includes the phase when
the low-pressure weather formation swept through Central Europe with gusts exceeding
200 km/h, as well as the warnings and damage-incident reports before and after the event.

2.2. Wrangling and Filtering

It is generally assumed that individuals do not send tweets in such a tight timing
as bots do. Frequencies per day and user were applied as filter criteria. Afterwards, the
resulting plausibility was qualitatively approved. For the examined period of five days,
10≤ tweets was a suitable limit, i.e., on average, users who send ~2 tweets per day represent
single individuals. Following this, the dataset consisted of ~16,000 tweets, which can be
traced back to individuals. For filtering, mining, and coding the climatological information
of interest, efficient methods of data processing were used in the R environment [48].
Manual filtering of such a large dataset would be too time-consuming and inefficient [49].
A three-dimensional feature space consisting of a spatial, temporal, and thematic class was
required to formalize the data. Accordingly, the tweets were prepared according to their
timestamp and the existence of geo-coordinates in the meta-data. Because the timestamp
was already included in the metadata, the focus lay on the text mining of thematic and
spatial codes based on the body of the text.

2.3. Geocoding of Implicit Location Names (Toponyms)

Accurately assigning spatial relationships to tweets is challenging when the geographic
coordinates (lat–long) of the tweet are unknown [50–52]. Similar to other studies [53–55],
only 1% of this study’s crowd-harvested tweets had explicit geographic coordinates. That
is why the text bodies of the tweets were mined for implicit georeferences to increase the
total number of geographic coordinates. Such hidden references come without specification
of latitude and longitude detail but with place names or regional references (toponyms).
That is why geocoding via external database locators for lookup references is necessary.

In practice, geocoding can only be successfully applied if corresponding toponyms
are available and match with a string pattern of a gazetteer database. While, e.g., the
pairing “Freiburg”: “Feribrug” still indicates a high similarity according to the standard
Levenshtein distance, it is extremely low with the pairing “Freiburg”: “black forest city”
despite their high semantic similarity.

Reverse geocoding refers to the opposite procedure. In this process, address infor-
mation is generated from position information (in the case of a two-dimensional point
geometry from longitude and latitude details). This, in turn, depends on the correspond-
ing searched scale. The geographic coordinates 47.99690483768423, 7.84195104872818 can
correspond to either one of the following: 1. Bismarkallee; 2. a city district in Freiburg;
or 3. the federal state in which the point is situated, Baden-Württemberg.

In concrete terms, the single-string entities of all studied tweets were compared with
the toponyms of the Eurostat’s database of nomenclature of territorial units for statistics
(NUTS) and Local Administrative Units (LAU). During a supervised and iterative two-
stage process, tweets’ georeferences were assigned to the dataset. Firstly, the geometries
of the corresponding area were assigned by matched toponyms using the R package
“fuzzyjoin” [56]. Secondly, in descending frequency of occurrence, it was evaluated whether
hits matched toponyms only in terms of the string pattern and otherwise had a semantically
different meaning. Thus, terms that had a semantic relation to the storm event, but that
had the same string pattern as a toponym, could be identified. For example, the term “rain”
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(Regen) was not coded as the German place of the same name. Since the georeferences
mentioned in the tweets refer to different spatial scales, the degree of informational detail
varied from the local to the national level. The few explicit geo-coordinates of 1% were
intersected to the fourth administrative level (LAU), which corresponds to Germany’s
municipalities (Figure 4).

Through geocoding and harmonizing tweets’ georeferences, the authors were able
to further analyse the spatial co-occurrence and interlinkages to supplementary geospa-
tial datasets. The methodological approach follows common practices in the field of
GIScience [57], according to which a nomothetic search for knowledge using software and
algorithms is combined with idiographic research practices using databases.

Terms of
tweets

Toponyms
of Eurostat

Lookup Match
Geometries 

of areas

Figure 4. The geographical information of the investigated terms were assigned by matching
toponyms of Eurostat’s database.

2.4. Spatio-Temporal and Content-Related Patterns Analysis

A uniform spatio-temporal scale establishes common reference units for coupling
tweets and other structured datasets, such as wind and population data. Hexagons (250 m
edge length) represent administrative units to prevent typical zoning effects (e.g., Modi-
fiable Areal Unit Problem (MAUP) or the ecological fallacy). These were used as spatial
units and a scale to aggregate all georeferenced point datasets. Hexagons are compact and
have a low perimeter-to-area ratio that makes them advantageous for representing edges
and intersecting points [58].

Based on their inherent timestamps, all tweets were grouped into 3, 6, 12, and 24 h time
intervals. This grouping allowed the analysis of the aforementioned temporal scales. As a
result, the authors coupled spatial and temporal aspects of tweets, wind, and population
data to analyse all information sources collectively.

Based on the common spatial reference unit (20 km-wide hexagons), the tweets were
supplemented with population data derived from the Global Human Settlement Layer
2019 (GHSL) [41] and 3-hourly modelled wind speed data from the Global Forecast System
(GFS) [59]. The authors first interpolated the GHSL data to the study area or the hexagonal
areas using GIS techniques. Laterm the authors loaded wind data directly from the GFS
server with the R package “rwind” [60] and further derived statistics from these data
about population density and wind speed maxima. The R package “sf” [61] was used to
perform geometric operations and spatial processing of the data. After that, both datasets
were mapped using the R package “ggplot2” [62], in order to recognize patterns of tweets’
georeferences, population distribution, and wind-speed patterns.

The authors used Silge & Robinson’s tidy text format [63] for the content-related
patterns analysis. Accordingly, the authors used the tibble data frames [64] in R to mine
for text and hashtag features. All stop words, adjectives, and toponyms were removed for
central topic evaluation. Based on this evaluation, the authors identified well-structured
data objects, central terms of tweets and hashtags, and their co-occurence. Following this,
the authors clustered all semantically synonymous terms to quantify the frequencies of
central topics and their relationships over time.

3. Results

The main temporal, spatial, and content structures of the approach carried out are
presented below. Particular attention was paid to the question of to what extent the societal
echo of the storm event relates to official weather data and population density. Out of the
entire raw dataset of ~58 k tweets, ~23 k were identified as unique user-generated, of which
~13 k tweets (~55% of unique tweets) in turn contained toponyms and could be finally used
to analyse spatio-temporal patterns. This means that ~22% of the original dataset was used
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to analyse the content and spatio-temporal questions, as the other data were duplicates or
had no spatial reference.

First, the central terms and their temporal density of the communicated text corpus is
presented (Section 3.1). Thereupon, the detected georeferences according to administrative
scales are listed (Section 3.2). The spatial patterns of AGI and wind speed data are presented
in Sections 3.3 and 3.4.

3.1. Central Topic Clusters and Their Temporal Density

Temporal analysis of the data showed that, at the onset of the event, the main topics
were (1) severe weather warnings and (2) reports of snowy and icy weather conditions.
Comparatively, during the peak of the storm, the (3) storm itself, (4) the rescue and damage
reports, as well as the (5) affected transportation systems simultaneously arose as central
topic clusters (Figure 5).

Figure 5. Central topic clusters and their distributions between 15–21 January 2018.

The central topic clusters reflect society’s response to the storm event. It becomes
clear that disaster communication also took place in different phases, according to which
corresponding topics were decisive. The clustered topics in the studied text corpus based
on synonymous terms relate to the severe weather warnings, the storm itself, rescue and
damage reports, affected transportation, and snowy and icy weather (Figure 6).

Figure 6. Ridgeline plots of the five central topic clusters and their relative occurrence during the
period under study.

With regard to the 3 h time intervals, a distinctive diurnal pattern became clear, which
points to a time-of-day effect. Accordingly, the frequency of the tweets correlates to the
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primary waking hours of human activity during daylight. While most reports are recorded
at midday, slightly fewer occur in the morning and afternoon and hardly any at night
(Figure 7). The time of day is, thus, associated with the frequency of the investigated AGI
and consequently must be considered in further analysis.

Figure 7. Time-of-day effect of the dataset on a subtler temporal scale. The overlaid red dots predict
the linear modelled trend of that daily activity pattern.

3.2. Implicit Toponyms of AGI

There was a relationship between tweets containing geo-coordinates in their meta-data
and tweets with implicit georeferences. While about 1% of the 23,493 tweets contained
geo-coordinates, a further 59.66% were detected with implicit georeferences. These ac-
counted for 47 k toponyms that referred to five spatial scales, i.e., one single tweet may
contain several georeferences on different scales (Table 1). Incorrect assignments occurred
frequently (>10) and were hardly observed at low frequencies.

Table 1. Detected georeferences according to five administrative scales. The unique text bodies of the
13,241 tweets refer to multiple scales.

Spatial Scale Georeferences Tweets

Country (NUTS-0) 528 528
States (NUTS-1) 2134 1899

Government regions (NUTS-2) 3106 2886
Districts (NUTS-3) 10,214 7093

Municipalities (NUTS-4) 31,557 13,241
Total 47,539 25,647

Unique 13,241

3.3. Spatial Patterns of AGI and Wind Speed Data

Looking at the total number of daily georeferences, it is noticeable that they are
unevenly distributed over time and might be driven by the intensity of the storm event.
The most frequent georeferences were available on 18 January, the day the storm reached
its maximum speed. At the same time, the sample of coded georeferences represent the
population distribution of all harvested tweets during the study period. In addition to
the frequency of georeferencing, spatial patterns emerged. On 18 January, the mapped
tweets indicate that the most-frequent societal responses to the storm event were located in
western areas and along a corridor from west to east through central Germany (Figure 8).

For 18 January 2018, the top ten highest amount of tweets was in the capital Berlin in
the northeast of Germany (1st rank), in the northern German city of Hamburg (2nd rank)
near the coast, in the densely populated Ruhr region (3rd to 5th and 10th rank) in the
western regions of the Sudy area, in the Swabian-Bavarian town of Donauwörth (7th rank),
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and in the Hesse-Thuringia regions in the central parts of Germany (6th, 8th, and 9th rank).
In contrast, only a few tweets were received from Baden-Württemberg, the third-most-
populous state in southwest Germany.

Figure 8. Spatially aggregated frequencies of georeferences according to hexagons 20 km-wide
derived from toponyms of storm-related tweets between 17 and 19 January 2018. Small yellow dots
indicate a low societal response, whereas large purple dots represent a strong societal echo in the
considered zone.

Considering the spatio-temporal distribution of modelled daily wind speed data, it
stands out that the peak phase of the storm was recorded most extensively on 18 January
for Germany (Figure 9). The mapped classes represent modelled wind speed levels at 10 m
above ground, ranging from 1 to 18 (m/s). The visual interpretation of the modelled wind
speed maxima shows that it reflects the communication pattern of the AGI. Interestingly,
there were some areas areas with very fast wind speeds and a low number of tweets
containing the investigated keywords Overall, the social response to storm Friederike was
over-represented in some regions and under-represented in others.

Figure 9. Three-hourly wind speed maxima interpolated according to 20 km-wide hexagons based
on data from the Global Forecast System (GFS) for the period between 17 and19 January 2018. Areas
with small light blue dots represent slow daily maximum wind speeds for the days, whereas large
dark purple dots show areas with high daily maximum wind speeds. Note that the recorded peak
values measured with weather stations by the German Meteorological Service are significantly higher
than the GFS data used.
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3.4. Synthesis of AGI, Wind, and Population Data

When synthesized, there was a weak to moderate correlation of AGI and population
density, as well as AGI and wind speed. The spatial and temporal level of aggregation had
a large impact on the degree of correlation according to Spearman’s ρ (rho). On the coarser
countrywide scale, there was a clear correlation between the number of tweets and the
maximum wind speed.

The correlation coefficients increased with temporal aggregation, since they are less
influenced by the diurnal pattern. If the data were aggregated for 7-day periods, there was
no significant correlation between tweets and wind speed, but a moderate association of
tweets and population was determined (Table 2).

Table 2. Determined correlation coefficients (p ≤ 0.0001) for multiple temporal aggregation and
spatial allocations.

Hexagonwide Countrywide
Temporal

Aggregation
Tweets (n)∼

Population (%)
Tweets (n)∼

Wind Speed (Max)
Tweets (n)∼

Wind Speed (Max)

3 h 0.20 0.15 0.54
6 h 0.25 0.20 0.55
12 h 0.30 0.25 0.60
24 h 0.31 0.25 0.68

7 days 0.46 0.01 -

Considering the examined time intervals without a spatial allocation of the tweets,
it becomes clear that there was a moderate or strong positive linear relationship between
tweets (n) and wind speed (max)—excluding the time interval of 6–9 (Table 3).

Table 3. Determined correlation coefficients (p ≤ 0.0001) for time intervals of day on a county-
wide scale.

Time Interval 0–3 3–6 6–9 9–12 12–15 15–18 18–21 21–0

rho 0.89 0.67 0.28 0.60 0.53 0.92 0.53 0.92

For the storm of Friederike studied as an example, the hypothesis that the population
density has an interactive effect on the relationship of wind speed and the societal echo
can be confirmed in consideration of the equal-interval population density classes: (i) high,
(ii) medium, and (iii) low. While the linear relationship of the societal echo and wind
speed was positive and moderate for high and medium populated areas, there was a weak
relationship for low populated areas (Figure 10). The relationship of the societal echo
and the wind speed depends on the population density, which means that the population
density influenced the reporting activity that took place in response to the studied wind
event. For instance, compared to low populated areas, the increasing reports from more
densely populated areas can be disproportionately highly linked to increasing wind speeds.
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Figure 10. The population density moderates the linear relationship of maximum wind speed and the
societal echo during the storm peak phase of 18–19 January 2018. In regions with high and medium
population density, a positive (r = 0.75, p ≤ 0.01) and moderate (r = 0.41, p ≤ 0.01) relationship was
observed. Whereas, in low populated regions, the relationships was weak (r = 0.16, p ≤ 0.01).

4. Discussion

In line with Andrienko et al. [65] and other geographic research on Twitter data that
focus on the spatial dimension of tweets, this study contextualizes georeferences along
the temporal dimension and patterns of content. Even though some authors problematize
practices that overemphasize the geocodes of tweets [23] or encourage research that address
aspects beyond the spatial dimension [66], the presented approach demonstrates the
outstanding value of georeferenced tweets as a prerequisite to analyse them along with
environmental data. For this purpose, the few explicit spatial references of ~1% of the
initial raw dataset could be complemented many times over by the detection of implicit
toponyms by matching with gazetteer entries. With this approach, georeferences for ~55%
of the tweets could be used so that central topics and spatio-temporal patterns could be
mapped (Figures 5, 6 and 8). This approach did not yield results as high as more-elaborate
methods for geocoding [52]. Nevertheless, it delivered comparably acceptable results with
relatively low analytical effort compared to more computationally intensive and elaborated
methods. In general, it must be assumed that a certain amount of such user-generated
content has no geographical references at all and cannot be geocoded.

According to Hahmann et al.’s insights [50], the precision of georeferenced tweets
depends on the topic and the geographical scale. It remains open to what exact extent
this is true for the toponymsand central topic clusters studied in this work. However, our
analysis also indicates that crisis communication on the studied storm event takes place on
a variety of geographical scales, with most references being very specific and assigned to
the smallest administrative scale.

Using artificial areas, the analysis of deeper spatial patterns and linkages to other
geospatial data, such as weather data or socio-economic data, was enabled. As a prereq-
uisite, we adapted the recommendations of Birch et al. [58]. Accordingly, hexagons as
reference geometry kept the ecological fallacies to a minimum. Thus, this study differs
fundamentally from work that focuses exclusively on the temporal and content aspects of
a Twitter corpus.

As other research on Twitter data commonly uses the temporal density or co-occurrence
of similar content as an indicator of the importance of the communicated phenomenon [26,30],
we also examined the temporal structure of the dataset used in this regard (Figure 5).
Through the temporal analysis of the different resolutions, a typical diurnal cycle in user
activity was identified (Figure 7), which can initially be observed independently of the
occurring wind speeds. However, on a coarser scale, a comparison of the daily totals
showed a clear signal that the crowd reacted simultaneously to changing wind speeds,
with more or less event-related messages.

This evidence highlights the importance of considering the time-of-day effect, or the
activity phases of people in their daily routines, when evaluating reporting frequencies.
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This inherent temporal pattern in the data has particular consequences for applied ap-
proaches, in which users act as real-time sensors to observe natural phenomena [42], since
no notification is given when the sensor is “asleep.” In addition to these temporal artefacts,
mapped communication indicates that tweets occur regionally and are also shaped by
population distribution.

Existing knowledge about the frequency of reporting of storm events can be con-
firmed [5,67]; the Twitter user crowd pays attention to wind events, and they report
significantly more during such an event. On the basis of the studied dataset, it could be
shown for Germany what Spruce et al. [68] have already proven for several storm events in
the United Kingdom and Ireland, i.e., that peaks of Twitter activity can be observed during
a storm event. In turn, these logical and substantively valid structures allow conclusions on
the practical applicability of such approaches. In addition to the aforementioned studies,
the current study further suggests that a measurable societal echo can also be explained
by the population distribution. However, this evidence should be investigated in further
studies. The authors suggest that the relationship between settlement size and significant
signal response should be further investigated, including whether these differences are
attributable to urban–rural regimes.

When analysing big data, the context in which the data are produced needs to be
equally scrutinized with the processing of these data because results are highly dependent
on how data are produced. The socioeconomic characteristics of Twitter’s users should, for
example, be considered for subsequent studies. While the technical infrastructure offered by
Twitter for data retrieval is highly formalized through a set of query routines, almost none
of the socioeconomic information is available on the data producers. However, because
of the dedicated digital access, it should be assumed that the crowd is not composed of a
representative cross-section of society but a specific subset of those who have a particular
affinity for such forms of communication and its digital content [69]. Accordingly, the
representativeness of the results presented here is limited and should be validated in
further case studies on Central-European storms. However, due to Twitter’s popularity
and high user numbers, it can be assumed that the spatial distribution of population density
is approximately represented by the digital society of the microblogging platform.

5. Conclusions

Although some work on user-generated content in the context of hurricanes exists for
the Central and North American regions, the evidence on the relationship between strong
wind events and the production of AGI for the regional context of Central Europe is still
very thin. When exploring real-time crisis communication, the exemplary dataset of AGI
used in this work highlights how spatio-temporal and thematic patterns of a severe storm
event can impact users of Web-2.0 technologies, specifically through the public Twitter
community. Through the elaborate georeferencing of textual information, regional hotspots
were identified. It was found that communication during the studied storm event was often
generated from regional parts of Germany and not on a macro level, e.g., country-wide.

In addition, systematic spatial aggregation of the studied data made it possible to
cross-correlate the crowd’s information with other spatial data such as wind patterns
and the population distribution. This information could be used to determine to what
extent society has been affected by the storm event. An informed assumption can be
made that both population density and measured wind speeds have an influence on the
communication frequency of the storm. The societal echo in terms of temporal density
or high reporting activity of severe weather events could be used as an indicator of the
severity of an extreme weather event. For instance, if people were affected by severe winds
in real time, public shared communication signalled their severity. One could surmise
that the common definition is illustrated according to which natural hazards only become
disasters when people are affected by them.

Finally, this study demonstrates how AGI can be used to gain insight into societal per-
ceptions during severe weather events or natural disasters, derived from spatio-temporal
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datasets. It provides an appropriate contribution to the communicative concern of society
for the regional level on the basis of a typical storm event for the regional context of Central
Europe, which occurs regularly and causes damage. Interestingly, the crowd produced
a very realistic and descriptive picture of the severe weather event. Moreover, the usage
of wide-ranging and various perceptions of an extreme weather event can broaden nar-
row views of remote experts and their evaluations, which are usually based on modelled
weather data. Further developments of such techniques in the field of Crisis Informatics
could be implemented to increase the efficiency and capacity of disaster management
during an extreme weather event.
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